
CMSC330 Fall 2021 Final Exam
Sections 010x and 020x

Name (PRINT YOUR NAME as it appears on gradescope):

__

Instructions
● The exam has 15 pages (front and back); make sure you have them all.
● Do not start this test until you are told to do so!
● You have 120 minutes to take this exam.
● This is a closed book exam. No notes or other aids are allowed.
● Answer essay questions concisely in 2-3 sentences. Longer answers are not
needed.
● For partial credit, show all of your work and clearly indicate your answers.
● Write neatly. Credit cannot be given for illegible answers.

Problem Score

1 PL Concepts /8

2 Lambda Calculus /10

3 OCaml /20

4 Ruby /15

5 Rust /10

6 Regexps, FAs, CFGs /14

7 Parsing /10

8 Operational Semantics /6

9 Security /7

TOTAL /100

1

Solutions

1. PL Concepts [8 pts]
Circle your answers. Each T/F question is 1 point.

1) T / F OCaml and Ruby use garbage collection.

2) T / F Let statements declare immutable variables by default in OCaml and
Rust.

3) T / F When using a language with a call-by-value evaluation strategy,
arguments are reduced to a value before being passed onto a function .

4) T / F Tail recursive functions can be optimized by a compiler to not cause
stack overflows .

5) T / F If the program terminates, CALL BY VALUE and CALL BY NAME will
always generate the same value.

6) T / F OCaml is not statically-typed because you don’t have to explicitly
declare types.

7) T / F Reference counting and mark and sweep are both techniques used by
garbage collection algorithms.

8) T / F All NFAs are DFAs, but not all DFAs are NFAs.

2

2. Lambda Calculus [10 pts]
A. Make the parentheses explicit.

1) [2 pts] (λx. x z) λy. w λw. w y z x

2) [2 pts] λx. x y λx. y x

B. Reduce the following lambda expressions using Call By Name and Call By Value strategies.
Make appropriate use of parentheses and alpha reductions to get maximal partial credit.
(λx. x y) ((λy. a) (λx. y))

[3 pts] Call By Name

(λx. x y) ((λy. a) (λx. y))

[3 pts] Call By Value

(λx. x y) ((λy. a) (λx. y))

3

(λx. (x z)) (λy. (w (λw. (((w y) z) x))))

(λx. ((x y) (λx. (y x))))

= ((λy. a) (λx. y)) y
= a y

= (λx. x y) a
= a y

3. OCaml [20 pts]
A. Write the types of the following OCaml expressions. If the expression doesn’t type check, just
write “type error” with no explanation required.

1) [3 pts] fun x -> fun y -> [x = (y + 1)]

2) [3 pts] fun x y z -> match (x = y z) with true -> y z | false -> y x

B. [4 pts] What would you put in place for the blank such that the following code returns 44.
let f = fun x y z ->

List.fold_left(fun acc ele -> acc + (ele + (y z))) 0 x

in f [1; 1; 1; 1] _________________ 4

For the questions C and D, you may not use the List module or @, but you may use the helper
functions given below. You may also write your own helper functions.

Helper Functions:

let rec map f xs = match xs with

| [] -> []

| x::xt -> (f x)::(map f xt)

let rec foldl f a xs = match xs with

| [] -> a

| x::xt -> foldl f (f a x) xt

let rec foldr f xs a = match xs with

| [] -> a

| x::xt -> f x (foldr f xt a)

4

int -> int -> bool list

'a -> ('a -> 'a) -> 'a -> 'a

(fun x -> x + 6)

C. [5 pts] Write a function make_palindrome of type 'a list -> 'a list which makes the
input list into a palindrome.
Examples:
make_palindrome [] = []

make_palindrome [1; 2; 3] = [1; 2; 3; 3; 2; 1]

make_palindrome [“c”; “m”; “s”; “c”; “c”; “s”; “m”; “c”]

D. [5 pts] Write a function lod of type int list -> int list -> int list that creates a
new list that is the result of subtracting each item of the second list from each item at the same
index in the first lst. Assume two lists have the same size.

Examples:
lod [] [] = []

lod [1; 2; 3] [3; 2; 1] = [-2; 0; 2] (*[(1-3);(2-2);(3-1)] *)

5

let rec make_palindrome lst =
 let rev = foldl (fun a x -> x::a) [] lst in
 foldr (fun x a -> x::a) lst rev

let rec lod lst1 lst2 =
 match lst1, lst2 with
 | [],[] -> []
 | h1::t1,h2::t2 -> (h1-h2)::(lod t1 t2)

4. Ruby [15 pts]
In 2019, the University of Maryland awarded a $100 million contract to Workday to upgrade
Testudo to a new cloud-based system. You were hired by Workday to develop a part of the
course registration system because of your experience in registering for classes and your Ruby
skills.

The goal of the course registration system is to allow students to add/drop classes and see all
the courses they’ve registered for. You will be given a file called courses.txt which contains
information about every course offered by the university. Each line in courses.txt will have the
format:
Course,Seats

The course name will consist of 4 uppercase letters followed by 3 digits and the total number of
seats will be a number with one or more digits. All invalid lines should be ignored. For
example, the following line is valid: CMSC330,30

Each student will be represented as a string. We will simply denote this as id.
You will have to implement four functions, described below:

● [3 pts] initialize(path) - Reads the file and parses the contents. Store the contents
in any data structure you like, as long as these other functions work as described below.

● [4 pts] add(id, course) - Registers a student to the given course and returns true if
there is an open seat and the student has not already registered for the course.
Otherwise, return false. Note that the total number of seats given in courses.txt is not
the same as the total number of open seats. You will have to keep track of open seats.

● [4 pts] drop(id, course) - Drops a student from the given course if the student has
registered for it and returns true. In all other cases, return false.

● [4 pts] get_courses(id) - Returns an array containing all the courses a student has
registered for. if there's no such student/no registration, return an empty array.

The class definition is given on the following page for you to fill in. Feel free to add any class or
instance variables you feel are necessary. Here is an example interaction with the class:

r = CourseRegistration.new(‘courses.txt’)

r.add(‘1001’, ‘CMSC351’)

=> true

r.add(‘1001’, ‘CMSC330’)

=> true

r.add(‘1002’, ‘CMSC330’)

=> true

r.add(‘1010’, ‘CMSC330’)

=> false # No more open seats! :(

courses.txt:
CMSC330,2
INVALID,0
CMSC351,3
ENGL393,2
STAT400,2

6

r.drop(‘1002’, ‘CMSC330’)

=> true

r.get_courses(‘1001’)

=> [“CMSC330”, “CMSC351”]

class CourseRegistration

def initialize(path)

File.open(path).each do |line|

end

end

def add(id, course)

end

def drop(id, course)

end

def get_courses(id)

end

end

7

@courses = {}

if line =~ /^([A-Z]{4}\d{3}),(\d+)$/
 @courses[$1] = [$2.to_i, []]
end

if @courses[course] && @courses[course][1].count < @courses[course][0] &&
!@courses[course][1].include?(id)
 @courses[course][2] << id
 true
end
false

if @courses[course]
 @courses[course][2].delete(id)
 true
end
false

list = []
@courses.each do |k,v|
 if v[1].include?(id)
 list << k
 end
end
list

5. Rust [10 pts]
A. [3 pts] Does the following program compile? If so, write out the output of the program
execution. Otherwise, point out the line that causes the error and explain why the program
doesn't compile.

1 fn main () {

2 let mut a = 3;

3 let b = &mut a;

4 let &mut c = b;

5 *b = 5;

6 println! ("{}", a + c);

7 }

B. [3 pts] Who is the owner of the string “330 rocks!” when the execution stops at HERE?

1 fn main () {

2 let a = String::from("330 rocks!");

3 let b = a;

4 let c = &b;

5 let d = &c;

6 let e = d;

7 let f = &*c;

8 let g = e;

9 // HERE

10 }

8

b

Compiles and prints 8

C. [4 pts] The function add_elems sums up the elements of an integer array. Find and fix the
errors in the function. Find three - there may be more, any three are fine.

1 fn add_elems(arr : &[i32]) -> i32 {

2 let sum = 0;

3 for i in arr.iter() {

4 sum += arr[i];

5 }

6 sum;

7 }

9

1. sum must be mutable
2. Should be adding i instead of arr[i]
3. Line 6 should not have a semicolon

6. Regex, FAs, CFGS [14 pts]
A. [6 pts] Use the subset algorithm to convert the above NFA to a DFA.
Show all steps and draw the final DFA.

10

Final DFA after subset construction should have the following
formal definition:

Σ: {a, b, c}
Q: {{0,2,4}, {1}, {5,2,4}, {3,5,2,4}}
q0: {0,2,4}
F: {{1}, {5,2,4}, {3,5,2,4}}
d: {({0,2,4}, a, {1}), ({0,2,4}, b, {5,2,4}),
 ({0,2,4}, c, {3,5,2,4}), ({1}, a, {1}), ({5,2,4}, b, {5,2,4}),
 ({5,2,4}, c, {3,5,2,4}), ({3,5,2,4}, b, {5,2,4}),
 ({3,5,2,4}, c, {3,5,2,4})}

B.[4 pts] Write a regex to describe the language of the above NFA:

C. [4 pts] Write a context free grammar that generates the following language:
axbycz where z = x + y, x ≥ 0 and y ≥ 0

11

(a+)|((b|c)+)

S -> aSC | T
T -> bTc | ε

7. Parsing [10 pts]
A. [3 pts] List the first sets for the following grammar:
You may use e or ε for epsilon. Do not use E as that could imply a non-terminal.
S → aB | Rw

B → dR | n

R → c | ε

B. [3 pts] Fix the following grammar so that it can be parsed by a recursive descent parser
S → SAB| AB

A → Aa | a

B → Bb | b

C. [4 pts] The following is the CFG for an even length palindrome over the alphabet {a,b}
S → aSa | bSb| ε

Can you write a recursive descent parser for this grammar? If so, please write the parse_S

function using either of the two implementations of lookahead or match_tok covered in the
class. Assume the token list type of char list. For example: [‘a’; ‘b’; ‘b’; ‘a’].
If a recursive descent parser cannot parse this grammar, explain why.

12

First(S) = {a, c, w}
First(B) = {d, n}
First(R) = {c, ε}

S -> ABS | AB
A -> aA | a
B -> bB | b

CFG cannot be parsed by recursive descent because there is no unique
first set for ε case, making the first and second halves of
palindrome indistinguishable under recursive descent.

8. Operational Semantics [6 pts]

A. [4 pts] What rule numbers correspond to the holes in the tree?
ONLY WRITE THE RULE NUMBERS. DO NOT WRITE MORE THAN ONE DIGIT PER ITEM.

a)
b)
c)
d)

B. [2 pts] What is the final answer? (In other words: what value should go in the box ??? in the
bottom of the proof tree?)

13

5
7
3
3

42

9. Security [7 pts]
A. [3 pts] There is a security vulnerability in the following code. Explain how the attacker can
exploit the vulnerability assuming that stack is allocated high to low address.

#include <stdlib.h>

#include <stdio.h>

#include <string.h>

void print_strings(char *buffer, int len) {

for (int i=0; i<len; i++) {

if (buffer[i] != 0) {

printf("%c", buffer[i]);

}

}

printf("\n");

}

int main(int argc, char **argv) {

char secret[32];

char public[32];

strcpy(secret, "This is a secret");

strcpy(public, "This is public data");

int len = atoi(argv[1]);

char buffer[len+1];

memcpy(buffer, public, len);

buffer[len] = 0;

print_strings(buffer, len);

}

14

Buffer overflow. Large value for argv[1] can read memory outside
of what's allowed i.e secret array.

B. [2 pts] SQL injections are best prevented by (select all that apply) :
a) Input Sanitization
b) Prepared Statements
c) Forced Type Checking
d) Dynamic Memory Allocation
e) Randomized Memory Access

C. [2 pts] A stored XSS attack typically can be prevented if the web servers
a) never output data received as input directly without checking it for malicious code
b) use the same origin policy
c) disable javascript
d) use prepared statements

15

