
CMSC 330 Exam 2 Spring 2022 Solutions

Q2. NFA and DFA

Q2.1. Consider the NFA given below. Is this NFA also a DFA?

Yes/No

Q2.2. Which strings will be accepted by the following NFA?

• aaabbb

• aa

• aaaaab

• bbbaaa

Q3. NFA to DFA

Consider the following NFA:

When converted to a DFA using the subset construction algorithm from Project 3, we get the following DFA:

Where X, Y and Z are states you'll have to fill in.

Q3.1. In this DFA, which states from the original NFA make up the state X? 0, 1, 2, 3

Q3.2. In this DFA, which states from the original NFA make up the state Y? 0, 1, 2, 3

Q3.3. In this DFA, which states from the original NFA make up the state Z? 0, 1, 2, 3

Q3.4. Which state(s) in the new DFA are final? X, Y, Z

Q3.5. Provide a regex for the NFA / DFA:

ab(aab)*

Q4. CFG

To represent ϵ in the CFG, you can either copy and paste the symbol ϵ, type the word epsilon or just type the

letter e.

Q4.1. Define a CFG that describes the language

S -> aSU | T

T -> bTUU | ϵ

U -> c | ϵ

Q4.2. Given the following ambiguous CFG, modify it so that it produces the same strings but is not ambiguous.

Rewrite: S -> TaS | T

Q4.3. Is the below CFG right recursive?

Yes/No

Q5. Can it be parsed?

Indicate if each of the following grammars can be parsed by a recursive descent parser. If not, choose the

reason for why it cannot.

Q5.1. Can the below grammar be parsed by a recursive-descent parser?

• Yes

• No, because the grammar is ambiguous i.e., it has more than one leftmost derivation

• No, because the grammar is left recursive

• No, because the grammar is ambiguous and left recursive

Partial credit for options 2 and 3.

Q5.2. Can the below grammar be parsed by a recursive-descent parser?

• Yes

• No, because the grammar is ambiguous i.e., it has more than one leftmost derivation

• No, because the grammar is left recursive

• No, because the grammar is ambiguous and left recursive

Q5.3. Can the below grammar be parsed by a recursive-descent parser?

• Yes

• No, because the grammar is ambiguous i.e., it has more than one leftmost derivation

• No, because the grammar is left recursive

• No, because the grammar is ambiguous and left recursive

Q6. Writing a Parser

Note: For your reference, we have included the non-imperative definitions for the helper functions you will need

to implement the parser.

let lookahead toks = match toks with

| [] -> failwith "no more tokens!"

| h::_ -> h

let match_token tok toks = match toks with

| h::t when h = tok -> t

| _ -> failwith "match error!"

Consider the following grammar.

We are assuming that a working lexer (or tokenizer) exists and can convert string input into a list of tokens

(similar to Project 4a). The goal is to implement a non-imperative recurive-descent parser to parse the

grammar described above. To do so, we will define our tokens and the corresponding AST as follows:

type token =

| Tok_ifzero

| Tok_then

| Tok_else

| Tok_0

| Tok_1

type expr =

| Num of int

| IfZero of expr * expr * expr

Examples:

"0" |> tokenizer |> parse_Exp

(* Num(0) *)

"ifzero 0 then 1 else 0" |> tokenizer |> parse_Exp

(* IfZero(Num(0), Num(1), Num(0)) *)

"ifzero 0 then ifzero 1 then 0 else 1 else 0" |> tokenizer |> parse_Exp

(* IfZero(Num(0), IfZero(Num(1), Num(0), Num(1)), Num(0)) *)

Notes:

• parse_Exp must return type token list * expr.

• You don't have to check if the list is empty at the end of parsing.

• You can use failwith to handle exceptions.

let rec parse_Exp toks =

 match lookahead toks with

 | Tok_ifzero -> parse_IfZero toks

 | Tok_0 | Tok_1 -> parse_N

and parse_IfZero toks =

 match lookahead toks with

 | Tok_ifzero -> let toks = match_token Tok_ifzero toks in

 let e, toks = parse_N toks in

 let toks = match_token Tok_then toks in

 let e’, toks = parse_Exp toks in

 let toks = match_token Tok_else toks in

 let e’’, toks = parse_Exp toks in

 (toks, IfZero(e, e’, e’’))

 | _ -> failwith “error”

and parse_N toks =

 match lookahead toks with

 | Tok_0 -> let toks = match_token Tok_0 toks in (toks, Num(0))

 | Tok_1 -> let toks = match_token Tok_1 toks in (toks, Num(1))

 | _ -> failwith “error”

Q7. Operational Semantics

Q7.1. What is the difference between lexical/static and dynamic scoping in OpSem?

• Static scoping is for closures and dynamic scoping is for hypotheses.

• Static scoping evaluates a closure with respect to the existing environment, dynamic scoping evaluates a

closure on its own.

• Static scoping evaluates the environment from left to right, dynamic scoping evaluates the environment

from right to left.

Q7.2. Consider the following semantics that uses a mystery magic operator ?.

Describe what this magic operator does.

Hint: Recall closures from OCaml.

? applies the value of e1 to the function e2 OR ? is the pipeline operator |> from OCaml.

Q7.3. Using the given rules, fill in the blanks the complete the derivation below:

Notes:

• If (#5) is not visible, please scroll to the right to ensure the entire LaTeX is visible.

• The blanks refer to the part of derivation (judgement/hypothesis) that should exist in the position of the

blank.

Blank #1: x:5

Blank #2: false

Blank #3: A,x:5(x) = 5

Blank #4: x + 5

Blank #5: 10 is 5 + 5

Blank #6: 10

Q8. Lambda Calculus

To represent λ, you may either copy and paste the symbol λ or just type the characters L or \ in your solutions.

Q8.1. Which of the following are free variables in the lambda calculus expression?

λa. b λy. y x λp. p y

• a

• b

• y

• x

• p

Q8.2. Consider the following lambda calculus expression,

(λx. y λy. x y λx. x y) (λz. z) (λz. w)

Make parentheses explicit in the above expression.

((λx. (y (λy. ((x y) (λx. (x y)))))) (λz. z)) (λz. w)

Give a valid α-conversion for the expression.

(λx. y λm. x m λn. n m) (λz. z) (λz. w)

Q8.3. Reduce the following lambda calculus expression to the β-normal form using both CBN and CBV.

(λx. (λy. y a) x) ((λx. x) (λy. y b))

Show each step, including any β-reduction or α-conversion. If there is infinite recursion, write "Infinite

Recursion".

Call-by-name:

(λx. (λy. y a) x) ((λx. x) (λy. y b))

= (λy. y a) ((λx. x) (λy. y b))

= ((λx. x) (λy. y b)) a

= (λy. y b) a

= a b

Call-by-value:

(λx. (λy. y a) x) ((λx. x) (λy. y b))

= (λx. (λy. y a) x) (λy. y b)

= (λy. y a) (λy. y b)

= (λy. y b) a

= a b

Q8.4. Consider the following encodings,

true = (λx. λy. x)

false = (λx. λy. y)

not = (λx. x false true)

or = (λx. λy. x true y)

Prove that not (or false true) = false

Hint: Replace the bindings for their lambda-calculus expressions and show that the left side reduces to false,

which is (λx. λy. y).

not (or false true)

= not ((λx. λy. x true y) false true)

= not (false true true)

= not ((λx. λy. y) true true)

= not ((λy. y) true)

= not (true)

= (λx. x false true) true

= true false true

= (λx. λy. x) false true

= (λy. false) true

= false

