
CMSC 330 Exam 2 Spring 2022 Solutions 

Q2. NFA and DFA 

Q2.1. Consider the NFA given below. Is this NFA also a DFA? 

 

Yes/No 

Q2.2. Which strings will be accepted by the following NFA? 

 

• aaabbb 

• aa 

• aaaaab 

• bbbaaa 

  



Q3. NFA to DFA 

Consider the following NFA: 

 
When converted to a DFA using the subset construction algorithm from Project 3, we get the following DFA: 

 
Where X, Y and Z are states you'll have to fill in. 

Q3.1. In this DFA, which states from the original NFA make up the state X?              0, 1, 2, 3 

Q3.2. In this DFA, which states from the original NFA make up the state Y?               0, 1, 2, 3 

Q3.3. In this DFA, which states from the original NFA make up the state Z?              0, 1, 2, 3 

Q3.4. Which state(s) in the new DFA are final?          X, Y, Z 

Q3.5. Provide a regex for the NFA / DFA: 

ab(aab)* 

  



Q4. CFG 

To represent ϵ in the CFG, you can either copy and paste the symbol ϵ, type the word epsilon or just type the 

letter e. 

Q4.1. Define a CFG that describes the language 

 

S -> aSU | T 

T -> bTUU | ϵ 

U -> c | ϵ 

Q4.2. Given the following ambiguous CFG, modify it so that it produces the same strings but is not ambiguous. 

 

Rewrite: S -> TaS | T 

Q4.3. Is the below CFG right recursive? 

 

Yes/No 

Q5. Can it be parsed? 

Indicate if each of the following grammars can be parsed by a recursive descent parser. If not, choose the 

reason for why it cannot. 

Q5.1. Can the below grammar be parsed by a recursive-descent parser? 

 

• Yes 

• No, because the grammar is ambiguous i.e., it has more than one leftmost derivation 

• No, because the grammar is left recursive 

• No, because the grammar is ambiguous and left recursive 

Partial credit for options 2 and 3. 

Q5.2. Can the below grammar be parsed by a recursive-descent parser? 

 

• Yes 

• No, because the grammar is ambiguous i.e., it has more than one leftmost derivation 

• No, because the grammar is left recursive 

• No, because the grammar is ambiguous and left recursive 



 

Q5.3. Can the below grammar be parsed by a recursive-descent parser? 

 

• Yes 

• No, because the grammar is ambiguous i.e., it has more than one leftmost derivation 

• No, because the grammar is left recursive 

• No, because the grammar is ambiguous and left recursive 

Q6. Writing a Parser 

Note: For your reference, we have included the non-imperative definitions for the helper functions you will need 

to implement the parser. 

let lookahead toks = match toks with 

| [] -> failwith "no more tokens!" 

| h::_ -> h 

 

let match_token tok toks = match toks with 

| h::t when h = tok -> t 

| _ -> failwith "match error!" 

Consider the following grammar. 

 

We are assuming that a working lexer (or tokenizer) exists and can convert string input into a list of tokens 

(similar to Project 4a). The goal is to implement a non-imperative recurive-descent parser to parse the 

grammar described above. To do so, we will define our tokens and the corresponding AST as follows: 

type token =  

| Tok_ifzero 

| Tok_then 

| Tok_else 

| Tok_0 

| Tok_1 

 

type expr =  

| Num of int 

| IfZero of expr * expr * expr 

Examples: 

"0" |> tokenizer |> parse_Exp 

(* Num(0) *) 

 

"ifzero 0 then 1 else 0" |> tokenizer |> parse_Exp 

(* IfZero(Num(0), Num(1), Num(0)) *) 

 



"ifzero 0 then ifzero 1 then 0 else 1 else 0" |> tokenizer |> parse_Exp 

(* IfZero(Num(0), IfZero(Num(1), Num(0), Num(1)), Num(0)) *) 

Notes: 

• parse_Exp must return type token list * expr. 

• You don't have to check if the list is empty at the end of parsing. 

• You can use failwith to handle exceptions. 

let rec parse_Exp toks = 

  match lookahead toks with 

  | Tok_ifzero -> parse_IfZero toks 

  | Tok_0 | Tok_1 -> parse_N 

 

and parse_IfZero toks =  

  match lookahead toks with  

  | Tok_ifzero -> let toks = match_token Tok_ifzero toks in 

      let e, toks = parse_N toks in 

      let toks = match_token Tok_then toks in 

      let e’, toks = parse_Exp toks in 

      let toks = match_token Tok_else toks in 

      let e’’, toks = parse_Exp toks in 

      (toks, IfZero(e, e’, e’’)) 

  | _ -> failwith “error” 

 

and parse_N toks = 

  match lookahead toks with 

  | Tok_0 -> let toks = match_token Tok_0 toks in (toks, Num(0)) 

  | Tok_1 -> let toks = match_token Tok_1 toks in (toks, Num(1)) 

  | _ -> failwith “error” 

Q7. Operational Semantics 

Q7.1. What is the difference between lexical/static and dynamic scoping in OpSem? 

• Static scoping is for closures and dynamic scoping is for hypotheses. 

• Static scoping evaluates a closure with respect to the existing environment, dynamic scoping evaluates a 

closure on its own. 

• Static scoping evaluates the environment from left to right, dynamic scoping evaluates the environment 

from right to left. 

Q7.2. Consider the following semantics that uses a mystery magic operator ?. 

 

Describe what this magic operator does. 

Hint: Recall closures from OCaml. 

? applies the value of e1 to the function e2 OR ? is the pipeline operator |> from OCaml. 

 



Q7.3. Using the given rules, fill in the blanks the complete the derivation below: 

 

Notes:  

• If (#5) is not visible, please scroll to the right to ensure the entire LaTeX is visible. 

• The blanks refer to the part of derivation (judgement/hypothesis) that should exist in the position of the 

blank. 

Blank #1: x:5 

Blank #2: false 

Blank #3: A,x:5(x) = 5 

Blank #4: x + 5 

Blank #5: 10 is 5 + 5 

Blank #6: 10 

Q8. Lambda Calculus 

To represent λ, you may either copy and paste the symbol λ or just type the characters L or \ in your solutions. 

Q8.1. Which of the following are free variables in the lambda calculus expression? 

λa. b λy. y x λp. p y 

• a 

• b 

• y 

• x 

• p 

  



Q8.2. Consider the following lambda calculus expression, 

(λx. y λy. x y λx. x y) (λz. z) (λz. w) 

Make parentheses explicit in the above expression. 

((λx. (y (λy. ((x y) (λx. (x y)))))) (λz. z)) (λz. w) 

Give a valid α-conversion for the expression. 

(λx. y λm. x m λn. n m) (λz. z) (λz. w) 

Q8.3. Reduce the following lambda calculus expression to the β-normal form using both CBN and CBV.  

(λx. (λy. y a) x) ((λx. x) (λy. y b)) 

Show each step, including any β-reduction or α-conversion. If there is infinite recursion, write "Infinite 

Recursion". 

Call-by-name: 

(λx. (λy. y a) x) ((λx. x) (λy. y b)) 

= (λy. y a) ((λx. x) (λy. y b)) 

= ((λx. x) (λy. y b)) a 

= (λy. y b) a 

= a b 

Call-by-value: 

(λx. (λy. y a) x) ((λx. x) (λy. y b)) 

= (λx. (λy. y a) x) (λy. y b) 

= (λy. y a) (λy. y b) 

= (λy. y b) a 

= a b 

Q8.4. Consider the following encodings, 

true = (λx. λy. x) 

false = (λx. λy. y) 

not = (λx. x false true) 

or = (λx. λy. x true y) 

Prove that not (or false true) = false 

Hint: Replace the bindings for their lambda-calculus expressions and show that the left side reduces to false, 

which is (λx. λy. y). 

not (or false true) 

= not ((λx. λy. x true y) false true) 

= not (false true true) 

= not ((λx. λy. y) true true) 

= not ((λy. y) true) 

= not (true) 

= (λx. x false true) true 

= true false true 

= (λx. λy. x) false true 

= (λy. false) true 

= false 


