
Document Number: MD00090
Revision 0.95

March 12, 2001

MIPS Technologies, Inc.
1225 Charleston Road

Mountain View, CA 94043-1353

MIPS32™ Architecture For Programmers
Volume III: The MIPS32™ Privileged Resource

Architecture

Copyright © 2001 MIPS Technologies, Inc. All rights reserved.

Unpublished rights reserved under the Copyright Laws of the United States of America.

This document contains information that is proprietary to MIPS Technologies, Inc. (“MIPS Technologies”). Any
copying, modifyingor use of this information (in whole or in part) which is not expressly permitted in writing by MIPS
Technologies or a contractually-authorized third party is strictly prohibited. At a minimum, this information is protected
under unfair competition laws and the expression of the information contained herein is protected under federal
copyright laws. Violations thereof may result in criminal penalties and fines.

MIPS Technologies or any contractually-authorized third party reserves the right to change the information contained in
this document to improve function, design or otherwise. MIPS Technologies does not assume any liability arising out of
the application or use of this information. Any license under patent rights or any other intellectual property rights owned
by MIPS Technologies or third parties shall be conveyed by MIPS Technologies or any contractually-authorized third
party in a separate license agreement between the parties.

The information contained in this document constitutes one or more of the following: commercial computer software,
commercial computer software documentation or other commercial items. If the user of this information, or any related
documentation of any kind, including related technical data or manuals, is an agency, department, or other entity of the
United States government (“Government”), the use, duplication, reproduction, release, modification, disclosure, or
transfer of this information, or any related documentation of any kind, is restricted in accordance with Federal
Acquisition Regulation 12.212 for civilian agencies and Defense Federal Acquisition Regulation Supplement 227.7202
for military agencies. The use of this information by the Government is further restricted in accordance with the terms
of the license agreement(s) and/or applicable contract terms and conditions covering this information from MIPS
Technologies or any contractually-authorized third party.

MIPS, R3000, R4000, R5000, R8000 and R10000 are among the registered trademarks of MIPS Technologies, Inc., and
R4300, R20K, MIPS16, MIPS32, MIPS64, MIPS-3D, MIPS I, MIPS II, MIPS III, MIPS IV, MIPS V, MDMX,
SmartMIPS, 4K, 4Kc, 4Km, 4Kp, 5K, 5Kc, 20K, 20Kc, EC, MGB, SOC-it, SEAD, YAMON, ATLAS, JALGO, CoreLV
and MIPS-based are among the trademarks of MIPS Technologies, Inc.

All other trademarks referred to herein are the property of their respective owners.

MIPS32™ Architecture For Programmers Volume III, Revision 0.95

...........
Table of Contents

Chapter 1 About This Book ..1
1.1 Typographical Conventions ...1

1.1.1 Italic Text ...1
1.1.2 Bold Text ...1
1.1.3 Courier Text ...1

1.2 UNPREDICTABLE and UNDEFINED ..2
1.2.1 UNPREDICTABLE...2
1.2.2 UNDEFINED...2

1.3 Special Symbols in Pseudocode Notation..2
1.4 For More Information ..5

Chapter 2 The MIPS32 Privileged Resource Architecture ...7
2.1 Introduction..7
2.2 The MIPS Coprocessor Model...7

2.2.1 CP0 - The System Coprocessor ...7
2.2.2 CP0 Registers...7

Chapter 3 MIPS32 Operating Modes ..9
3.1 Debug Mode..9
3.2 Kernel Mode ..9
3.3 Supervisor Mode ..9
3.4 User Mode..9

Chapter 4 Virtual Memory ..11
4.1 Terminology...11

4.1.1 Address Space..11
4.1.2 Segment and Segment Size..11
4.1.3 Physical Address Size (PABITS)...11

4.2 Virtual Address Spaces ..11
4.3 Compliance ..14
4.4 Access Control as a Function of Address and Operating Mode ..14
4.5 Address Translation and Cache Coherency Attributes for the kseg0 and kseg1 Segments..............................15
4.6 Address Translation for the kuseg Segment when StatusERL = 1 ..16
4.7 Special Behavior for the kseg3 Segment when DebugDM = 1 ...16
4.8 TLB-Based Virtual Address Translation ...16

4.8.1 Address Space Identifiers (ASID) ...16
4.8.2 TLB Organization ..17
4.8.3 Address Translation ...17

Chapter 5 Interrupts and Exceptions ...21
5.1 Interrupts ..21
5.2 Exceptions..22

5.2.1 Exception Vector Locations...22
5.2.2 General Exception Processing ...23
5.2.3 EJTAG Debug Exception ..24
5.2.4 Reset Exception ...25
5.2.5 Soft Reset Exception..26
5.2.6 Non Maskable Interrupt (NMI) Exception ...27
5.2.7 Machine Check Exception ...28
5.2.8 Address Error Exception..28
5.2.9 TLB Refill Exception...29
5.2.10 TLB Invalid Exception ..29
MIPS32™ Architecture For Programmers Volume III, Revision 0.95 i

........

........

........
5.2.11 TLB Modified Exception...30
5.2.12 Cache Error Exception...30
5.2.13 Bus Error Exception...31
5.2.14 Integer Overflow Exception...31
5.2.15 Trap Exception...32
5.2.16 System Call Exception...32
5.2.17 Breakpoint Exception...32
5.2.18 Reserved Instruction Exception ...32
5.2.19 Coprocessor Unusable Exception ..33
5.2.20 Floating Point Exception ...34
5.2.21 Coprocessor 2 Exception ...34
5.2.22 Watch Exception..34
5.2.23 Interrupt Exception ..35

Chapter 6 Coprocessor 0 Registers ...37
6.1 Coprocessor 0 Register Summary..37
6.2 Notation..39
6.3 Index Register (CP0 Register 0, Select 0)..41
6.4 Random Register (CP0 Register 1, Select 0) ...42
6.5 EntryLo0, EntryLo1 (CP0 Registers 2 and 3, Select 0) ...43
6.6 Context Register (CP0 Register 4, Select 0) ..45
6.7 PageMask Register (CP0 Register 5, Select 0) ..46
6.8 Wired Register (CP0 Register 6, Select 0)...47
6.9 BadVAddr Register (CP0 Register 8, Select 0) ...48
6.10 Count Register (CP0 Register 9, Select 0) ...49
6.11 Reserved for Implementations (CP0 Register 9, Selects 6 and 7) ...49
6.12 EntryHi Register (CP0 Register 10, Select 0)..51
6.13 Compare Register (CP0 Register 11, Select 0) ..52
6.14 Reserved for Implementations (CP0 Register 11, Selects 6 and 7) ...52
6.15 Status Register (CP Register 12, Select 0) ...53
6.16 Cause Register (CP0 Register 13, Select 0) ...58
6.17 Exception Program Counter (CP0 Register 14, Select 0) ..61

6.17.1 Special Handling of the EPC Register in Processors That Implement the MIPS16 ASE61
6.18 Processor Identification (CP0 Register 15, Select 0) ...62
6.19 Configuration Register (CP0 Register 16, Select 0) ..63
6.20 Configuration Register 1 (CP0 Register 16, Select 1) ...65
6.21 Configuration Register 2 (CP0 Register 16, Select 2) ...69
6.22 Configuration Register 3 (CP0 Register 16, Select 3) ...70
6.23 Reserved for Implementations (CP0 Register 16, Selects 6 and 7) ...71
6.24 Load Linked Address (CP0 Register 17, Select 0) ..72
6.25 WatchLo Register (CP0 Register 18)...73
6.26 WatchHi Register (CP0 Register 19) ...74
6.27 Reserved for Implementations (CP0 Register 22, all Select values) ...76
6.28 Debug Register (CP0 Register 23)...77
6.29 DEPC Register (CP0 Register 24) ...78

6.29.1 Special Handling of the DEPC Register in Processors That Implement the MIPS16 ASE78
6.30 Performance Counter Register (CP0 Register 25) ...79
6.31 ErrCtl Register (CP0 Register 26, Select 0)...82
6.32 CacheErr Register (CP0 Register 27, Select 0)..83
6.33 TagLo Register (CP0 Register 28, Select 0, 2) ..84
6.34 DataLo Register (CP0 Register 28, Select 1, 3)...85
6.35 TagHi Register (CP0 Register 29, Select 0, 2) ..86
6.36 DataHi Register (CP0 Register 29, Select 1, 3) ...87
6.37 ErrorEPC (CP0 Register 30, Select 0) ...88

6.37.1 Special Handling of the ErrorEPC Register in Processors That Implement the MIPS16 ASE...............88
6.38 DESAVE Register (CP0 Register 31)..89
ii MIPS32™ Architecture For Programmers Volume III, Revision 0.95

Chapter 7 CP0 Hazards ...91
7.1 Introduction..91

Appendix A Alternative MMU Organizations..93
A.1 Fixed Mapping MMU ...93

A.1.1 Fixed Address Translation ..93
A.1.2 Cacheability Attributes ...96
A.1.3 Changes to the CP0 Register Interface ...97

A.2 Block Address Translation..97
A.2.1 BAT Organization...97
A.2.2 Address Translation ..98
A.2.3 Changes to the CP0 Register Interface ..99

Appendix B Revision History ...101
MIPS32™ Architecture For Programmers Volume III, Revision 0.95 iii

iv MIPS32™ Architecture For Programmers Volume III, Revision 0.95

List of Figures

Figure 4-1: Virtual Address Space ...12
Figure 4-2: References as a Function of Operating Mode ...14
Figure 4-3: Contents of a TLB Entry ...17
Figure 6-1: Index Register Format ...41
Figure 6-2: Random Register Format...42
Figure 6-3: EntryLo0, EntryLo1 Register Format ...43
Figure 6-4: Context Register Format ...45
Figure 6-5: PageMask Register Format ...46
Figure 6-6: Wired And Random Entries In The TLB ..47
Figure 6-7: Wired Register Format ..47
Figure 6-8: BadVAddr Register Format...48
Figure 6-9: Count Register Format ..49
Figure 6-10: EntryHi Register Format ...51
Figure 6-11: Compare Register Format ...52
Figure 6-12: Status Register Format ..53
Figure 6-13: Cause Register Format ..58
Figure 6-14: EPC Register Format...61
Figure 6-15: PRId Register Format..62
Figure 6-16: Config Register Format ...63
Figure 6-17: Config1 Register Format ...65
Figure 6-18: Config2 Register Format ...69
Figure 6-19: Config3 Register Format ...70
Figure 6-20: LLAddr Register Format ...72
Figure 6-21: WatchLo Register Format ...73
Figure 6-22: WatchHi Register Format..74
Figure 6-23: Performance Counter Control Register Format...79
Figure 6-24: Performance Counter Counter Register Format..81
Figure 6-25: ErrorEPC Register Format ..88
Figure 7-1: Memory Mapping when ERL = 0 ...95
Figure 7-2: Memory Mapping when ERL = 1 ...96
Figure 7-3: Config Register Additions...97
Figure 7-4: Contents of a BAT Entry...98

.........
List of Tables

Table 1-1: Symbols Used in Instruction Operation Statements ..3
Table 4-1: Virtual Memory Address Spaces ...12
Table 4-2: Address Space Access as a Function of Operating Mode ...15
Table 4-3: Address Translation and Cache Coherency Attributes for the kseg0 and kseg1 Segments 16
Table 4-4: Physical Address Generation...19
Table 5-1: Mapping of Interrupts to the Cause and Status Registers..21
Table 5-2: Exception Vector Base Addresses ...22
Table 5-3: Exception Vector Offsets...22
Table 5-4: Exception Vectors..23
Table 5-5: Value Stored in EPC, ErrorEPC, or DEPC on an Exception...23
Table 6-1: Coprocessor 0 Registers in Numerical Order ..37
Table 6-2: Read/Write Bit Field Notation...39
Table 6-3: Index Register Field Descriptions ...41
Table 6-4: Random Register Field Descriptions ...42
Table 6-5: EntryLo0, EntryLo1 Register Field Descriptions...43
Table 6-6: Cache Coherency Attributes ..44
Table 6-7: Context Register Field Descriptions..45
Table 6-8: PageMask Register Field Descriptions..46
Table 6-9: Values for the Mask Field of the PageMask Register ...46
Table 6-10: Wired Register Field Descriptions...47
Table 6-11: BadVAddr Register Field Descriptions ...48
Table 6-12: Count Register Field Descriptions...49
Table 6-13: EntryHi Register Field Descriptions..51
Table 6-14: Compare Register Field Descriptions..52
Table 6-15: Status Register Field Descriptions...53
Table 6-16: Cause Register Field Descriptions...58
Table 6-17: Cause Register ExcCode Field ..59
Table 6-18: EPC Register Field Descriptions ...61
Table 6-19: PRId Register Field Descriptions ..62
Table 6-20: Config Register Field Descriptions ...63
Table 6-21: Config1 Register Field Descriptions ...65
Table 6-22: Config2 Register Field Descriptions ...69
Table 6-23: Config3 Register Field Descriptions ...70
Table 6-24: LLAddr Register Field Descriptions ...72
Table 6-25: WatchLo Register Field Descriptions..73
Table 6-26: WatchHi Register Field Descriptions ..74
Table 6-27: Example Performance Counter Usage of the PerfCnt CP0 Register ...79
Table 6-28: Performance Counter Control Register Field Descriptions ...79
Table 6-29: Performance Counter Counter Register Field Descriptions ..81
Table 6-30: ErrorEPC Register Field Descriptions...88
Table 7-1: “Typical” CP0 Hazard Spacing ...91
Table 7-2: Physical Address Generation from Virtual Addresses ..93
Table 7-3: Config Register Field Descriptions ...97
Table 7-4: BAT Entry Assignments..98
MIPS32™ Architecture For Programmers Volume III, Revision 0.95 v

vi MIPS32™ Architecture For Programmers Volume III, Revision 0.95

32™

of the

t

by

ion
Chapter 1

About This Book

The MIPS32™ Architecture For Programmers Volume III comes as a multi-volume set.

• Volume I describes conventions used throughout the document set, and provides an introduction to the MIPS
Architecture

• Volume II provides detailed descriptions of each instruction in the MIPS32™ instruction set

• Volume III describes the MIPS32™ Privileged Resource Architecture which defines and governs the behavior
privileged resources included in a MIPS32™ processor implementation

• Volume IV-a describes the MIPS16™ Application-Specific Extension to the MIPS32™ Architecture

• Volume IV-b describes the MDMX™ Application-Specific Extension to the MIPS32™ Architecture and is not
applicable to the MIPS32™ document set

• Volume IV-c describes the MIPS-3D™ Application-Specific Extension to the MIPS64™ Architecture and is no
applicable to the MIPS32™ document set

• Volume IV-d describes the SmartMIPS™Application-Specific Extension to the MIPS32™ Architecture

1.1 Typographical Conventions

This section describes the use ofitalic, bold andcourier fonts in this book.

1.1.1 Italic Text

• is used foremphasis

• is used forbits, fields, registers, that are important from a software perspective (for instance, address bits used
software, and programmable fields and registers), and variousfloating point instruction formats, such asS, D, andPS

• is used for the memory access types, such ascached anduncached

1.1.2 Bold Text

• represents a term that is beingdefined

• is used forbits andfields that are important from a hardware perspective (for instance,register bits, which are not
programmable but accessible only to hardware)

• is used for ranges of numbers; the range is indicated by an ellipsis. For instance,5..1 indicates numbers 5 through 1

• is used to emphasizeUNPREDICTABLE andUNDEFINED behavior, as defined below.

1.1.3 Courier Text

Courier fixed-width font is used for text that is displayed on the screen, and for examples of code and instruct
pseudocode.
MIPS32™ Architecture For Programmers Volume III, Revision 0.95 1

Chapter 1 About This Book

ions
.

, or

ated,

ry

 is

process

here is
ocessor

tation
1.2 UNPREDICTABLE and UNDEFINED

The termsUNPREDICTABLE andUNDEFINED are used throughout this book to describe the behavior of the
processor in certain cases.UNDEFINED behavior or operations can occur only as the result of executing instruct
in a privileged mode (i.e., in Kernel Mode or Debug Mode, or with the CP0 usable bit set in the Status register)
Unprivileged software can never causeUNDEFINED behavior or operations. Conversely, both privileged and
unprivileged software can causeUNPREDICTABLE results or operations.

1.2.1 UNPREDICTABLE

UNPREDICTABLE results may vary from processor implementation to implementation, instruction to instruction
as a function of time on the same implementation or instruction. Software can never depend on results that are
UNPREDICTABLE . UNPREDICTABLE operations may cause a result to be generated or not. If a result is gener
it is UNPREDICTABLE . UNPREDICTABLE operations may cause arbitrary exceptions.

UNPREDICTABLE results or operations have several implementation restrictions:

• Implementations of operations generatingUNPREDICTABLE results must not depend on any data source (memo
or internal state) which is inaccessible in the current processor mode

• UNPREDICTABLE operations must not read, write, or modify the contents of memory or internal state which
inaccessible in the current processor mode. For example,UNPREDICTABLE operations executed in user mode
must not access memory or internal state that is only accessible in Kernel Mode or Debug Mode or in another

• UNPREDICTABLE operations must not halt or hang the processor

1.2.2 UNDEFINED

UNDEFINED operations or behavior may vary from processor implementation to implementation, instruction to
instruction, or as a function of time on the same implementation or instruction.UNDEFINED operations or behavior
may vary from nothing to creating an environment in which execution can no longer continue.UNDEFINED operations
or behavior may cause data loss.

UNDEFINED operations or behavior has one implementation restriction:

• UNDEFINED operations or behavior must not cause the processor to hang (that is, enter a state from which t
no exit other than powering down the processor). The assertion of any of the reset signals must restore the pr
to an operational state

1.3 Special Symbols in Pseudocode Notation

In this book, algorithmic descriptions of an operation are described as pseudocode in a high-level language no
resembling Pascal. Special symbols used in the pseudocode notation are listed inTable 1-1.
2 MIPS32™ Architecture For Programmers Volume III, Revision 0.95

1.3 Special Symbols in Pseudocode Notation

ary
 is

ness
Table 1-1 Symbols Used in Instruction Operation Statements

Symbol Meaning

← Assignment

=, ≠ Tests for equality and inequality

|| Bit string concatenation

xy A y-bit string formed byy copies of the single-bit valuex

b#n
A constant valuen in baseb. For instance 10#100 represents the decimal value 100, 2#100 represents the bin
value 100 (decimal 4), and 16#100 represents the hexadecimal value 100 (decimal 256). If the "b#" prefix
omitted, the default base is 10.

xy..z
Selection of bitsy throughzof bit stringx. Little-endian bit notation (rightmost bit is 0) is used. Ify is less than
z, this expression is an empty (zero length) bit string.

+, − 2’s complement or floating point arithmetic: addition, subtraction

∗, × 2’s complement or floating point multiplication (both used for either)

div 2’s complement integer division

mod 2’s complement modulo

/ Floating point division

< 2’s complement less-than comparison

> 2’s complement greater-than comparison

≤ 2’s complement less-than or equal comparison

≥ 2’s complement greater-than or equal comparison

nor Bitwise logical NOR

xor Bitwise logical XOR

and Bitwise logical AND

or Bitwise logical OR

GPRLEN The length in bits (32 or 64) of the CPU general-purpose registers

GPR[x] CPU general-purpose registerx. The content ofGPR[0] is always zero.

FPR[x] Floating Point operand registerx

FCC[CC] Floating Point condition code CC.FCC[0] has the same value asCOC[1].

FPR[x] Floating Point (Coprocessor unit 1), general registerx

CPR[z,x,s] Coprocessor unitz, general registerx, select s

CCR[z,x] Coprocessor unitz, control registerx

COC[z] Coprocessor unitz condition signal

Xlat[x] Translation of the MIPS16 GPR numberx into the corresponding 32-bit GPR number

BigEndianMem
Endian mode as configured at chip reset (0→Little-Endian, 1→ Big-Endian). Specifies the endianness of the
memory interface (see LoadMemory and StoreMemory pseudocode function descriptions), and the endian
of Kernel and Supervisor mode execution.
MIPS32™ Architecture For Programmers Volume III, Revision 0.95 3

Chapter 1 About This Book

, and

turn

e

me

led

h an
n

t
icular

n
g a

tion)

sical

-bit
PRs

nch or

 not

ment
e

BigEndianCPU
The endianness for load and store instructions (0→ Little-Endian, 1→ Big-Endian). In User mode, this
endianness may be switched by setting theREbit in theStatusregister. Thus, BigEndianCPU may be computed
as (BigEndianMem XOR ReverseEndian).

ReverseEndian
Signal to reverse the endianness of load and store instructions. This feature is available in User mode only
is implemented by setting theREbit of theStatusregister. Thus, ReverseEndian may be computed as (SRREand
User mode).

LLbit

Bit of virtual state used to specify operation for instructions that provide atomic read-modify-write.LLbit is set
when a linked load occurs; it is tested and cleared by the conditional store. It is cleared, during other CPU
operation, when a store to the location would no longer be atomic. In particular, it is cleared by exception re
instructions.

I :,
I+n :,
I-n :

This occurs as a prefix toOperation description lines and functions as a label. It indicates the instruction tim
during which the pseudocode appears to “execute.” Unless otherwise indicated, all effects of the current
instruction appear to occur during the instruction time of the current instruction. No label is equivalent to a ti
label ofI . Sometimes effects of an instruction appear to occur either earlier or later — that is, during the
instruction time of another instruction. When this happens, the instruction operation is written in sections labe
with the instruction time, relative to the current instructionI , in which the effect of that pseudocode appears to
occur. For example, an instruction may have a result that is not available until after the next instruction. Suc
instruction has the portion of the instruction operation description that writes the result register in a sectio
labeledI+1.

The effect of pseudocode statements for the current instruction labelledI+1 appears to occur “at the same time”
as the effect of pseudocode statements labeledI for the following instruction. Within one pseudocode sequence,
the effects of the statements take place in order. However, between sequences of statements for differen
instructions that occur “at the same time,” there is no defined order. Programs must not depend on a part
order of evaluation between such sections.

PC

TheProgram Countervalue. During the instruction time of an instruction, this is the address of the instructio
word. The address of the instruction that occurs during the next instruction time is determined by assignin
value toPC during an instruction time. If no value is assigned toPC during an instruction time by any
pseudocode statement, it is automatically incremented by either 2 (in the case of a 16-bit MIPS16 instruc
or 4 before the next instruction time. A taken branch assigns the target address to thePCduring the instruction
time of the instruction in the branch delay slot.

PABITS The number of physical address bits implemented is represented by the symbol PABITS. As such, if 36 phy
address bits were implemented, the size of the physical address space would be 2PABITS = 236 bytes.

FP32RegistersMode

Indicates whether the FPU has 32-bit or 64-bit floating point registers (FPRs). In MIPS32, the FPU has 32 32
FPRs in which 64-bit data types are stored in even-odd pairs of FPRs. In MIPS64, the FPU has 32 64-bit F
in which 64-bit data types are stored in any FPR.

In MIPS32 implementations,FP32RegistersModeis always a 0. MIPS64 implementations have a compatibility
mode in which the processor references the FPRs as if it were a MIPS32 implementation. In such a case
FP32RegisterModeis computed from the FR bit in theStatusregister. If this bit is a 0, the processor operates
as if it had 32 32-bit FPRs. If this bit is a 1, the processor operates with 32 64-bit FPRs.

The value ofFP32RegistersMode is computed from the FR bit in theStatus register.

InstructionInBranchD
elaySlot

Indicates whether the instruction at the Program Counter address was executed in the delay slot of a bra
jump. This condition reflects thedynamic state of the instruction, not thestatic state. That is, the value is false
if a branch or jump occurs to an instruction whose PC immediately follows a branch or jump, but which is
executed in the delay slot of a branch or jump.

SignalException(exce
ption, argument)

Causes an exception to be signaled, using the exception parameter as the type of exception and the argu
parameter as an exception-specific argument). Control does not return from this pseudocode function - th
exception is signaled at the point of the call.

Table 1-1 Symbols Used in Instruction Operation Statements

Symbol Meaning
4 MIPS32™ Architecture For Programmers Volume III, Revision 0.95

1.4 For More Information

URL:
1.4 For More Information

Various MIPS RISC processor manuals and additional information about MIPS products can be found at the MIPS

http://www.mips.com

Comments or questions on the MIPS32™ Architecture or this document should be directed to

Director of MIPS Architecture
MIPS Technologies, Inc.
1225 Charleston Road
Mountain View, CA 94043

or via E-mail to architecture@mips.com.
MIPS32™ Architecture For Programmers Volume III, Revision 0.95 5

Chapter 1 About This Book
6 MIPS32™ Architecture For Programmers Volume III, Revision 0.95

uction
emory
e PRA
 and user

ile
rocessor
ts.
 ISA

emory
ncoded
hat

apter 6.
Chapter 2

The MIPS32 Privileged Resource Architecture

2.1 Introduction

The MIPS32 Privileged Resource Architecture (PRA) is a set of environments and capabilities on which the Instr
Set Architecture operates. The effects of some components of the PRA are user-visible, for instance, the virtual m
layout. Many other components are visible only to the operating system kernel and to systems programmers. Th
provides the mechanisms necessary to manage the resources of the CPU: virtual memory, caches, exceptions
contexts. This chapter describes these mechanisms.

2.2 The MIPS Coprocessor Model

The MIPS ISA provides for up to 4 coprocessors. A coprocessor extends the functionality of the MIPS ISA, wh
sharing the instruction fetch and execution control logic of the CPU. Some coprocessors, such as the system cop
and the floating point unit are standard parts of the ISA, and are specified as such in the architecture documen
Coprocessors are generally optional, with one exception: CP0, the system coprocessor, is required. CP0 is the
interface to the Privileged Resource Architecture and provides full control of the processor state and modes.

2.2.1 CP0 - The System Coprocessor

CP0 provides an abstraction of the functions necessary to support an operating system: exception handling, m
management, scheduling, and control of critical resources. The interface to CP0 is through various instructions e
with theCOP0 opcode, including the ability to move data to and from the CP0 registers, and specific functions t
modify CP0 state. The CP0 registers and the interaction with them make up much of the Privileged Resource
Architecture.

2.2.2 CP0 Registers

The CP0 registers provide the interface between the ISA and the PRA. The CP0 registers are described in Ch
MIPS32™ Architecture For Programmers Volume III, Revision 0.95 7

Chapter 2 The MIPS32 Privileged Resource Architecture
8 MIPS32™ Architecture For Programmers Volume III, Revision 0.95

the
emory

the
switch

AG

l Mode

s

r leaves
ually as

l of the
Chapter 3

MIPS32 Operating Modes

The MIPS32 PRA requires two operating mode: User Mode and Kernel Mode. When operating in User Mode,
programmer has access to the CPU and FPU registers that are provided by the ISA and to a flat, uniform virtual m
address space. When operating in Kernel Mode, the system programmer has access to the full capabilities of
processor, including the ability to change virtual memory mapping, control the system environment, and context
between processes.

 In addition, the MIPS32 PRA supports the implementation of two additional modes: Supervisor Mode and EJT
Debug Mode. Refer to the EJTAG specification for a description of Debug Mode.

3.1 Debug Mode

For processors that implement EJTAG, the processor is operating in Debug Mode if the DM bit in the CP0Debugregister
is a one. If the processor is running in Debug Mode, it has full access to all resources that are available to Kerne
operation.

3.2 Kernel Mode

The processor is operating in Kernel Mode when the DM bit in theDebugregister is a zero (if the processor implement
Debug Mode), and any of the following three conditions is true:

• The KSU field in the CP0Status register contains 2#00

• The EXL bit in theStatus register is one

• The ERL bit in theStatus register is one

The processor enters Kernel Mode at power-up, or as the result of an interrupt, exception, or error. The processo
Kernel Mode and enters User Mode or Supervisor Mode when all of the previous three conditions are false, us
the result of an ERET instruction.

3.3 Supervisor Mode

The processor is operating in Supervisor Mode (if that optional mode is implemented by the processor) when al
following conditions are true:

• The DM bit in theDebug register is a zero (if the processor implements Debug Mode)

• The KSU field in theStatus register contains 2#01

• The EXL and ERL bits in theStatus register are both zero

3.4 User Mode

The processor is operating in User Mode when all of the following conditions are true:

• The DM bit in theDebug register is a zero (if the processor implements Debug Mode)
MIPS32™ Architecture For Programmers Volume III, Revision 0.95 9

Chapter 3 MIPS32 Operating Modes
• The KSU field in theStatus register contains 2#10

• The EXL and ERL bits in theStatus register are both zero
10 MIPS32™ Architecture For Programmers Volume III, Revision 0.95

e in the

ents are
Chapter 4

Virtual Memory

4.1 Terminology

4.1.1 Address Space

An Address Spaceis the range of all possible addresses that can be generated. There is one 32-bit Address Spac
MIPS32 Architecture.

4.1.2 Segment and Segment Size

A Segmentis a defined subset of an Address Space that has self-consistent reference and access behavior. Segm
either 229 or 231 bytes in size, depending on the specific Segment.

4.1.3 Physical Address Size (PABITS)

The number of physical address bits implemented is represented by the symbolPABITS. As such, if 36 physical address
bits were implemented, the size of the physical address space would be 2PABITS = 236 bytes.

4.2 Virtual Address Spaces

The MIPS32 virtual address space is divided into five segments as shown in Figure 4-1.
MIPS32™ Architecture For Programmers Volume III, Revision 0.95 11

Chapter 4 Virtual Memory

t is
lated
ysical

e cache
Each Segment of an Address Space is classified as “Mapped” or “Unmapped”. A “Mapped” address is one tha
translated through the TLB or other address translation unit. An “Unmapped” address is one which is not trans
through the TLB and which provides a window into the lowest portion of the physical address space, starting at ph
address zero, and with a size corresponding to the size of the unmapped Segment.

Additionally, the kseg1 Segment is classified as “Uncached”. References to this Segment bypass all levels of th
hierarchy and allow direct access to memory without any interference from the caches.

Table 4-1 lists the same information in tabular form.

Figure 4-1 Virtual Address Space

16#FFFF FFFF

Kernel Mappedkseg3

16#E000 0000

16#DFFF FFFF

Supervisor Mappedksseg

16#C000 0000

16#BFFF FFFF

Kernel Unmapped Uncachedkseg1

16#A000 0000

16#9FFF FFFF

Kernel Unmappedkseg0

16#8000 0000

16#7FFF FFFF

User Mapped
useg

16#0000 0000

Table 4-1 Virtual Memory Address Spaces

VA31..29 Segment
Name(s)

 Address Range Associated
with Mode

Reference
Legal from

Mode(s)

Actual
Segment

Size

2#111 kseg3
16#FFFF FFFF

through
16#E000 0000

Kernel Kernel 229 bytes
12 MIPS32™ Architecture For Programmers Volume III, Revision 0.95

4.2 Virtual Address Spaces

rvisor, or
 a more
in User,
an that
n the
e Legal

example,
rence to
Each Segment of an Address Space is associated with one of the three processor operating modes (User, Supe
Kernel). A Segment that is associated with a particular mode is accessible if the processor is running in that or
privileged mode. For example, a Segment associated with User Mode is accessible when the processor is running
Supervisor, or Kernel Modes. A Segment is not accessible if the processor is running in a less privileged mode th
associated with the Segment. For example, a Segment associated with Supervisor Mode is not accessible whe
processor is running in User Mode and such a reference results in an Address Error Exception. The “Referenc
from Mode(s)” column in Table 4-2 lists the modes from which each Segment may be legally referenced.

If a Segment has more than one name, each name denotes the mode from which the Segment is referenced. For
the Segment name “useg” denotes a reference from user mode, while the Segment name “kuseg” denotes a refe
the same Segment from kernel mode.

Figure 4-2 shows the Address Space as seen when the processor is operating in each of the operating modes.

2#110 sseg
ksseg

16#DFFF FFFF
through

16#C000 0000
Supervisor Supervisor

Kernel 229 bytes

2#101 kseg1
16#BFFF FFFF

through
16#A000 0000

Kernel Kernel 229 bytes

2#100 kseg0
16#9FFF FFFF

through
16#8000 0000

Kernel Kernel 229 bytes

2#0xx
useg
suseg
kuseg

16#7FFF FFFF
through

16#0000 0000
User

User
Supervisor

Kernel
231 bytes

Table 4-1 Virtual Memory Address Spaces

VA31..29 Segment
Name(s)

 Address Range Associated
with Mode

Reference
Legal from

Mode(s)

Actual
Segment

Size
MIPS32™ Architecture For Programmers Volume III, Revision 0.95 13

Chapter 4 Virtual Memory

lement

n of the
ted for
4.3 Compliance

A MIPS32 compliant processor must implement the following Segments:

• useg/kuseg

• kseg0

• kseg1

In addition, a MIPS32 compliant processor using the TLB-based address translation mechanism must also imp
the kseg3 Segment.

4.4 Access Control as a Function of Address and Operating Mode

Table 4-2enumerates the action taken by the processor for each section of the 32-bit Address Space as a functio
operating mode of the processor. The selection of TLB Refill vector and other special-cased behavior is also lis
each reference.

Figure 4-2 References as a Function of Operating Mode

User Mode References Supervisor Mode References Kernel Mode References

16#FFFF FFFF

Address Error

16#FFFF FFFF

Address Error

16#FFFF FFFF

Kernel Mappedkseg3

16#E000 0000 16#E000 0000

16#DFFF FFFF

Supervisor Mapped

16#DFFF FFFF

Supervisor Mappedsseg ksseg

16#C000 0000 16#C000 0000

16#BFFF FFFF

Address Error

16#BFFF FFFF
Kernel Unmapped

Uncachedkseg1

16#A000 0000

16#9FFF FFFF

Kernel Unmappedkseg0

16#8000 0000 16#8000 0000 16#8000 0000

16#7FFF FFFF

User Mapped

16#7FFF FFFF

User Mapped

16#7FFF FFFF

User Mapped
useg suseg kuseg

16#0000 0000 16#0000 0000 16#0000 0000
14 MIPS32™ Architecture For Programmers Volume III, Revision 0.95

4.5 Address Translation and Cache Coherency Attributes for the kseg0 and kseg1 Segments

 of the

ency
4.5 Address Translation and Cache Coherency Attributes for the kseg0 and kseg1 Segments

The kseg0 and kseg1 Unmapped Segments provide a window into the least significant 229 bytes of physical memory,
and, as such, are not translated using the TLB or other address translation unit. The cache coherency attribute
kseg0 Segment is supplied by the K0 field of the CP0Config register. The cache coherency attribute for the kseg1
Segment is always Uncached.Table 4-3describes how this transformation is done, and the source of the cache coher
attributes for each Segment.

Table 4-2 Address Space Access as a Function of Operating Mode

Virtual Address Range Segment
Name(s)

Action when Referenced from Operating
Mode

User Mode Supervisor
Mode

Kernel Mode

16#FFFF FFFF

through

16#E000 0000

kseg3 Address Error Address Error

Mapped

See4.7 on
page 16 for

specialbehavior
when DebugDM

= 1

16#DFFF FFFF

through

16#C000 0000

sseg

ksseg
Address Error Mapped Mapped

16#BFFF FFFF

through

16#A000 0000

kseg1 Address Error Address Error

Unmapped,
Uncached

See Section
4.5 on page 15

16#9FFF FFFF

through

16#8000 0000

kseg0 Address Error Address Error

Unmapped

See Section
4.5 on page 15

16#7FFF FFFF

through

16#0000 0000

useg
suseg
kuseg

Mapped Mapped

Unmapped if
StatusERL=1

See Section
4.6 on page 16

Mapped if
StatusERL=0
MIPS32™ Architecture For Programmers Volume III, Revision 0.95 15

Chapter 4 Virtual Memory

nt, similar
ate

tails on

ust be

ddress
the ASID
e virtual
4.6 Address Translation for the kuseg Segment when StatusERL = 1

To provide support for the cache error handler, the kuseg Segment becomes an unmapped, uncached Segme
to the kseg1 Segment, if the ERL bit is set in theStatus register. This allows the cache error exception code to oper
uncached using GPR R0 as a base register to save other GPRs before use.

4.7 Special Behavior for the kseg3 Segment when DebugDM = 1

If EJTAG is implemented on the processor, the EJTAG block must treat the virtual address range 16#FF20 0000
through16#FF3F FFFF , inclusive, as a special memory-mapped region in Debug Mode. A MIPS32 compliant
implementation that also implements EJTAG must:

• explicitly range check the address range as given and not assume that the entire region between16#FF20 0000
and16#FFFF FFFF is included in the special memory-mapped region.

• not enable the special EJTAG mapping for this region in any mode other than in EJTAG Debug mode.

Even in Debug mode, normal memory rules may apply in some cases. Refer to the EJTAG specification for de
this mapping.

4.8 TLB-Based Virtual Address Translation

This section describes the TLB-based virtual address translation mechanism. Note that sufficient TLB entries m
implemented to avoid a TLB exception loop on load and store instructions.

4.8.1 Address Space Identifiers (ASID)

The TLB-based translation mechanism supports Address Space Identifiers to uniquely identify the same virtual a
across different processes. The operating system assigns ASIDs to each process and the TLB keeps track of
when doing address translation. In certain circumstances, the operating system may wish to associate the sam
address with all processes. To address this need, the TLB includes a global (G) bit which over-rides the ASID
comparison during translation.

Table 4-3 Address Translation and Cache Coherency Attributes for the kseg0 and kseg1 Segments

Segment
Name

Virtual Address Range Generates Physical Address Cache Attribute

kseg1

16#BFFF FFFF

through

16#A000 0000

16#1FFF FFFF

through

16#0000 0000

Uncached

kseg0

16#9FFF FFFF

through

16#8000 0000

16#1FFF FFFF

through

16#0000 0000

From K0 field of
Config Register
16 MIPS32™ Architecture For Programmers Volume III, Revision 0.95

4.8 TLB-Based Virtual Address Translation

gical
al page
ASID,
entry.

r (PFN),

air of

d to the
true:

 the
ch bit
 field.
t the

eration

m the

and a
ised.
4.8.2 TLB Organization

The TLB is a fully-associative structure which is used to translate virtual addresses. Each entry contains two lo
components: a comparison section and a physical translation section. The comparison section includes the virtu
number (VPN2) (actually, the virtual page number/2 since each entry maps two physical pages) of the entry, the
the G(lobal) bit and a recommended mask field which provides the ability to map different page sizes with a single
The physical translation section contains a pair of entries, each of which contains the physical page frame numbe
a valid (V) bit, a dirty (D) bit, and a cache coherency field (C), whose valid encodings are given inTable 6-6 on page 44.
There are two entries in the translation section for each TLB entry because each TLB entry maps an aligned p
virtual pages and the pair of physical translation entries corresponds to the even and odd pages of the pair.Figure 4-3
shows the logical arrangement of a TLB entry.

The fields of the TLB entry correspond exactly to the fields in the CP0PageMask, EntryHi, EntryLo0 andEntryLo1
registers. The even page entries in the TLB (e.g., PFN0) come fromEntryLo0. Similarly, odd page entries come from
EntryLo1.

4.8.3 Address Translation

When an address translation is requested, the virtual page number and the current process ASID are presente
TLB. All entries are checked simultaneously for a match, which occurs when all of the following conditions are

• The current process ASID (as obtained from theEntryHi register) matches the ASID field in the TLB entry, or the G
bit is set in the TLB entry.

• The appropriate bits of the virtual page number match the corresponding bits of the VPN2 field stored within
TLB entry. The “appropriate” number of bits is determined by the PageMask field in each entry by ignoring ea
in the virtual page number and the TLB VPN2 field corresponding to those bits that are set in the PageMask
This allows each entry of the TLB to support a different page size, as determined by the PageMask register a
time that the TLB entry was written. If the recommended PageMask register is not implemented, the TLB op
is as if the PageMask register was written with a zero, resulting in a minimum 4096-byte page size.

If a TLB entry matches the address and ASID presented, the corresponding PFN, C, V, and D bits are read fro
translation section of the TLB entry. Which of the two PFN entries is read is a function of the virtual address bit
immediately to the right of the section masked with the PageMask entry.

The valid and dirty bits determine the final success of the translation. If the valid bit is off, the entry is not valid
TLB Invalid exception is raised. If the dirty bit is off and the reference was a store, a TLB Modified exception is ra

Figure 4-3 Contents of a TLB Entry

PageMask
20

VPN2 G ASID

PFN0 C0 D0 V0

PFN1 C1 D1 V1
MIPS32™ Architecture For Programmers Volume III, Revision 0.95 17

Chapter 4 Virtual Memory

pended

that

”
virtual
If there is an address match with a valid entry and no dirty exception, the PFN and the cache coherency bits are ap
to the offset-within-page bits of the address to form the final physical address with attributes.

The TLB lookup process can be described as follows:

found ← 0
for i in 0...TLBEntries-1

if ((TLB[i] VPN2 and not (TLB[i] Mask)) = (va 31..13 and not (TLB[i] Mask))) and
 (TLB[i] G or (TLB[i] ASID = EntryHi ASID)) then

EvenOddBit selects between even and odd halves of the TLB as a function of
the page size in the matching TLB entry
case TLB[i] Mask

2#0000000000000000: EvenOddBit ← 12
2#0000000000000011: EvenOddBit ← 14
2#0000000000001111: EvenOddBit ← 16
2#0000000000111111: EvenOddBit ← 18
2#0000000011111111: EvenOddBit ← 20
2#0000001111111111: EvenOddBit ← 22
2#0000111111111111: EvenOddBit ← 24
2#0011111111111111: EvenOddBit ← 26
2#1111111111111111: EvenOddBit ← 28
otherwise: UNDEFINED

endcase
if va EvenOddBit = 0 then

pfn ← TLB[i] PFN0
v ← TLB[i] V0
c ← TLB[i] C0
d ← TLB[i] D0

else
pfn ← TLB[i] PFN1
v ← TLB[i] V1
c ← TLB[i] C1
d ← TLB[i] D1

endif
if v = 0 then

SignalException(TLBInvalid, reftype)
endif
if (d = 0) and (reftype = store) then

SignalException(TLBModified)
endif
pfn PABITS-1-12..0 corresponds to pa PABITS-1..12
pa ← pfn PABITS-1-12..EvenOddBit-12 || va EvenOddBit-1..0
found ← 1
break

endif
endfor
if found = 0 then

SignalException(TLBMiss, reftype)
endif

Table 4-4 demonstrates how the physical address is generated as a function of the page size of the TLB entry
matches the virtual address. The “Even/Odd Select” column ofTable 4-4 indicates which virtual address bit is used to
select between the even (EntryLo0) or odd (EntryLo1) entry in the matching TLB entry. The “PA generated from
column specifies how the physical address is generated from the selected PFN and the offset-in-page bits in the
18 MIPS32™ Architecture For Programmers Volume III, Revision 0.95

4.8 TLB-Based Virtual Address Translation

1
address. In this column, PFN is the physical page number as loaded into the TLB from the EntryLo0 or EntryLo
registers, and has the bit range PFNPABITS-1-12..0, corresponding to PAPABITS-1..12.

Table 4-4 Physical Address Generation

Page Size Even/Odd
Select

PA generated from

4K Bytes VA12 PFNPABITS-1-12..0 || VA11..0

16K Bytes VA14 PFNPABITS-1-12..2 || VA13..0

64K Bytes VA16 PFNPABITS-1-12..4 ||VA15..0

256K Bytes VA18 PFNPABITS-1-12..6 || VA17..0

1M Bytes VA20 PFNPABITS-1-12..8 || VA19..0

4M Bytes VA22 PFNPABITS-1-12..10 || VA21..0

16M Bytes VA24 PFNPABITS-1-12..12 || VA23..0

64MBytes VA26 PFNPABITS-1-12..14 || VA25..0

256MBytes VA28 PFNPABITS-1-12..16 || VA27..0
MIPS32™ Architecture For Programmers Volume III, Revision 0.95 19

Chapter 4 Virtual Memory
20 MIPS32™ Architecture For Programmers Volume III, Revision 0.95

nter

r
n

Chapter 5

Interrupts and Exceptions

5.1 Interrupts

The processor supports eight interrupt requests, broken down into four categories:

• Software interrupts - Two software interrupt requests are made via software writes to bits IP0 and IP1 of theCause
register.

• Hardware interrupts - Up to six hardware interrupt requests numbered 0 through 5 are made via
implementation-dependent external requests to the processor.

• Timer interrupt - A timer interrupt is raised when theCount andCompare registers reach the same value.

• Performance counter interrupt - A performance counter interrupt is raised when the most significant bit of the cou
is a one, and the interrupt is enabled by the IE bit in the performance counter control register.

Timer interrupts, performance counter interrupts, and hardware interrupt 5 are combined in an implementation
dependent way to create the ultimate hardware interrupt 5.

The current interrupt requests are visible via the IP field in theCauseregister on any read of that register (not just afte
an interrupt exception has occurred). The mapping ofCause register bits to the various interrupt requests is shown i
Table 5-1.

For each bit of the IP field in theCause register there is a corresponding bit in the IM field in theStatus register. An
interrupt is only taken when all of the following are true:

• An interrupt request bit is a one in the IP field of theCause register.

• The corresponding mask bit is a one in the IM field of theStatus register. The mapping of bits is shown inTable 5-1.

• The IE bit in theStatus register is a one.

• The DM bit in theDebug register is a zero (for processors implementing EJTAG)

Table 5-1 Mapping of Interrupts to theCause and Status Registers

Cause Register Bit Status Register Bit

Interrupt Type Interrupt
Number

Number Name Number Name

Software Interrupt
0 8 IP0 8 IM0

1 9 IP1 9 IM1

Hardware Interrupt

0 10 IP2 10 IM2

1 11 IP3 11 IM3

2 12 IP4 12 IM4

3 13 IP5 13 IM5

4 14 IP6 14 IM6

Hardware Interrupt, Timer Interrupt, or
Performance Counter Interrupt 5 15 IP7 15 IM7
MIPS32™ Architecture For Programmers Volume III, Revision 0.95 21

Chapter 5 Interrupts and Exceptions

 as a
d by a
n
struction
oftware

,
ase

CP0
ector.
that can
• The EXL and ERL bits in theStatus register are both zero.

Logically, the IP field of theCauseregister is bit-wise ANDed with the IM field of theStatusregister, the eight resultant
bits are ORed together and that value is ANDed with the IE bit of theStatusregister. The final interrupt request is then
asserted only if both the EXL and ERL bits in theStatusregister are zero, and the DM bit in theDebugregister is zero,
corresponding to a non-exception, non-error, non-debug processing mode, respectively.

5.2 Exceptions

Normal execution of instructions may be interrupted when an exception occurs. Such events can be generated
by-product of instruction execution (e.g., an integer overflow caused by an add instruction or a TLB miss cause
load instruction), or by an event not directly related to instruction execution (e.g., an external interrupt). When a
exception occurs, the processor stops processing instructions, saves sufficient state to resume the interrupted in
stream, enters Kernel Mode, and starts a software exception handler. The saved state and the address of the s
exception handler are a function of both the type of exception, and the current state of the processor.

5.2.1 Exception Vector Locations

The Reset, Soft Reset, and NMI exceptions are always vectored to location16#BFC0 0000 . EJTAG Debug exceptions
are vectored to location16#BFC0 0480 or to location16#FF20 0200 if the ProbEn bit is zero or one, respectively
in the EJTAG_Control_register. Addresses for all other exceptions are a combination of a vector offset and a b
address.Table 5-2 gives the base address as a function of the exception and whether the BEV bit is set in theStatus
register.Table 5-3gives the offsets from the base address as a function of the exception. Note that the IV bit in the
Cause register causes Interrupts to use a dedicated exception vector offset, rather than the general exception v
Table 5-4combines these two tables into one that contains all possible vector addresses as a function of the state
affect the vector selection.

Table 5-2 Exception Vector Base Addresses

Exception StatusBEV

0 1

Reset, Soft Reset, NMI 16#BFC0 0000

EJTAG Debug (with ProbEn = 0 in
the EJTAG_Control_register) 16#BFC0 0480

EJTAG Debug (with ProbEn = 1 in
the EJTAG_Control_register) 16#FF20 0200

Cache Error 16#A000 0000 16#BFC0 0200

Other 16#8000 0000 16#BFC0 0200

Table 5-3 Exception Vector Offsets

Exception Vector Offset

TLB Refill, EXL = 0 16#000

Cache error 16#100

General Exception 16#180

Interrupt, CauseIV = 1 16#200

Reset, Soft Reset, NMI None (Uses Reset Base Address)
22 MIPS32™ Architecture For Programmers Volume III, Revision 0.95

5.2 Exceptions

ribed

ction is
5.2.2 General Exception Processing

With the exception of Reset, Soft Reset, and NMI exceptions, which have their own special processing as desc
below, exceptions have the same basic processing flow:

• If the EXL bit in theStatus register is zero, theEPC register is loaded with the PC at which execution will be
restarted and the BD bit is set appropriately in theCauseregister (seeTable 6-16 on page 58). The value loaded into
theEPCregister is dependent on whether the processor implements the MIPS16 ASE, and whether the instru
in the delay slot of a branch or jump which has delay slots.Table 5-5 shows the value stored in each of the CP0 PC
registers, includingEPC.

If the EXL bit in theStatus register is set, theEPC register is not loaded and the BD bit is not changed in theCause
register.

.

Table 5-4 Exception Vectors

Exception StatusBEV StatusEXL CauseIV EJTAG
ProbEn

Vector

Reset, Soft Reset, NMI x x x x 16#BFC0 0000

EJTAG Debug x x x 0 16#BFC0 0480

EJTAG Debug x x x 1 16#FF20 0200

TLB Refill 0 0 x x 16#8000 0000

TLB Refill 0 1 x x 16#8000 0180

TLB Refill 1 0 x x 16#BFC0 0200

TLB Refill 1 1 x x 16#BFC0 0380

Cache Error 0 x x x 16#A000 0100

Cache Error 1 x x x 16#BFC0 0300

Interrupt 0 0 0 x 16#8000 0180

Interrupt 0 0 1 x 16#8000 0200

Interrupt 1 0 0 x 16#BFC0 0380

Interrupt 1 0 1 x 16#BFC0 0400

All others 0 x x x 16#8000 0180

All others 1 x x x 16#BFC0 0380

‘x’ denotes don’t care

Table 5-5 Value Stored in EPC, ErrorEPC, or DEPC on an Exception

MIPS16
Implemented?

In Branch/Jump
Delay Slot?

Value stored in EPC/ErrorEPC/DEPC

No No Address of the instruction

No Yes Address of the branch or jump instruction (PC-4)

Yes No Upper 31 bits of the address of the instruction, combined
with theISA Mode bit
MIPS32™ Architecture For Programmers Volume III, Revision 0.95 23

Chapter 5 Interrupts and Exceptions

 CE

handler
tify the

iption

TAG
• The CE, and ExcCode fields of theCause registers are loaded with the values appropriate to the exception. The
field is loaded, but not defined, for any exception type other than a coprocessor unusable exception.

• The EXL bit is set in theStatus register.

• The processor is started at the exception vector.

The value loaded into EPC represents the restart address for the exception and need not be modified by exception
software in the normal case. Software need not look at the BD bit in the Cause register unless it wishes to iden
address of the instruction that actually caused the exception.

Note that individual exception types may load additional information into other registers. This is noted in the descr
of each exception type below.

Operation:

if Status EXL = 0
if InstructionInBranchDelaySlot then

EPC ← restartPC # PC of branch/jump
CauseBD ← 1

else
EPC ← restartPC # PC of instruction
CauseBD ← 0

endif
if ExceptionType = TLBRefill then

vectorOffset ← 16#000
elseif (ExceptionType = Interrupt) and

(Cause IV = 1) then
vectorOffset ← 16#200

else
vectorOffset ← 16#180

endif
else

vectorOffset ← 16#180
endif
CauseCE ← FaultingCoprocessorNumber
CauseExcCode ← ExceptionType
Status EXL ← 1
if Status BEV = 1 then

PC ← 16#BFC0 0200 + vectorOffset
else

PC ← 16#8000 0000 + vectorOffset
endif

5.2.3 EJTAG Debug Exception

An EJTAG Debug Exception occurs when one of a number of EJTAG-related conditions is met. Refer to the EJ
Specification for details of this exception.

Yes Yes
Upper 31 bits of the branch or jump instruction (PC-2 in
the MIPS16 ISA Mode and PC-4 in the 32-bit ISA
Mode), combined with theISA Mode bit

Table 5-5 Value Stored in EPC, ErrorEPC, or DEPC on an Exception

MIPS16
Implemented?

In Branch/Jump
Delay Slot?

Value stored in EPC/ErrorEPC/DEPC
24 MIPS32™ Architecture For Programmers Volume III, Revision 0.95

5.2 Exceptions

le. When

m

PC may
Entry Vector Used

16#BFC0 0480 if the ProbEn bit is zero in the EJTAG_Control_register;16#FF20 0200 if the ProbEn bit is one.

5.2.4 Reset Exception

A Reset Exception occurs when the Cold Reset signal is asserted to the processor. This exception is not maskab
a Reset Exception occurs, the processor performs a full reset initialization, including aborting state machines,
establishing critical state, and generally placing the processor in a state in which it can execute instructions fro
uncached, unmapped address space. On a Reset Exception, only the following registers have defined state:

• TheRandom register is initialized to the number of TLB entries - 1.

• TheWired register is initialized to zero.

• TheConfig, Config1, Config2,and Config3 registers are initialized with their boot state.

• The RP, BEV, TS, SR, NMI, and ERL fields of theStatus register are initialized to a specified state.

• Watch register enables and Performance Counter register interrupt enables are cleared.

• TheErrorEPC register is loaded with the restart PC, as described inTable 5-5. Note that this value may or may not
be predictable if the Reset Exception was taken as the result of power being applied to the processor because
not have a valid value in that case. In some implementations, the value loaded intoErrorEPC register may not be
predictable on either a Reset or Soft Reset Exception.

• PC is loaded with16#BFC0 0000 .

Cause Register ExcCode Value

None

Additional State Saved

None

Entry Vector Used

Reset (16#BFC0 0000)
MIPS32™ Architecture For Programmers Volume III, Revision 0.95 25

Chapter 5 Interrupts and Exceptions

le. When
eset
 the

 cache, or
ent. In
Operation

Random ← TLBEntries - 1
Wired ← 0
Config ← ConfigurationState
Config K0 ← 2 # Suggested - see Config register description
Config1 ← ConfigurationState
Config2 ← ConfigurationState # if implemented
Config3 ← ConfigurationState # if implemented
Status RP ← 0
Status BEV ← 1
Status TS ← 0
Status SR ← 0
Status NMI ← 0
Status ERL ← 1
WatchLo[n] I ← 0 # For all implemented Watch registers
WatchLo[n] R ← 0 # For all implemented Watch registers
WatchLo[n] W ← 0 # For all implemented Watch registers
PerfCnt.Control[n] IE ← 0 # For all implemented PerfCnt registers
if InstructionInBranchDelaySlot then

ErrorEPC ← restartPC # PC of branch/jump
else

ErrorEPC ← restartPC # PC of instruction
endif
PC ← 16#BFC0 0000

5.2.5 Soft Reset Exception

A Soft Reset Exception occurs when the Reset signal is asserted to the processor. This exception is not maskab
a Soft Reset Exception occurs, the processor performs a subset of the full reset initialization. Although a Soft R
Exception does not unnecessarily change the state of the processor, it may be forced to do so in order to place
processor in a state in which it can execute instructions from uncached, unmapped address space. Since bus,
other operations may be interrupted, portions of the cache, memory, or other processor state may be inconsist
addition to any hardware initialization required, the following state is established on a Soft Reset Exception:

• The RP, BEV, TS, SR, NMI, and ERL fields of theStatus register are initialized to a specified state.

• Watch register enables and Performance Counter register interrupt enables are cleared.

• TheErrorEPC register is loaded with the restart PC, as described inTable 5-5.

• PC is loaded with16#BFC0 0000 .

Cause Register ExcCode Value

None

Additional State Saved

None

Entry Vector Used

Reset (16#BFC0 0000)
26 MIPS32™ Architecture For Programmers Volume III, Revision 0.95

5.2 Exceptions

not do
t and all
Operation

Config K0 ← 2 # Suggested - see Config register description
Status RP ← 0
Status BEV ← 1
Status TS ← 0
Status SR ← 1
Status NMI ← 0
Status ERL ← 1
WatchLo[n] I ← 0 # For all implemented Watch registers
WatchLo[n] R ← 0 # For all implemented Watch registers
WatchLo[n] W ← 0 # For all implemented Watch registers
PerfCnt.Control[n] IE ← 0 # For all implemented PerfCnt registers
if InstructionInBranchDelaySlot then

ErrorEPC ← restartPC # PC of branch/jump
else

ErrorEPC ← restartPC # PC of instruction
endif
PC ← 16#BFC0 0000

5.2.6 Non Maskable Interrupt (NMI) Exception

A non maskable interrupt exception occurs when the NMI signal is asserted to the processor.

Unlike all other interrupts, this exception is not maskable. An NMI occurs only at instruction boundaries, so does
any reset or other hardware initialization. The state of the cache, memory, and other processor state is consisten
registers are preserved, with the following exceptions:

• The BEV, TS, SR, NMI, and ERL fields of theStatus register are initialized to a specified state.

• TheErrorEPC register is loaded with restart PC, as described inTable 5-5.

• PC is loaded with16#BFC0 0000 .

Cause Register ExcCode Value

None

Additional State Saved

None

Entry Vector Used

Reset (16#BFC0 0000)
MIPS32™ Architecture For Programmers Volume III, Revision 0.95 27

Chapter 5 Interrupts and Exceptions

ndition
Operation

Status BEV ← 1
Status TS ← 0
Status SR ← 0
Status NMI ← 1
Status ERL ← 1
if InstructionInBranchDelaySlot then

ErrorEPC ← restartPC # PC of branch/jump
else

ErrorEPC ← restartPC # PC of instruction
endif
PC ← 16#BFC0 0000

5.2.7 Machine Check Exception

A machine check exception occurs when the processor detects an internal inconsistency.

The following conditions cause a machine check exception:

• Detection of multiple matching entries in the TLB in a TLB-based MMU.

Cause Register ExcCode Value

MCheck (SeeTable 6-17 on page 59)

Additional State Saved

Depends on the condition that caused the exception. See the descriptions above.

Entry Vector Used

General exception vector (offset 16#180)

5.2.8 Address Error Exception

An address error exception occurs under the following circumstances:

• An instruction is fetched from an address that is not aligned on a word boundary.

• A load or store word instruction is executed in which the address is not aligned on a word boundary.

• A load or store halfword instruction is executed in which the address is not aligned on a halfword boundary.

• A reference is made to a kernel address space from User Mode or Supervisor Mode.

• A reference is made to a supervisor address space from User Mode.

Note that in the case of an instruction fetch that is not aligned on a word boundary, the PC is updated before the co
is detected. Therefore, both EPC and BadVAddr point at the unaligned instruction address.

Cause Register ExcCode Value

AdEL: Reference was a load or an instruction fetch

AdES: Reference was a store

SeeTable 6-17 on page 59.
28 MIPS32™ Architecture For Programmers Volume III, Revision 0.95

5.2 Exceptions

space
t has

ed entry

one in
ption
ing the
Additional State Saved

Entry Vector Used

General exception vector (offset 16#180)

5.2.9 TLB Refill Exception

A TLB Refill exception occurs in a TLB-based MMU when no TLB entry matches a reference to a mapped address
and the EXL bit is zero in theStatus register. Note that this is distinct from the case in which an entry matches bu
the valid bit off, in which case a TLB Invalid exception occurs.

Cause Register ExcCode Value

TLBL: Reference was a load or an instruction fetch

TLBS: Reference was a store

SeeTable 6-17 on page 59.

Additional State Saved

Entry Vector Used

• TLB Refill vector (offset 16#000) if StatusEXL = 0 at the time of exception.

• General exception vector (offset 16#180) if StatusEXL = 1 at the time of exception

5.2.10 TLB Invalid Exception

A TLB invalid exception occurs when a TLB entry matches a reference to a mapped address space, but the match
has the valid bit off.

Note that the condition in which no TLB entry matches a reference to a mapped address space and the EXL bit is
theStatus register is indistinguishable from a TLB Invalid Exception in the sense that both use the general exce
vector and supply an ExcCode value of TLBL or TLBS. The only way to distinguish these two cases is by prob
TLB for a matching entry (using TLBP).

Register State Value

BadVAddr failing address

ContextVPN2 UNPREDICTABLE

EntryHiVPN2 UNPREDICTABLE

EntryLo0 UNPREDICTABLE

EntryLo1 UNPREDICTABLE

Register State Value

BadVAddr failing address

Context The BadVPN2 field contains VA31..13 of the failing address

EntryHi The VPN2 field contains VA31..13of the failing address; the
ASID field contains the ASID of the reference that missed.

EntryLo0 UNPREDICTABLE

EntryLo1 UNPREDICTABLE
MIPS32™ Architecture For Programmers Volume III, Revision 0.95 29

Chapter 5 Interrupts and Exceptions

but

or ECC
or was in
Cause Register ExcCode Value

TLBL: Reference was a load or an instruction fetch

TLBS: Reference was a store

SeeTable 6-16 on page 58.

Additional State Saved

Entry Vector Used

General exception vector (offset 16#180)

5.2.11 TLB Modified Exception

A TLB modified exception occurs on astorereference to a mapped address when the matching TLB entry is valid,
the entry’s D bit is zero, indicating that the page is not writable.

Cause Register ExcCode Value

Mod (SeeTable 6-16 on page 58)

Additional State Saved

Entry Vector Used

General exception vector (offset 16#180)

5.2.12 Cache Error Exception

A cache error exception occurs when an instruction or data reference detects a cache tag or data error, or a parity
error is detected on the system bus when a cache miss occurs. This exception is not maskable. Because the err
a cache, the exception vector is to an unmapped, uncached address.

Cause Register ExcCode Value

N/A

Register State Value

BadVAddr failing address

Context The BadVPN2 field contains VA31..13 of the failing address

EntryHi The VPN2 field contains VA31..13of the failing address; the
ASID field contains the ASID of the reference that missed.

EntryLo0 UNPREDICTABLE

EntryLo1 UNPREDICTABLE

Register State Value

BadVAddr failing address

Context The BadVPN2 field contains VA31..13 of the failing address

EntryHi The VPN2 field contains VA31..13of the failing address; the
ASID field contains the ASID of the reference that missed.

EntryLo0 UNPREDICTABLE

EntryLo1 UNPREDICTABLE
30 MIPS32™ Architecture For Programmers Volume III, Revision 0.95

5.2 Exceptions

 an
sactions
Additional State Saved

Entry Vector Used

Cache error vector (offset 16#100)

Operation

CacheErr ← ErrorState
Status ERL ← 1
if InstructionInBranchDelaySlot then

ErrorEPC ← restartPC # PC of branch/jump
else

ErrorEPC ← restartPC # PC of instruction
endif
if Status BEV = 1 then

PC ← 16#BFC0 0200 + 16#100
else

PC ← 16#A000 0000 + 16#100
endif

5.2.13 Bus Error Exception

A bus error occurs when an instruction, data, or prefetch access makes a bus request (due to a cache miss or
uncacheable reference) and that request is terminated in an error. Note that parity errors detected during bus tran
are reported as cache error exceptions, not bus error exceptions.

Cause Register ExcCode Value

IBE: Error on an instruction reference

DBE: Error on a data reference

SeeTable 6-17 on page 59.

Additional State Saved

None

Entry Vector Used

General exception vector (offset 16#180)

5.2.14 Integer Overflow Exception

An integer overflow exception occurs when selected integer instructions result in a 2’s complement overflow.

Cause Register ExcCode Value

Ov (SeeTable 6-17 on page 59)

Additional State Saved

None

Register State Value

CacheErr Error state

ErrorEPC Restart PC
MIPS32™ Architecture For Programmers Volume III, Revision 0.95 31

Chapter 5 Interrupts and Exceptions
Entry Vector Used

General exception vector (offset 16#180)

5.2.15 Trap Exception

A trap exception occurs when a trap instruction results in a TRUE value.

Cause Register ExcCode Value

Tr (SeeTable 6-17 on page 59)

Additional State Saved

None

Entry Vector Used

General exception vector (offset 16#180)

5.2.16 System Call Exception

A system call exception occurs when a SYSCALL instruction is executed.

Cause Register ExcCode Value

Sys (SeeTable 6-16 on page 58)

Additional State Saved

None

Entry Vector Used

General exception vector (offset 16#180)

5.2.17 Breakpoint Exception

A breakpoint exception occurs when a BREAK instruction is executed.

Cause Register ExcCode Value

Bp (SeeTable 6-17 on page 59)

Additional State Saved

None

Entry Vector Used

General exception vector (offset 16#180)

5.2.18 Reserved Instruction Exception

A Reserved Instruction Exception occurs if any of the following conditions is true:

• An instruction was executed that specifies an encoding of the opcode field that is flagged with “∗” (reserved), “β”
(higher-order ISA), or an unimplemented “ε” (ASE).
32 MIPS32™ Architecture For Programmers Volume III, Revision 0.95

5.2 Exceptions

ented

 is

e
ed

de or

uted
• An instruction was executed that specifies aSPECIAL opcode encoding of the function field that is flagged with “∗”
(reserved), or “β” (higher-order ISA).

• An instruction was executed that specifies aREGIMM opcode encoding of the rt field that is flagged with “∗”
(reserved).

• An instruction was executed that specifies an unimplementedSPECIAL2opcode encoding of the function field that is
flagged with an unimplemented “θ” (partner available), or an unimplemented “σ” (EJTAG).

• An instruction was executed that specifies aCOPzopcode encoding of the rs field that is flagged with “∗” (reserved),
“β” (higher-order ISA), or an unimplemented “ε” (ASE), assuming that access to the coprocessor is allowed. If
access to the coprocessor is not allowed, a Coprocessor Unusable Exception occurs instead. For theCOP1 opcode,
some implementations of previous ISAs reported this case as a Floating Point Exception, setting the Unimplem
Operation bit in the Cause field of theFCSR register.

• An instruction was executed that specifies an unimplementedCOP0opcode encoding of the function field when rs is
CO that is flagged with “∗” (reserved), or an unimplemented “σ” (EJTAG), assuming that access to coprocessor 0
allowed. If access to the coprocessor is not allowed, a Coprocessor Unusable Exception occurs instead.

• An instruction was executed that specifies aCOP1 opcode encoding of the function field that is flagged with “∗”
(reserved), “β” (higher-order ISA), or an unimplemented “ε” (ASE), assuming that access to coprocessor 1 is
allowed. If access to the coprocessor is not allowed, a Coprocessor Unusable Exception occurs instead. Som
implementations of previous ISAs reported this case as a Floating Point Exception, setting the Unimplement
Operation bit in the Cause field of theFCSR register.

Cause Register ExcCode Value

RI (SeeTable 6-17 on page 59)

Additional State Saved

None

Entry Vector Used

General exception vector (offset 16#180)

5.2.19 Coprocessor Unusable Exception

A coprocessor unusable exception occurs if any of the following conditions is true:

• A COP0 or Cache instruction was executed while the processor was running in a mode other than Debug Mo
Kernel Mode, and the CU0 bit in theStatus register was a zero

• A COP1, LWC1, SWC1, LDC1, SDC1 or MOVCI (Special opcode function field encoding) instruction was exec
and the CU1 bit in theStatus register was a zero.

• A COP2, LWC2, SWC2, LDC2, or SDC2 instruction was executed, and the CU2 bit in theStatusregister was a zero.

• A COP3 instruction was executed, and the CU3 bit in theStatus register was a zero.

Cause Register ExcCode Value

CpU (SeeTable 6-16 on page 58)

Additional State Saved

Register State Value

CauseCE unit number of the coprocessor being referenced
MIPS32™ Architecture For Programmers Volume III, Revision 0.95 33

Chapter 5 Interrupts and Exceptions

 data

ch
he

ile in

h is
en.

hile the

whose
Entry Vector Used

General exception vector (offset 16#180)

5.2.20 Floating Point Exception

A floating point exception is initiated by the floating point coprocessor to signal a floating point exception.

Register ExcCode Value

FPE (SeeTable 6-16 on page 58)

Additional State Saved

Entry Vector Used

General exception vector (offset 16#180)

5.2.21 Coprocessor 2 Exception

A coprocessor 2 exception is initiated by coprocessor 2 to signal a precise coprocessor 2 exception.

Register ExcCode Value

C2E (SeeTable 6-16 on page 58)

Additional State Saved

Defined by the coprocessor

Entry Vector Used

General exception vector (offset 16#180)

5.2.22 Watch Exception

The watch facility provides a software debugging vehicle by initiating a watch exception when an instruction or
reference matches the address information stored in theWatchHi andWatchLo registers. A watch exception is taken
immediately if the EXL and ERL bits of theStatus register are both zero. If either bit is a one at the time that a wat
exception would normally be taken, the WP bit in theCause register is set, and the exception is deferred until both t
EXL and ERL bits in the Status register are zero. Software may use the WP bit in theCauseregister to determine if the
EPC register points at the instruction that caused the watch exception, or if the exception actually occurred wh
kernel mode.

If the EXL or ERL bits are one in theStatusregister and a single instruction generates both a watch exception (whic
deferred by the state of the EXL and ERL bits) and a lower-priority exception, the lower priority exception is tak

Watch exceptions are never taken if the processor is executing in Debug Mode. Should a watch register match w
processor is in Debug Mode, the exception is inhibited and the WP bit is not changed.

It is implementation dependent whether a data watch exception is triggered by a prefetch or cache instruction
address matches the Watch register address match conditions.

Register State Value

FCSR indicates the cause of the floating point exception
34 MIPS32™ Architecture For Programmers Volume III, Revision 0.95

5.2 Exceptions

ters. See
Register ExcCode Value

WATCH (SeeTable 6-16 on page 58)

Additional State Saved

Entry Vector Used

General exception vector (offset 16#180)

5.2.23 Interrupt Exception

The interrupt exception occurs when one or more of the eight interrupt requests is enabled by the Status regis
Section5.1 on page 21 for more information.

Register ExcCode Value

Int (SeeTable 6-17 on page 59)

Additional State Saved

Entry Vector Used

General exception vector (offset 16#180) if the IV bit in theCause register is zero.

Interrupt vector (offset 16#200) if the IV bit in theCause register is one.

Register State Value

CauseWP

indicates that the watch exception was deferred until after
both StatusEXL and StatusERL were zero. This bit directly
causes a watch exception, so software must clear this bit as
part of the exception handler to prevent a watch exception
loop at the end of the current handler execution.

Register State Value

CauseIP indicates the interrupts that are pending.
MIPS32™ Architecture For Programmers Volume III, Revision 0.95 35

Chapter 5 Interrupts and Exceptions
36 MIPS32™ Architecture For Programmers Volume III, Revision 0.95

d below,

If the
Chapter 6

Coprocessor 0 Registers

The Coprocessor 0 (CP0) registers provide the interface between the ISA and the PRA. Each register is discusse
with the registers presented in numerical order, first by register number, then by select field number.

6.1 Coprocessor 0 Register Summary

Table 6-1lists the CP0 registers in numerical order. The individual registers are described later in this document.
compliance level is qualified (e.g., “Required(TLB MMU)”), it applies only if the qualifying condition is true. The Sel
column indicates the value to be used in the field of the same name in the MFC0 and MTC0 instructions.

Table 6-1 Coprocessor 0 Registers in Numerical Order

Register
Number

Sel Register
Name

Function Reference Compliance
Level

0 0 Index Index into the TLB array Section6.3 on
page 41

Required
(TLB MMU);

Optional
(others)

1 0 Random Randomly generated index into the TLB arraySection6.4 on
page 42

Required
(TLB MMU);

Optional
(others)

2 0 EntryLo0 Low-order portion of the TLB entry for
even-numbered virtual pages

Section6.5 on
page 43

Required
(TLB MMU);

Optional
(others)

3 0 EntryLo1 Low-order portion of the TLB entry for
odd-numbered virtual pages

Section6.5 on
page 43

Required (TLB
MMU);

Optional (others)

4 0 Context Pointer to page table entry in memory Section6.6 on
page 45

Required
(TLB MMU);

Optional
(others)

5 0 PageMask Control for variable page size in TLB entriesSection6.7 on
page 46

Required
(TLB MMU);

Optional
(others)

6 0 Wired Controls the number of fixed (“wired”) TLB
entries

Section6.8 on
page 47

Required
(TLB MMU);

Optional
(others)

7 all Reserved for future extensions Reserved

8 0 BadVAddr Reports the address for the most recent
address-related exception

Section6.9 on
page 48 Required

9 0 Count Processor cycle count Section6.10 on
page 49 Required

9 6-7 Available for implementation dependent user Section6.11 on
page 49

Implementation
Dependent
MIPS32™ Architecture For Programmers Volume III, Revision 0.95 37

Chapter 6 Coprocessor 0 Registers
10 0 EntryHi High-order portion of the TLB entry Section6.12 on
page 51

Required
(TLB MMU);

Optional
(others)

11 0 Compare Timer interrupt control Section6.13 on
page 52 Required

11 6-7 Available for implementation dependent userSection6.14 on
page 52

Implementation
Dependent

12 0 Status Processor status and control Section6.15 on
page 53 Required

13 0 Cause Cause of last general exception Section6.16 on
page 58 Required

14 0 EPC Program counter at last exception Section6.17 on
page 61 Required

15 0 PRId Processor identification and revision Section6.18 on
page 62 Required

16 0 Config Configuration register Section6.19 on
page 63 Required

16 1 Config1 Configuration register 1 Section6.20 on
page 65 Required

16 2 Config2 Configuration register 2 Section6.21 on
page 69 Optional

16 3 Config3 Configuration register 3 Section6.22 on
page 70 Optional

16 6-7 Available for implementation dependent userSection6.23 on
page 71

Implementation
Dependent

17 0 LLAddr Load linked address Section6.24 on
page 72 Optional

18 0-n WatchLo Watchpoint address Section6.25 on
page 73 Optional

19 0-n WatchHi Watchpoint control Section6.26 on
page 74 Optional

20 0 XContext in 64-bit implementations Reserved

21 all Reserved for future extensions Reserved

22 all Available for implementation dependent use Section6.27 on
page 76

Implementation
Dependent

23 0 Debug EJTAG Debug register EJTAG
Specification Optional

24 0 DEPC Program counter at last EJTAG debug
exception

EJTAG
Specification Optional

25 0-n PerfCnt Performance counter interface Section6.30 on
page 79 Recommended

26 0 ErrCtl Parity/ECC error control and status Section6.31 on
page 82 Optional

Table 6-1 Coprocessor 0 Registers in Numerical Order

Register
Number

Sel Register
Name

Function Reference Compliance
Level
38 MIPS32™ Architecture For Programmers Volume III, Revision 0.95

6.2 Notation

t state of
6.2 Notation

For each register described below, field descriptions include the read/write properties of the field, and the rese
the field. For the read/write properties of the field, the following notation is used:

27 0-3 CacheErr Cache parity error control and status Section6.32 on
page 83 Optional

28 0 TagLo Low-order portion of cache tag interface Section6.33 on
page 84 Required (Cache)

28 1 DataLo Low-order portion of cache data interface Section6.34 on
page 85 Optional

29 0 TagHi High-order portion of cache tag interface Section6.35 on
page 86 Required (Cache)

29 1 DataHi High-order portion of cache data interface Section6.36 on
page 87 Optional

30 0 ErrorEPC Program counter at last error Section6.37 on
page 88 Required

31 0 DESAVE EJTAG debug exception save register EJTAG
Specification Optional

Table 6-2 Read/Write Bit Field Notation

Read/Write
Notation

Hardware Interpretation Software Interpretation

R/W

A field in which all bits are readable and writable by software and, potentially, by hardware.

Hardware updates of this field are visible by software read. Software updates of this field are
visible by hardware read.

If the Reset State of this field is “Undefined”, either software or hardware must initialize the value
before the first read will return a predictable value. This should not be confused with the formal
definition ofUNDEFINED behavior.

R

A field which is either static or is updated only
by hardware.

If the Reset State of this field is either “0” or
“Preset”, hardware initializes this field to zero
or to the appropriate state, respectively, on
powerup.

If the Reset State of this field is “Undefined”,
hardware updates this field only under those
conditions specified in the description of the
field.

A field to which the value written by software
is ignored by hardware. Software may write
any value to this field without affecting
hardware behavior. Software reads of this field
return the last value updated by hardware.

If the Reset State of this field is “Undefined”,
software reads of this field result in an
UNPREDICTABLE value except after a
hardware update done under the conditions
specified in the description of the field.

Table 6-1 Coprocessor 0 Registers in Numerical Order

Register
Number

Sel Register
Name

Function Reference Compliance
Level
MIPS32™ Architecture For Programmers Volume III, Revision 0.95 39

Chapter 6 Coprocessor 0 Registers
0 A field which hardware does not update, and
for which hardware can assume a zero value.

A field to which the value written by software
must be zero. Software writes of non-zero
values to this field may result inUNDEFINED
behavior of the hardware. Software reads of
this field return zero as long as all previous
software writes are zero.

If the Reset State of this field is “Undefined”,
software must write this field with zero before
it is guaranteed to read as zero.

Table 6-2 Read/Write Bit Field Notation

Read/Write
Notation

Hardware Interpretation Software Interpretation
40 MIPS32™ Architecture For Programmers Volume III, Revision 0.95

MIPS32™ Architecture For Programmers Volume III, Revision 0.95 41

6.3 Index Register (CP0 Register 0, Select 0)

Compliance Level:Required for TLB-based MMUs;Optional otherwise.

TheIndexregister is a 32-bit read/write register which contains the index used to access the TLB for TLBP, TLBR, and
TLBWI instructions. The width of the index field is implementation-dependent as a function of the number of TLB
entries that are implemented. The minimum value for TLB-based MMUs is Ceiling(Log2(TLBEntries)). For example,
six bits are required for a TLB with 48 entries).

The operation of the processor isUNDEFINED if a value greater than or equal to the number of TLB entries is written
to theIndex register.

Figure 6-1 shows the format of theIndex register;Table 6-3 describes theIndex register fields.

Figure 6-1 Index Register Format

31 n n-1 0

P 0 Index

Table 6-3 Index Register Field Descriptions

Fields Description Read/
Write

Reset State Compliance

Name Bits

P 31

Probe Failure. Hardware writes this bit during
execution of the TLBP instruction to indicate whether
a TLB match occurred:

R Undefined Required

0 30..n Must be written as zero; returns zero on read. 0 0 Reserved

Index n-1..0

TLB index. Software writes this field to provide the
index to the TLB entry referenced by the TLBR and
TLBWI instructions.

Hardware writes this field with the index of the
matching TLB entry during execution of the TLBP
instruction. If the TLBP fails to find a match, the
contents of this field areUNPREDICTABLE .

R/W Undefined Required

Encoding Meaning

0 A match occurred, and the Index field
contains the index of the matching entry

1 No match occurred and the Index field is
UNPREDICTABLE

MIPS32™ Architecture For Programmers Volume III, Revision 0.95 42

6.4 Random Register (CP0 Register 1, Select 0)

Compliance Level:Required for TLB-based MMUs;Optional otherwise.

TheRandom register is a read-only register whose value is used to index the TLB during a TLBWR instruction. The
width of the Random field is calculated in the same manner as that described for theIndex register above.

The value of the register varies between an upper and lower bound as follow:

• A lower bound is set by the number of TLB entries reserved for exclusive use by the operating system (the contents
of theWiredregister). The entry indexed by theWiredregister is the first entry available to be written by a TLB Write
Random operation.

• An upper bound is set by the total number of TLB entries minus 1.

Within the required constraints of the upper and lower bounds, the manner in which the processor selects values for the
Random register is implementation-dependent.

The processor initializes theRandom register to the upper bound on a Reset Exception, and when theWired register is
written.

Figure 6-2 shows the format of theRandom register;Table 6-4 describes theRandom register fields.

Figure 6-2 Random Register Format

31 n n-1 0

0 Random

Table 6-4 Random Register Field Descriptions

Fields Description Read/
Write

Reset State Compliance

Name Bits

0 31..n Must be written as zero; returns zero on read. 0 0 Reserved

Random n-1..0 TLB Random Index R TLB Entries - 1 Required

e fields

ment at
6.5 EntryLo0, EntryLo1 (CP0 Registers 2 and 3, Select 0)

Compliance Level: EntryLo0 isRequired for a TLB-based MMU;Optional otherwise.

Compliance Level: EntryLo1 isRequired for a TLB-based MMU;Optional otherwise.

The pair of EntryLo registers act as the interface between the TLB and the TLBP, TLBR, TLBWI, and TLBWR
instructions. EntryLo0 holds the entries for even pages and EntryLo1 holds the entries for odd pages.

The contents of the EntryLo0 and EntryLo1 registers are not defined after an address error exception and som
may be modified by hardware during the address error exception sequence. Software writes of theEntryHi register (via
MTC0) do not cause the implicit update of address-related fields in theBadVAddr or Context registers.

Figure 6-3 shows the format of the EntryLo0 and EntryLo1 registers;Table 6-5 describes the EntryLo0 and EntryLo1
register fields.

Table 6-6lists the encoding of the C field of theEntryLo0andEntryLo1registers and the K0 field of theConfigregister.
An implementation may choose to implement a subset of the cache coherency attributes shown, but must imple

Figure 6-3 EntryLo0, EntryLo1 Register Format

31 30 29 6 5 3 2 1 0

0 PFN C D V G

Table 6-5 EntryLo0, EntryLo1 Register Field Descriptions

Fields Description Read/
Write

Reset State Compliance

Name Bits

0 31..30 Ignored on write; returns zero on read. R 0 Required

PFN 29..6
Page Frame Number. Corresponds to bitsPABITS-1..12
of the physical address, wherePABITS is the width of
the physical address in bits.

R/W Undefined Required

C 5..3 Coherency attribute of the page. SeeTable 6-6 below. R/W Undefined Required

D 2

“Dirty” bit, indicating that the page is writable. If this
bit is a one, stores to the page are permitted. If this bit
is a zero, stores to the page cause a TLB Modified
exception.

Kernel software may use this bit to implement paging
algorithms that require knowing which pages have been
written. If this bit is always zero when a page is initially
mapped, the TLB Modified exception that results on
any store to the page can be used to update kernel data
structures that indicate that the page was actually
written.

R/W Undefined Required

V 1

Valid bit, indicating that the TLB entry, and thus the
virtual page mapping are valid. If this bit is a one,
accesses to the page are permitted. If this bit is a zero,
accesses to the page cause a TLB Invalid exception.

R/W Undefined Required

G 0

Global bit. On a TLB write, the logical AND of the G
bits from both EntryLo0 and EntryLo1 becomes the G
bit in the TLB entry. If the TLB entry G bit is a one,
ASID comparisons are ignored during TLB matches.
On a read from a TLB entry, the G bits of both
EntryLo0 and EntryLo1 reflect the state of the TLB G
bit.

R/W Undefined Required
(TLB MMU)
MIPS32™ Architecture For Programmers Volume III, Revision 0.95 43

er cases,
least encodings 2 and 3 such that software can always depend on these encodings working appropriately. In oth
the operation of the processor isUNDEFINED if software specifies an unimplemented encoding.

Table 6-6 lists the required and optional encodings for the coherency attributes.

Table 6-6 Cache Coherency Attributes

C(5:3) Value Cache Coherency Attributes
With Historical Usage

Compliance

0 Available for implementation dependent use Optional

1 Available for implementation dependent use Optional

2 Uncached Required

3 Cacheable Required

4 Available for implementation dependent use Optional

5 Available for implementation dependent use Optional

6 Available for implementation dependent use Optional

7 Available for implementation dependent use Optional
44 MIPS32™ Architecture For Programmers Volume III, Revision 0.95

MIPS32™ Architecture For Programmers Volume III, Revision 0.95 45

6.6 Context Register (CP0 Register 4, Select 0)

Compliance Level:Required for TLB-based MMUs;Optional otherwise.

TheContext register is a read/write register containing a pointer to an entry in the page table entry (PTE) array. This
array is an operating system data structure that stores virtual-to-physical translations. During a TLB miss, the operating
system loads the TLB with the missing translation from the PTE array. TheContext register duplicates some of the
information provided in theBadVAddr register, but is organized in such a way that the operating system can directly
reference a 16-byte structure in memory that describes the mapping.

A TLB exception (TLB Refill, TLB Invalid, or TLB Modified) causes bits VA31..13 of the virtual address to be written
into theBadVPN2 field of theContext register. ThePTEBase field is written and used by the operating system.

The BadVPN2 field of theContextregister is not defined after an address error exception and this field may be modified
by hardware during the address error exception sequence.

Figure 6-4 shows the format of theContext Register;Table 6-7 describes theContext register fields.

Figure 6-4 Context Register Format

31 23 22 4 3 0

PTEBase BadVPN2 0

Table 6-7 Context Register Field Descriptions

Fields Description Read/
Write

Reset State Compliance

Name Bits

PTEBase 31..23

This field is for use by the operating system and is
normally written with a value that allows the
operating system to use theContext Register as a
pointer into the current PTE array in memory.

R/W Undefined Required

BadVPN2 22..4
This field is written by hardware on a TLB
exception. It contains bits VA31..13 of the virtual
address that caused the exception.

R Undefined Required

0 3..0 Must be written as zero; returns zero on read. 0 0 Reserved

MIPS32™ Architecture For Programmers Volume III, Revision 0.95 46

6.7 PageMask Register (CP0 Register 5, Select 0)

Compliance Level:Required for TLB-based MMUs;Optional otherwise.

ThePageMaskregister is a read/write register used for reading from and writing to the TLB. It holds a comparison mask
that sets the variable page size for each TLB entry, as shown inTable 6-9. Figure 6-5shows the format of thePageMask
register;Table 6-8 describes thePageMask register fields.

It is implementation dependent how many of the encodings described inTable 6-9are implemented. All processors must
implement the 4KB page size (an encoding of all zeros). If a particular page size encoding is not implemented by a
processor, a read of thePageMask register must return zeros in all bits that correspond to encodings that are not
implemented. Software may determine which page sizes are supported by writing the encoding for a 256MB page to the
PageMaskregister, then examine the value returned from a read of thePageMaskregister. If a pair of bits reads back as
ones, the processor implements that page size. The operation of the processor isUNDEFINED if software loads the
PageMask register with a value other than one of those listed inTable 6-9.

Figure 6-5 PageMask Register Format

31 29 28 13 12 0

0 Mask 0

Table 6-8 PageMask Register Field Descriptions

Fields Description Read/
Write

Reset State Compliance

Name Bits

Mask 28..13
The Mask field is a bit mask in which a “1” bit indicates
that the corresponding bit of the virtual address should
not participate in the TLB match.

R/W Undefined Required

0 31..29,
12..0 Must be written as zero; returns zero on read. 0 0 Reserved

Table 6-9 Values for the Mask Field of the PageMask Register

Page Size Bit

28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13

4 KBytes 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 KBytes 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

64 KBytes 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1

256 KBytes 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1

1 MByte 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

4 MByte 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1

16 MByte 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1

64 MByte 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1

256 MByte 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

MIPS32™ Architecture For Programmers Volume III, Revision 0.95 47

6.8 Wired Register (CP0 Register 6, Select 0)

Compliance Level:Required for TLB-based MMUs;Optional otherwise.

TheWiredregister is a read/write register that specifies the boundary between the wired and random entries in the TLB
as shown inFigure 6-6.

The width of the Wired field is calculated in the same manner as that described for theIndexregister. Wired entries are
fixed, non-replaceable entries which are not overwritten by a TLBWR instruction.Wired entries can be overwritten by a
TLBWI instruction.

TheWiredregister is set to zero by a Reset Exception. Writing theWiredregister causes theRandomregister to reset to
its upper bound.

The operation of the processor isUNDEFINED if a value greater than or equal to the number of TLB entries is written
to theWired register.

Figure 6-6 shows the format of theWired register;Table 6-10 describes theWired register fields.

Figure 6-7 Wired Register Format

31 n n-1 0

0 Wired

Table 6-10 Wired Register Field Descriptions

Fields Description Read/
Write

Reset State Compliance

Name Bits

0 31..n Must be written as zero; returns zero on read. 0 0 Reserved

Wired n-1..0 TLB wired boundary R/W 0 Required

R
an

do
m

W
ire

d

Entry 0

Entry 1010Wired Register

Figure 6-6 Wired And Random Entries In The TLB

Entry TLBSize-1

MIPS32™ Architecture For Programmers Volume III, Revision 0.95 48

6.9 BadVAddr Register (CP0 Register 8, Select 0)

Compliance Level:Required.

TheBadVAddr register is a read-only register that captures the most recent virtual address that caused one of the
following exceptions:

• Address error (AdEL or AdES)

• TLB Refill

• TLB Invalid (TLBL, TLBS)

• TLB Modified

TheBadVAddrregister does not capture address information for cache or bus errors, or for Watch exceptions, since none
is an addressing error.

Figure 6-8 shows the format of theBadVAddr register;Table 6-11 describes the BadVAddr register fields.

Figure 6-8 BadVAddr Register Format

31 0

BadVAddr

Table 6-11 BadVAddr Register Field Descriptions

Fields Description Read/
Write

Reset State Compliance

Name Bits

BadVAddr 31..0 Bad virtual address R Undefined Required

tired, or

essors.

hitecture.
6.10 Count Register (CP0 Register 9, Select 0)

Compliance Level:Required.

The Count register acts as a timer, incrementing at a constant rate, whether or not an instruction is executed, re
any forward progress is made through the pipeline. The rate at which the counter increments is implementation
dependent, and is a function of the pipeline clock of the processor, not the issue width of the processor.

The Count register can be written for functional or diagnostic purposes, including at reset or to synchronize proc

Figure 6-9 shows the format of the Count register;Table 6-12 describes the Count register fields.

6.11 Reserved for Implementations (CP0 Register 9, Selects 6 and 7)

Compliance Level:Optional: Implementation Dependent.

CP0 register 9, Selects 6 and 7 are reserved for implementation dependent use and are not defined by the arc

Figure 6-9 Count Register Format

31 0

Count

Table 6-12 Count Register Field Descriptions

Fields Description Read/
Write

Reset State Compliance

Name Bits

Count 31..0 Interval counter R/W Undefined Required
MIPS32™ Architecture For Programmers Volume III, Revision 0.95 49

50 MIPS32™ Architecture For Programmers Volume III, Revision 0.95

MIPS32™ Architecture For Programmers Volume III, Revision 0.95 51

6.12 EntryHi Register (CP0 Register 10, Select 0)

Compliance Level:Requiredfor TLB-based MMU;Optional otherwise.

TheEntryHi register contains the virtual address match information used for TLB read, write, and access operations.

A TLB exception (TLB Refill, TLB Invalid, or TLB Modified) causes bits VA31..13 of the virtual address to be written
into the VPN2 field of theEntryHi register. The ASID field is written by software with the current address space
identifier value and is used during the TLB comparison process to determine TLB match.

The VPN2 field of theEntryHi register is not defined after an address error exception and this field may be modified by
hardware during the address error exception sequence.

Figure 6-10 shows the format of theEntryHi register;Table 6-13 describes theEntryHi register fields.

Figure 6-10 EntryHi Register Format

31 13 12 8 7 0

VPN2 0 ASID

Table 6-13 EntryHi Register Field Descriptions

Fields Description Read/
Write

Reset
State

Compliance

Name Bits

VPN2 31..13

VA31..13of the virtual address (virtual page number / 2).
This field is written by hardware on a TLB exception or
on a TLB read, and is written by software before a TLB
write.

R/W Undefined Required

0 12..8 Must be written as zero; returns zero on read. 0 0 Reserved

ASID 7..0

Address space identifier. This field is written by
hardware on a TLB read and by software to establish the
current ASID value for TLB write and against which
TLB references match each entry’s TLB ASID field.

R/W Undefined Required
(TLB MMU)

MIPS32™ Architecture For Programmers Volume III, Revision 0.95 52

6.13 Compare Register (CP0 Register 11, Select 0)

Compliance Level:Required.

TheCompareregister acts in conjunction with theCountregister to implement a timer and timer interrupt function. The
Compare register maintains a stable value and does not change on its own.

When the value of theCount register equals the value of theCompare register, an interrupt request is combined in an
implementation-dependent way with hardware interrupt 5 to set interrupt bit IP(7) in theCauseregister. This causes an
interrupt as soon as the interrupt is enabled.

For diagnostic purposes, theCompare register is a read/write register. In normal use however, theCompare register is
write-only. Writing a value to theCompare register, as a side effect, clears the timer interrupt.Figure 6-11 shows the
format of theCompare register;Table 6-14 describes the Compare register fields.

6.14 Reserved for Implementations (CP0 Register 11, Selects 6 and 7)

Compliance Level:Optional: Implementation Dependent.

CP0 register 11, Selects 6 and 7 are reserved for implementation dependent use and are not defined by the architecture.

Figure 6-11 Compare Register Format

31 0

Compare

Table 6-14 Compare Register Field Descriptions

Fields Description Read/
Write

Reset State Compliance

Name Bits

Compare 31..0 Interval count compare value R/W Undefined Required

states
6.15 Status Register (CP Register 12, Select 0)

Compliance Level:Required.

TheStatusregister is a read/write register that contains the operating mode, interrupt enabling, and the diagnostic
of the processor. Fields of this register combine to create operating modes for the processor. Refer toChapter 3, “MIPS32
Operating Modes,” on page 9 for a discussion of operating modes, and Section5.1 on page 21 for a discussion of
interrupt enable.

Figure 6-12 shows the format of the Status register;Table 6-15 describes the Status register fields.

Figure 6-12 Status Register Format

31 28 27 26 25 24 23 22 21 20 19 18 17 16 15 8 7 6 5 4 3 2 1 0

CU3..CU0 RP FR RE MX PX BEV TS SR NMI 0 Impl IM7..IM0 KX SX UX UM R0 ERL EXL IE

KSU

Table 6-15 Status Register Field Descriptions

Fields Description Read/
Write

Reset State Compliance

Name Bits

CU
(CU3..
CU0)

31..28

Controls access to coprocessors 3, 2, 1, and 0,
respectively:

Coprocessor 0 is always usable when the processor is
running in Kernel Mode or Debug Mode, independent of
the state of the CU0 bit.

If there is no provision for connecting a coprocessor, the
corresponding CU bit must be ignored on write and read
as zero.

R/W Undefined

Required for
all

implemented
coprocessors

RP 27

Enables reduced power mode on some implementations.
The specific operation of this bit is implementation
dependent.

If this bit is not implemented, it must be ignored on write
and read as zero. If this bit is implemented, the reset state
must be zero so that the processor starts at full
performance.

R/W 0 Optional

FR 26

Controls the floating point register mode on MIPS64
processors. Not used by MIPS32 processors. This bit must
be ignored on write and read as zero. R 0 Required

Encoding Meaning

0 Access not allowed

1 Access allowed
MIPS32™ Architecture For Programmers Volume III, Revision 0.95 53

RE 25

Used to enable reverse-endian memory references while
the processor is running in user mode:

Neither Debug Mode nor Kernel Mode nor Supervisor
Mode references are affected by the state of this bit.

If this bit is not implemented, it must be ignored on write
and read as zero.

R/W Undefined Optional

MX 24
Enables access to MDMX™ resources on MIPS64
processors. Not used by MIPS32 processors. This bit must
be ignored on write and read as zero.

R 0 Optional

PX 23
Enables access to 64-bit operations on MIPS64
processors. Not used by MIPS32 processors. This bit must
be ignored on write and read as zero.

R 0 Required

BEV 22

Controls the location of exception vectors:

 See Section5.2.1 on page 22 for details.

R/W 1 Required

TS 21

Indicates that the TLB has detected a match on multiple
entries. When such a detection occurs, the processor
initiates a machine check exception and sets this bit. It is
implementation dependent whether this condition can be
corrected by software. If the condition can be corrected,
this bit should be cleared by software before resuming
normal operation.

If this bit is not implemented, it must be ignored on write
and read as zero.

Software should not write a 1 to this bit when its value is
a 0, thereby causing a 0-to-1 transition. If such a transition
is caused by software, it isUNPREDICTABLE whether
hardware ignores the write, accepts the write with no side
effects, or accepts the write and initiates a machine check
exception.

R/W 0

Required if
TLB

Shutdown is
implemented

Table 6-15 Status Register Field Descriptions

Fields Description Read/
Write

Reset State Compliance

Name Bits

Encoding Meaning

0 User mode uses configured endianness

1 User mode uses reversed endianness

Encoding Meaning

0 Normal

1 Bootstrap
54 MIPS32™ Architecture For Programmers Volume III, Revision 0.95

6.15 Status Register (CP Register 12, Select 0)
SR 20

Indicates that the entry through the reset exception vector
was due to a Soft Reset:

If this bit is not implemented, it must be ignored on write
and read as zero.

Software should not write a 1 to this bit when its value is
a 0, thereby causing a 0-to-1 transition. If such a transition
is caused by software, it isUNPREDICTABLE whether
hardware ignores or accepts the write.

R/W
1 for Soft
Reset; 0

otherwise

Required if
Soft Reset is
implemented

NMI 19

Indicates that the entry through the reset exception vector
was due to an NMI:

If this bit is not implemented, it must be ignored on write
and read as zero.

Software should not write a 1 to this bit when its value is
a 0, thereby causing a 0-to-1 transition. If such a transition
is caused by software, it isUNPREDICTABLE whether
hardware ignores or accepts the write.

R/W 1 for NMI; 0
otherwise

Required if
NMI is

implemented

0 18 Must be written as zero; returns zero on read. 0 0 Reserved

Impl 17..16
These bits are implementation dependent and are not
defined by the architecture. If they are not implemented,
they must be ignored on write and read as zero.

Undefined Optional

IM7:IM0 15..8

Interrupt Mask: Controls the enabling of each of the
external, internal and software interrupts. Refer to Section
5.1 on page 21 for a complete discussion of enabled
interrupts.

R/W Undefined Required

KX 7

Enables access to 64-bit kernel address space on 64-bit
MIPS processors. Not used by MIPS32 processors. This
bit must be ignored on write and read as zero. R 0 Reserved

SX 6

Enables access to 64-bit supervisor address space on
64-bit MIPS processors. Not used by MIPS32 processors.
This bit must be ignored on write and read as zero. R 0 Reserved

Table 6-15 Status Register Field Descriptions

Fields Description Read/
Write

Reset State Compliance

Name Bits

Encoding Meaning

0 Not Soft Reset (NMI or Reset)

1 Soft Reset

Encoding Meaning

0 Not NMI (Soft Reset or Reset)

1 NMI

Encoding Meaning

0 Interrupt request disabled

1 Interrupt request enabled
MIPS32™ Architecture For Programmers Volume III, Revision 0.95 55

UX 5

Enables access to 64-bit user address space on 64-bit
MIPS processors Not used by MIPS32 processors. This
bit must be ignored on write and read as zero. R 0 Reserved

KSU 4..3

If Supervisor Mode is implemented, the encoding of this
field denotes the base operating mode of the processor.
SeeChapter 3, “MIPS32 Operating Modes,” on page 9for
a full discussion of operating modes. The encoding of this
field is:

Note: This field overlaps the UM and R0 fields, described
below.

R/W Undefined

Required if
Supervisor
Mode is

implemented;
Optional
otherwise

UM 4

If Supervisor Mode is not implemented, this bit denotes
the base operating mode of the processor. SeeChapter 3,
“MIPS32 Operating Modes,” on page 9 for a full
discussion of operating modes. The encoding of this bit is:

Note: This bit overlaps the KSU field, described above.

R/W Undefined Required

R0 3

If Supervisor Mode is not implemented, this bit is
reserved. This bit must be ignored on write and read as
zero.

Note: This bit overlaps the KSU field, described above.

R 0 Reserved

ERL 2

Error Level; Set by the processor when a Reset, Soft
Reset, NMI or Cache Error exception are taken.

When ERL is set:
• The processor is running in kernel mode

• Interrupts are disabled

• The ERET instruction will use the return address held
in ErrorEPC instead of EPC

• The lower 229 bytes of kuseg are treated as an
unmapped and uncached region. See Section4.6 on
page 16. This allows main memory to be accessed in the
presence of cache errors. The operation of the processor
is UNDEFINED if the ERL bit is set while the
processor is executing instructions from kuseg.

R/W 1 Required

Table 6-15 Status Register Field Descriptions

Fields Description Read/
Write

Reset State Compliance

Name Bits

Encoding Meaning

0 Base mode is Kernel Mode

1 Base mode is User Mode

Encoding Meaning

0 Normal level

1 Error level
56 MIPS32™ Architecture For Programmers Volume III, Revision 0.95

6.15 Status Register (CP Register 12, Select 0)
EXL 1

Exception Level; Set by the processor when any exception
other than Reset, Soft Reset, NMI or Cache Error
exception are taken.

 When EXL is set:
• The processor is running in Kernel Mode

• Interrupts are disabled.

• TLB Refill exceptions use the general exception vector
instead of the TLB Refill vector.

• EPC and CauseBD will not be updated if another
exception is taken

R/W Undefined Required

IE 0

Interrupt Enable: Acts as the master enable for software
and hardware interrupts:

R/W Undefined Required

Table 6-15 Status Register Field Descriptions

Fields Description Read/
Write

Reset State Compliance

Name Bits

Encoding Meaning

0 Normal level

1 Exception level

Encoding Meaning

0 Interrupts are disabled

1 Interrupts are enabled
MIPS32™ Architecture For Programmers Volume III, Revision 0.95 57

ftware
6.16 Cause Register (CP0 Register 13, Select 0)

Compliance Level:Required.

TheCause register primarily describes the cause of the most recent exception. In addition, fields also control so
interrupt requests and the vector through which interrupts are dispatched. With the exception of the IP1:0, IV, and WP
fields, all fields in the Cause register are read-only.

Figure 6-13 shows the format of the Cause register;Table 6-16 describes the Cause register fields.

Figure 6-13 Cause Register Format

31 30 29 28 27 24 23 22 21 16 15 8 7 6 2 1 0

BD 0 CE 0 IV WP 0 IP7:IP0 0 Exc Code 0

Table 6-16 Cause Register Field Descriptions

Fields Description Read/W
rite

Reset State Compliance

Name Bits

BD 31

Indicates whether the last exception taken occurred in
a branch delay slot:

The processor updates BD only if StatusEXL was zero
when the exception occurred.

R Undefined Required

CE 29..28

Coprocessor unit number referenced when a
Coprocessor Unusable exception is taken. This field
is loaded by hardware on every exception, but is
UNPREDICTABLE for all exceptions except for
Coprocessor Unusable.

R Undefined Required

IV 23

Indicates whether an interrupt exception uses the
general exception vector or a special interrupt vector:

R/W Undefined Required

Encoding Meaning

0 Not in delay slot

1 In delay slot

Encoding Meaning

0 Use the general exception vector (16#180)

1 Use the special interrupt vector (16#200)
MIPS32™ Architecture For Programmers Volume III, Revision 0.95 58

6.16 Cause Register (CP0 Register 13, Select 0)
WP 22

Indicates that a watch exception was deferred
because StatusEXL or StatusERL were a one at the
time the watch exception was detected. This bit both
indicates that the watch exception was deferred, and
causes the exception to be initiated once StatusEXL
and StatusERL are both zero. As such, software must
clear this bit as part of the watch exception handler to
prevent a watch exception loop.

Software should not write a 1 to this bit when its
value is a 0, thereby causing a 0-to-1 transition. If
such a transition is caused by software, it is
UNPREDICTABLE whether hardware ignores the
write, accepts the write with no side effects, or
accepts the write and initiates a watch exception once
StatusEXL and StatusERL are both zero.

If watch registers are not implemented, this bit must
be ignored on write and read as zero.

R/W Undefined

Required if
watch

registers are
implemented

IP[7:2] 15..10

Indicates an external interrupt is pending:

R Undefined Required

IP[1:0] 9..8

Controls the request for software interrupts:

R/W Undefined Required

ExcCode 6..2 Exception code - seeTable 6-17 R Undefined Required

0

30,
27..24,
21..16,
7, 1..0

Must be written as zero; returns zero on read. 0 0 Reserved

Table 6-17 Cause Register ExcCode Field

Exception Code Value Mnemonic Description

Decimal Hexadecimal

0 16#00 Int Interrupt

1 16#01 Mod TLB modification exception

Table 6-16 Cause Register Field Descriptions

Fields Description Read/W
rite

Reset State Compliance

Name Bits

Encoding Meaning

15 Hardware interrupt 5, timer or performance
counter interrupt

14 Hardware interrupt 4

13 Hardware interrupt 3

12 Hardware interrupt 2

11 Hardware interrupt 1

10 Hardware interrupt 0

Encoding Meaning

9 Request software interrupt 1

8 Request software interrupt 0
MIPS32™ Architecture For Programmers Volume III, Revision 0.95 59

2 16#02 TLBL TLB exception (load or instruction fetch)

3 16#03 TLBS TLB exception (store)

4 16#04 AdEL Address error exception (load or instruction fetch)

5 16#05 AdES Address error exception (store)

6 16#06 IBE Bus error exception (instruction fetch)

7 16#07 DBE Bus error exception (data reference: load or store)

8 16#08 Sys Syscall exception

9 16#09 Bp Breakpoint exception

10 16#0a RI Reserved instruction exception

11 16#0b CpU Coprocessor Unusable exception

12 16#0c Ov Arithmetic Overflow exception

13 16#0d Tr Trap exception

14 16#0e - Reserved

15 16#0f FPE Floating point exception

16-17 16#10-16#11 - Available for implementation dependent use

18 16#12 C2E Reserved for precise Coprocessor 2 exceptions

19-21 16#13-16#15 - Reserved

22 16#16 MDMX Reserved for MDMX Unusable Exception in MIPS64
implementations.

23 16#17 WATCH Reference to WatchHi/WatchLo address

24 16#18 MCheck Machine check

25-29 16#19-16#1d - Reserved

30 16#1e CacheErr

Cache error. In normal mode, a cache error exception has a
dedicated vector and the Cause register is not updated. If EJTAG is
implemented and a cache error occurs while in Debug Mode, this
code is used to indicate that re-entry to Debug Mode was caused by
a cache error.

31 16#1f - Reserved

Table 6-17 Cause Register ExcCode Field

Exception Code Value Mnemonic Description

Decimal Hexadecimal
60 MIPS32™ Architecture For Programmers Volume III, Revision 0.95

MIPS32™ Architecture For Programmers Volume III, Revision 0.95 61

6.17 Exception Program Counter (CP0 Register 14, Select 0)

Compliance Level:Required.

The Exception Program Counter (EPC)is a read/write register that contains the address at which processing resumes
after an exception has been serviced. All bits of theEPC register are significant and must be writable.

For synchronous (precise) exceptions,EPC contains either:

• the virtual address of the instruction that was the direct cause of the exception, or

• the virtual address of the immediately preceding branch or jump instruction, when the exception causing instruction
is in a branch delay slot, and theBranch Delay bit in theCause register is set.

For asynchronous (imprecise) exceptions,EPC contains the address of the instruction at which to resume execution.

The processor does not write to theEPC register when the EXL bit in theStatus register is set to one.

Figure 6-14 shows the format of theEPC register;Table 6-18 describes theEPC register fields.

6.17.1 Special Handling of the EPC Register in Processors That Implement the MIPS16 ASE

In processors that implement the MIPS16 ASE, a read of theEPCregister (via MFC0) returns the following value in the
destination GPR:

GPR[rt] ← RestartPC 31..1 || ISAMode

That is, the upper 31 bits of the restart PC are combined with theISA Mode bit and written to the GPR.

Similarly, a write to theEPCregister (via MTC0) takes the value from the GPR and distributes that value to the restart
PC and theISA Mode bit, as follows

RestartPC ← GPR[rt] 31..1 || 0
ISAMode ← GPR[rt] 0

That is, the upper 31 bits of the GPR are written to the upper 31 bits of the restart PC, and the lower bit of the restart PC
is cleared. TheISA Mode bit is loaded from the lower bit of the GPR.

Figure 6-14 EPC Register Format

31 0

EPC

Table 6-18 EPC Register Field Descriptions

Fields Description Read/
Write

Reset State Compliance

Name Bits

EPC 31..0 Exception Program Counter R/W Undefined Required

MIPS32™ Architecture For Programmers Volume III, Revision 0.95 62

6.18 Processor Identification (CP0 Register 15, Select 0)

Compliance Level:Required.

TheProcessor Identification (PRId) register is a 32 bit read-only register that contains information identifying the
manufacturer, manufacturer options, processor identification and revision level of the processor.Figure 6-15shows the
format of thePRId register;Table 6-19 describes thePRId register fields.

Figure 6-15 PRId Register Format

31 24 23 16 15 8 7 0

Company Options Company ID Processor ID Revision

Table 6-19 PRId Register Field Descriptions

Fields Description Read/
Write

Reset State Compliance

Name Bits

Company
Options 31..24

Available to the designer or manufacturer of the
processor for company-dependent options. The
value in this field is not specified by the architecture.
If this field is not implemented, it must read as zero.

R Preset Optional

Company
ID 23..16

Identifies the company that designed or
manufactured the processor.

Software can distinguish a MIPS32 or MIPS64
processor from one implementing an earlier MIPS
ISA by checking this field for zero. If it is non-zero
the processor implements the MIPS32 or MIPS64
Architecture.

Company IDs are assigned by MIPS Technologies
when a MIPS32 or MIPS64 license is acquired. The
encodings in this field are:

R Preset Required

Processor
ID 15..8

Identifies the type of processor. This field allows
software to distinguish between various processor
implementations within a single company, and is
qualified by the CompanyID field, described above.
The combination of the CompanyID and
ProcessorID fields creates a unique number assigned
to each processor implementation.

R Preset Required

Revision 7..0

Specifies the revision number of the processor. This
field allows software to distinguish between one
revision and another of the same processor type. If
this field is not implemented, it must read as zero.

R Preset Optional

Encoding Meaning

0 Not a MIPS32 or MIPS64 processor

1 MIPS Technologies, Inc.

2-255 Contact MIPS Technologies, Inc. for the list
of Company ID assignments

ed by
6.19 Configuration Register (CP0 Register 16, Select 0)

Compliance Level:Required.

TheConfigregister specifies various configuration and capabilities information. Most of the fields in theConfigregister
are initialized by hardware during the Reset Exception process, or are constant. One field, K0, must be initializ
software in the reset exception handler.

Figure 6-16 shows the format of theConfig register;Table 6-20 describes theConfig register fields.

Figure 6-16 Config Register Format

31 30 16 15 14 13 12 10 9 7 6 3 2 0

M Impl BE AT AR MT 0 K0

Table 6-20 Config Register Field Descriptions

Fields Description Read/
Write

Reset State Compliance

Name Bits

M 31 Denotes that the Config1 register is implemented at a
select field value of 1. R 1 Required

Impl 30:16
This field is reserved for implementations. Refer to the
processor specification for the format and definition of
this field

Undefined Optional

BE 15

Indicates the endian mode in which the processor is
running:

R
Preset or

Externally
Set

Required

AT 14:13

Architecture type implemented by the processor:

R Preset Required

AR 12:10

Architecture revision level:

R Preset Required

Encoding Meaning

0 Little endian

1 Big endian

Encoding Meaning

0 MIPS32

1 MIPS64 with access only to 32-bit
compatibility segments

2 MIPS64 with access to all address segments

3 Reserved

Encoding Meaning

0 Revision 1

1-7 Reserved
MIPS32™ Architecture For Programmers Volume III, Revision 0.95 63

MT 9:7

MMU Type:

R Preset Required

K0 2:0 Kseg0 coherency algorithm. SeeTable 6-6 on page 44
for the encoding of this field. R/W Undefined Optional

0 6:3 Must be written as zero; returns zero on read. 0 0 Reserved

Table 6-20 Config Register Field Descriptions

Fields Description Read/
Write

Reset State Compliance

Name Bits

Encoding Meaning

0 None

1 Standard TLB

2 Standard BAT (see SectionA.1 on page
93)

3 Standard fixed mapping (see SectionA.2
on page 97)

4-7 Reserved
64 MIPS32™ Architecture For Programmers Volume III, Revision 0.95

e

, and the
6.20 Configuration Register 1 (CP0 Register 16, Select 1)

Compliance Level:Required.

TheConfig1register is an adjunct to theConfigregister and encodes additional capabilities information. All fields in th
Config1 register are read-only.

The Icache and Dcache configuration parameters include encodings for the number of sets per way, the line size
associativity. The total cache size for a cache is therefore:

Cache Size = Associativity * Line Size * Sets Per Way

If the line size is zero, there is no cache implemented.

Figure 6-17 shows the format of theConfig1 register;Table 6-21 describes theConfig1 register fields.

Figure 6-17 Config1 Register Format

31 30 25 24 22 21 19 18 16 15 13 12 10 9 7 6 5 4 3 2 1 0

M MMU Size - 1 IS IL IA DS DL DA C2 MD PC WR CA EP FP

Table 6-21 Config1 Register Field Descriptions

Fields Description Read/
Write

Reset State Compliance

Name Bits

M 31

This bit is reserved to indicate that aConfig2register is
present. If theConfig2register is not implemented, this
bit should read as a 0. If theConfig2 register is
implemented, this bit should read as a 1.

R Preset Required

MMU
Size - 1 30..25

Number of entries in the TLB minus one. The values 0
through 63 is this field correspond to 1 to 64 TLB
entries. The value zero is implied by ConfigMT having
a value of ‘none’.

R Preset Required

IS 24:22

Icache sets per way:

R Preset Required

Encoding Meaning

0 64

1 128

2 256

3 512

4 1024

5 2048

6 4096

7 Reserved
MIPS32™ Architecture For Programmers Volume III, Revision 0.95 65

IL 21:19

Icache line size:

R Preset Required

IA 18:16

Icache associativity:

R Preset Required

DS 15:13

Dcache sets per way:

R Preset Required

Table 6-21 Config1 Register Field Descriptions

Fields Description Read/
Write

Reset State Compliance

Name Bits

Encoding Meaning

0 No Icache present

1 4 bytes

2 8 bytes

3 16 bytes

4 32 bytes

5 64 bytes

6 128 bytes

7 Reserved

Encoding Meaning

0 Direct mapped

1 2-way

2 3-way

3 4-way

4 5-way

5 6-way

6 7-way

7 8-way

Encoding Meaning

0 64

1 128

2 256

3 512

4 1024

5 2048

6 4096

7 Reserved
66 MIPS32™ Architecture For Programmers Volume III, Revision 0.95

6.20 Configuration Register 1 (CP0 Register 16, Select 1)
DL 12:10

Dcache line size:

R Preset Required

DA 9:7

Dcache associativity:

R Preset Required

C2 6

Coprocessor 2 implemented:

MD 5

Used to denote MDMX ASE implemented on a
MIPS64 processor. Not used on a MIPS32 processor.

R 0 Required

PC 4

Performance Counter registers implemented:

R Preset Required

WR 3

Watch registers implemented:

R Preset Required

Table 6-21 Config1 Register Field Descriptions

Fields Description Read/
Write

Reset State Compliance

Name Bits

Encoding Meaning

0 No Dcache present

1 4 bytes

2 8 bytes

3 16 bytes

4 32 bytes

5 64 bytes

6 128 bytes

7 Reserved

Encoding Meaning

0 Direct mapped

1 2-way

2 3-way

3 4-way

4 5-way

5 6-way

6 7-way

7 8-way

Encoding Meaning

0 No coprocessor 2 implemented

1 Coprocessor 2 implements

Encoding Meaning

0 No performance counter registers
implemented

1 Performance counter registers implemented

Encoding Meaning

0 No watch registers implemented

1 Watch registers implemented
MIPS32™ Architecture For Programmers Volume III, Revision 0.95 67

CA 2

Code compression (MIPS16) implemented:

R Preset Required

EP 1

EJTAG implemented:

R Preset Required

FP 0

FPU implemented:

If an FPU is implemented, the capabilities of the FPU
can be read from the capability bits in theFIR CP1
register.

R Preset Required

Table 6-21 Config1 Register Field Descriptions

Fields Description Read/
Write

Reset State Compliance

Name Bits

Encoding Meaning

0 MIPS16 not implemented

1 MIPS16 implemented

Encoding Meaning

0 No EJTAG implemented

1 EJTAG implemented

Encoding Meaning

0 No FPU implemented

1 FPU implemented
68 MIPS32™ Architecture For Programmers Volume III, Revision 0.95

MIPS32™ Architecture For Programmers Volume III, Revision 0.95 69

6.21 Configuration Register 2 (CP0 Register 16, Select 2)

Compliance Level:Optional.

TheConfig2 register encodes level 2 and level 3 cache configurations. The exact format of these fields is under review
and will be resolved in the next release of this specification.

Figure 6-18 shows the format of theConfig2 register;Table 6-22 describes theConfig2 register fields.

Figure 6-18 Config2 Register Format

31 30 0

M TBS

Table 6-22 Config2 Register Field Descriptions

Fields Description Read/
Write

Reset State Compliance

Name Bits

M 31

This bit is reserved to indicate that a Config3 register is
present. If the Config3 register is not implemented, this
bit should read as a 0. If the Config3 register is
implemented, this bit should read as a 1.

R Preset Required

TBS 30..0

The specific definitions of the fields used to define the
configuration of the level 2 and level 3 caches, will be
specified in the future. Until those fields are defined,
this field should read as zero and be ignored on writes.

R Preset Optional

MIPS32™ Architecture For Programmers Volume III, Revision 0.95 70

6.22 Configuration Register 3 (CP0 Register 16, Select 3)

Compliance Level:Optional.

TheConfig3 register encodes additional capabilities. All fields in theConfig3 register are read-only.

Figure 6-19 shows the format of theConfig3 register;Table 6-23 describes theConfig3 register fields.

Figure 6-19 Config3 Register Format

31 30 2 1 0

M 0 SM TL

Table 6-23 Config3 Register Field Descriptions

Fields Description Read/
Write

Reset State Compliance

Name Bits

M 31
This bit is reserved to indicate that a Config4 register is
present. With the current architectural definition, this
bit should always read as a 0.

R Preset Required

0 30:2 Must be written as zeros; returns zeros on read 0 0 Reserved

SM 1

SmartMIPS™ ASE implemented. This bit indicates
whether the SmartMIPS ASE is implemented.

R Preset Optional

TL 0

Trace Logic implemented. This bit indicates whether
PC or data trace is implemented.

R Preset Optional

Encoding Meaning

0 SmartMIPS ASE is not implemented

1 SmartMIPS ASE is implemented

Encoding Meaning

0 Trace logic is not implemented

1 Trace logic is implemented

MIPS32™ Architecture For Programmers Volume III, Revision 0.95 71

6.23 Reserved for Implementations (CP0 Register 16, Selects 6 and 7)

Compliance Level:Optional: Implementation Dependent.

CP0 register 16, Selects 6 and 7 are reserved for implementation dependent use and is not defined by the architecture.
In order to use CP0 register 16, Selects 6 and 7, it is not necessary to implement CP0 register 16, Selects 2 through 5
only to set the M bit in each of these registers. That is, if theConfig2 andConfig3 registers are not needed for the
implementation, they need not be implemented just to provide the M bits.

MIPS32™ Architecture For Programmers Volume III, Revision 0.95 72

6.24 Load Linked Address (CP0 Register 17, Select 0)

Compliance Level:Optional.

TheLLAddrregister contains relevant bits of the physical address read by the most recent Load Linked instruction. This
register is implementation dependent and for diagnostic purposes only and serves no function during normal operation.

Figure 6-20 shows the format of theLLAddr register;Table 6-24 describes theLLAddr register fields.

Figure 6-20 LLAddr Register Format

31 0

PAddr

Table 6-24 LLAddr Register Field Descriptions

Fields Description Read/
Write

Reset State Compliance

Name Bits

PAddr 31..0

This field encodes the physical address read by the
most recent Load Linked instruction. The format of this
register is implementation dependent, and an
implementation may implement as many of the bits or
format the address in any way that it finds convenient.

R Undefined Optional

MIPS32™ Architecture For Programmers Volume III, Revision 0.95 73

6.25 WatchLo Register (CP0 Register 18)

Compliance Level:Optional.

TheWatchLoandWatchHiregisters together provide the interface to a watchpoint debug facility which initiates a watch
exception if an instruction or data access matches the address specified in the registers. As such, they duplicate some
functions of the EJTAG debug solution. Watch exceptions are taken only if the EXL and ERL bits are zero in theStatus
register. If either bit is a one, the WP bit is set in theCause register, and the watch exception is deferred until both the
EXL and ERL bits are zero.

An implementation may provide zero or more pairs of WatchLo and WatchHi registers, referencing them via the select
field of the MTC0/MFC0 instructions, and each pair of Watch registers may be dedicated to a particular type of reference
(e.g., instruction or data). Software may determine if at least one pair ofWatchLoandWatchHiregisters are implemented
via the WR bit of theConfig1 register. See the discussion of the M bit in theWatchHi register description below.

TheWatchLoregister specifies the base virtual address and the type of reference (instruction fetch, load, store) to match.
If a particular Watch register only supports a subset of the reference types, the unimplemented enables must be ignored
on write and return zero on read. Software may determine which enables are supported by a particular Watch register
pair by setting all three enables bits and reading them back to see which ones were actually set.

It is implementation dependent whether a data watch is triggered by a prefetch or a cache instruction whose address
matches the Watch register address match conditions.

Figure 6-21 shows the format of theWatchLo register;Table 6-25 describes theWatchLo register fields.

Figure 6-21 WatchLo Register Format

31 3 2 1 0

VAddr I R W

Table 6-25 WatchLo Register Field Descriptions

Fields Description Read/
Write

Reset State Compliance

Name Bits

VAddr 31..3
This field specifies the virtual address to match. Note
that this is a doubleword address, since bits [2:0] are
used to control the type of match.

R/W Undefined Required

I 2

If this bit is one, watch exceptions are enabled for
instruction fetches that match the address and are
actually issued by the processor (speculative
instructions never cause Watch exceptions).

If this bit is not implemented, writes to it must be
ignored, and reads must return zero.

R/W 0 Optional

R 1

If this bit is one, watch exceptions are enabled for loads
that match the address.

If this bit is not implemented, writes to it must be
ignored, and reads must return zero.

R/W 0 Optional

W 0

If this bit is one, watch exceptions are enabled for
stores that match the address.

If this bit is not implemented, writes to it must be
ignored, and reads must return zero.

R/W 0 Optional

atch
te some

e

select
rence

pecified
 ASID
sk
6.26 WatchHi Register (CP0 Register 19)

Compliance Level:Optional.

TheWatchLoandWatchHiregisters together provide the interface to a watchpoint debug facility which initiates a w
exception if an instruction or data access matches the address specified in the registers. As such, they duplica
functions of the EJTAG debug solution. Watch exceptions are taken only if the EXL and ERL bits are zero in theStatus
register. If either bit is a one, the WP bit is set in theCause register, and the watch exception is deferred until both th
EXL and ERL bits are zero.

An implementation may provide zero or more pairs of WatchLo and WatchHi registers, referencing them via the
field of the MTC0/MFC0 instructions, and each pair of Watch registers may be dedicated to a particular type of refe
(e.g., instruction or data). Software may determine if at least one pair ofWatchLoandWatchHiregisters are implemented
via the WR bit of theConfig1 register. If the M bit is one in theWatchHi register reference with a select field of ‘n’,
another WatchHi/WatchLo pair are implemented with a select field of ‘n+1’.

TheWatchHiregister contains information that qualifies the virtual address specified in theWatchLoregister: an ASID,
a G(lobal) bit, and an optional address mask. If the G bit is one, any virtual address reference that matches the s
address will cause a watch exception. If the G bit is a zero, only those virtual address references for which the
value in theWatchHiregister matches the ASID value in theEntryHi register cause a watch exception. The optional ma
field provides address masking to qualify the address specified inWatchLo.

Figure 6-22 shows the format of theWatchHi register;Table 6-26 describes theWatchHi register fields.

Figure 6-22 WatchHi Register Format

31 30 29 24 23 16 15 12 11 3 2 0

M G 0 ASID 0 Mask 0

Table 6-26 WatchHi Register Field Descriptions

Fields Description Read/
Write

Reset State Compliance

Name Bits

M 31
If this bit is one, another pair ofWatchHi/WatchLo
registers is implemented at a MTC0 or MFC0 select
field value of ‘n+1’

R Preset Required

G 30

If this bit is one, any address that matches that specified
in theWatchLoregister will cause a watch exception. If
this bit is zero, the ASID field of theWatchHi register
must match the ASID field of theEntryHi register to
cause a watch exception.

R/W Undefined Required

ASID 23..16
ASID value which is required to match that in the
EntryHi register if the G bit is zero in theWatchHi
register.

R/W Undefined Required

Mask 11..3

Optional bit mask that qualifies the address in the
WatchLoregister. If this field is implemented, any bit in
this field that is a one inhibits the corresponding
address bit from participating in the address match.

If this field is not implemented, writes to it must be
ignored, and reads must return zero.

Software may determine how many mask bits are
implemented by writing ones the this field and then
reading back the result.

R/W Undefined Optional
MIPS32™ Architecture For Programmers Volume III, Revision 0.95 74

6.26 WatchHi Register (CP0 Register 19)
0
29..24,
15..12,

2..0
Must be written as zero; returns zero on read. 0 0 Reserved

Table 6-26 WatchHi Register Field Descriptions

Fields Description Read/
Write

Reset State Compliance

Name Bits
MIPS32™ Architecture For Programmers Volume III, Revision 0.95 75

MIPS32™ Architecture For Programmers Volume III, Revision 0.95 76

6.27 Reserved for Implementations (CP0 Register 22, all Select values)

Compliance Level:Optional: Implementation Dependent.

CP0 register 22 is reserved for implementation dependent use and is not defined by the architecture.

MIPS32™ Architecture For Programmers Volume III, Revision 0.95 77

6.28 Debug Register (CP0 Register 23)

Compliance Level:Optional.

TheDebug register is part of the EJTAG specification. Refer to that specification for the format and description of this
register.

MIPS32™ Architecture For Programmers Volume III, Revision 0.95 78

6.29 DEPC Register (CP0 Register 24)

Compliance Level:Optional.

TheDEPC register is part of the EJTAG specification. Refer to that specification for the format and description of this
register.

All bits of theDEPC register are significant and must be writable.

6.29.1 Special Handling of the DEPC Register in Processors That Implement the MIPS16 ASE

In processors that implement the MIPS16 ASE, a read of theDEPCregister (via MFC0) returns the following value in
the destination GPR:

GPR[rt] ← RestartPC 31..1 || ISAMode

That is, the upper 31 bits of the restart PC are combined with the ISA Mode bit and written to the GPR.

Similarly, a write to theDEPCregister (via MTC0) takes the value from the GPR and distributes that value to the restart
PC and theISA Mode bit, as follows

RestartPC ← GPR[rt] 31..1 || 0
ISAMode ← GPR[rt] 0

That is, the upper 31 bits of the GPR are written to the upper 31 bits of the restart PC, and the lower bit of the restart PC
is cleared. TheISA Mode bit is loaded from the lower bit of the GPR.

o count
 counter
ility,

d set of
ts once
ounter

5 to set
rupt

ol
w

tain the
 Control
ounter
ers

ter.
6.30 Performance Counter Register (CP0 Register 25)

Compliance Level:Recommended.

The MIPS32 Architecture supports implementation dependent performance counters that provide the capability t
events or cycles for use in performance analysis. If performance counters are implemented, each performance
consists of a pair of registers: a 32-bit control register and a 32-bit counter register. To provide additional capab
multiple performance counters may be implemented.

Performance counters can be configured to count implementation dependent events or cycles under a specifie
conditions that are determined by the control register for the performance counter. The counter register incremen
for each enabled event. When bit 31 of the counter register is a one (the counter overflows), the performance c
optionally requests an interrupt that is combined in an implementation dependent way with hardware interrupt
interrupt bit IP(7) in theCauseregister. Counting continues after a counter register overflow whether or not an inter
is requested or taken.

Each performance counter is mapped into even-odd select values of thePerfCntregister: Even selects access the contr
register and odd selects access the counter register.Table 6-27shows an example of two performance counters and ho
they map into the select values of thePerfCnt register.

More or less than two performance counters are also possible, extending the select field in the obvious way to ob
desired number of performance counters. Software may determine if at least one pair of Performance Counter
and Counter registers is implemented via the PC bit in the Config1 register. If the M bit is one in the Performance C
Control register referenced via a select field of ‘n’, another pair of Performance Counter Control and Counter regist
is implemented at the select values of ‘n+2’ and ‘n+3’.

The Control Register associated with each performance counter controls the behavior of the performance coun
Figure 6-23 shows the format of the Performance Counter Control Register;Table 6-28 describes the Performance
Counter Control Register fields.

Table 6-27 Example Performance Counter Usage of the PerfCnt CP0 Register

Performance
Counter

PerfCnt
Register Select

Value

PerfCnt Register Usage

0
PerfCnt, Select 0 Control Register 0

PerfCnt, Select 1 Counter Register 0

1
PerfCnt, Select 2 Control Register 1

PerfCnt, Select 3 Counter Register 1

Figure 6-23 Performance Counter Control Register Format

31 30 11 10 5 4 3 2 1 0

M 0 Event IE U S K EXL

Table 6-28 Performance Counter Control Register Field Descriptions

Fields Description Read/
Write

Reset State Compliance

Name Bits

M 31
If this bit is a one, another pair of Performance Counter
Control and Counter registers is implemented at a
MTC0 or MFC0 select field value of ‘n+2’ and ‘n+3’.

R Preset Required
MIPS32™ Architecture For Programmers Volume III, Revision 0.95 79

0 30..11 Must be written as zero; returns zero on read 0 0 Reserved

Event 10..5

Selects the event to be counted by the corresponding
Counter Register. The list of events is implementation
dependent, but typical events include cycles,
instructions, memory reference instructions, branch
instructions, cache and TLB misses, etc.

Implementations that support multiple performance
counters allow ratios of events, e.g., cache miss ratios if
cache miss and memory references are selected as the
events in two counters

R/W Undefined Required

IE 4

Interrupt Enable. Enables the interrupt request when
the corresponding counter overflows (bit 31 of the
counter is one).

Note that this bit simply enables the interrupt request.
The actual interrupt is still gated by the normal
interrupt masks and enable in theStatus register. R/W 0 Required

U 3

Enables event counting in User Mode. Refer to Section
3.4 on page 9 for the conditions under which the
processor is operating in User Mode.

R/W Undefined Required

S 2

Enables event counting in Supervisor Mode (for those
processors that implement Supervisor Mode). Refer to
Section3.3 on page 9for the conditions under which
the processor is operating in Supervisor mode.

If the processor does not implement Supervisor Mode,
this bit must be ignored on write and return zero on
read. R/W Undefined Required

K 1

Enables event counting in Kernel Mode. Unlike the
usual definition of Kernel Mode as described in Section
3.2 on page 9, this bit enables event counting only
when the EXL and ERL bits in theStatus register are
zero.

R/W Undefined Required

Table 6-28 Performance Counter Control Register Field Descriptions

Fields Description Read/
Write

Reset State Compliance

Name Bits

Encoding Meaning

0 Performance counter interrupt disabled

1 Performance counter interrupt enabled

Encoding Meaning

0 Disable event counting in User Mode

1 Enable event counting in User Mode

Encoding Meaning

0 Disable event counting in Supervisor Mode

1 Enable event counting in Supervisor Mode

Encoding Meaning

0 Disable event counting in Kernel Mode

1 Enable event counting in Kernel Mode
80 MIPS32™ Architecture For Programmers Volume III, Revision 0.95

6.30 Performance Counter Register (CP0 Register 25)

er

The Counter Register associated with each performance counter increments once for each enabled event.Figure 6-24
shows the format of the Performance Counter Counter Register;Table 6-29describes the Performance Counter Count
Register fields.

EXL 0

Enables event counting when the EXL bit in theStatus
register is one and the ERL bit in theStatus register is
zero.

Counting is never enabled when the ERL bit in the
Status register or the DM bit in theDebug register is
one.

R/W Undefined Required

Figure 6-24 Performance Counter Counter Register Format

31 0

Event Count

Table 6-29 Performance Counter Counter Register Field Descriptions

Fields Description Read/
Write

Reset State Compliance

Name Bits

Event
Count 31..0

Increments once for each event that is enabled by the
corresponding Control Register. When bit 31 is one, an
interrupt request is made if the IE bit in the Control
Register is one.

R/W Undefined Required

Table 6-28 Performance Counter Control Register Field Descriptions

Fields Description Read/
Write

Reset State Compliance

Name Bits

Encoding Meaning

0 Disable event counting while EXL = 1,
ERL = 0

1 Enable event counting while EXL = 1,
ERL = 0
MIPS32™ Architecture For Programmers Volume III, Revision 0.95 81

MIPS32™ Architecture For Programmers Volume III, Revision 0.95 82

6.31 ErrCtl Register (CP0 Register 26, Select 0)

Compliance Level:Optional.

TheErrCtl register provides an implementation dependent diagnostic interface with the error detection mechanisms
implemented by the processor. This register has been used in previous implementations to read and write parity or ECC
information to and from the primary or secondary cache data arrays in conjunction with specific encodings of the Cache
instruction or other implementation-dependent method. The exact format of the ErrCtl register is implementation
dependent and not specified by the architecture. Refer to the processor specification for the format of this register and a
description of the fields.

MIPS32™ Architecture For Programmers Volume III, Revision 0.95 83

6.32 CacheErr Register (CP0 Register 27, Select 0)

Compliance Level:Optional.

The CacheErr register provides an interface with the cache error detection logic that may be implemented by a processor.

The exact format of theCacheErr register is implementation dependent and not specified by the architecture. Refer to
the processor specification for the format of this register and a description of the fields.

MIPS32™ Architecture For Programmers Volume III, Revision 0.95 84

6.33 TagLo Register (CP0 Register 28, Select 0, 2)

Compliance Level:Required if a cache is implemented; Optionalotherwise.

TheTagLo andTagHi registers are read/write registers that act as the interface to the cache tag array. The Index Store
Tag and Index Load Tag operations of the CACHE instruction use theTagLo andTagHi registers as the source or sink
of tag information, respectively.

The exact format of theTagLoandTagHiregisters is implementation dependent. Refer to the processor specification for
the format of this register and a description of the fields.

However, software must be able to write zeros into theTagLoandTagHiregisters and then use the Index Store Tag cache
operation to initialize the cache tags to a valid state at powerup.

It is implementation dependent whether there is a singleTagLo register that acts as the interface to all caches, or a
dedicatedTagLoregister for each cache. If multipleTagLoregisters are implemented, they occupy the even select values
for this register encoding, with select 0 addressing the instruction cache and select 2 addressing the data cache. Whether
individualTagLoregisters are implemented or not for each cache, processors must accept a write of zero to select 0 and
select 2 ofTagLo as part of the software process of initializing the cache tags at powerup.

MIPS32™ Architecture For Programmers Volume III, Revision 0.95 85

6.34 DataLo Register (CP0 Register 28, Select 1, 3)

Compliance Level:Optional.

TheDataLoandDataHi registers are read-only registers that act as the interface to the cache data array and are intended
for diagnostic operation only. The Index Load Tag operation of the CACHE instruction reads the corresponding data
values into theDataLo andDataHi registers.

The exact format and operation of theDataLoandDataHi registers is implementation dependent. Refer to the processor
specification for the format of this register and a description of the fields.

It is implementation dependent whether there is a singleDataLo register that acts as the interface to all caches, or a
dedicatedDataLo register for each cache. If multipleDataLo registers are implemented, they occupy the odd select
values for this register encoding, with select 1 addressing the instruction cache and select 3 addressing the data cache.

MIPS32™ Architecture For Programmers Volume III, Revision 0.95 86

6.35 TagHi Register (CP0 Register 29, Select 0, 2)

Compliance Level:Required if a cache is implemented; Optionalotherwise.

TheTagLo andTagHi registers are read/write registers that act as the interface to the cache tag array. The Index Store
Tag and Index Load Tag operations of the CACHE instruction use theTagLo andTagHi registers as the source or sink
of tag information, respectively.

The exact format of theTagLoandTagHiregisters is implementation dependent. Refer to the processor specification for
the format of this register and a description of the fields. However, software must be able to write zeros into theTagLo
andTagHiregisters and the use the Index Store Tag cache operation to initialize the cache tags to a valid state at powerup.

It is implementation dependent whether there is a singleTagHi register that acts as the interface to all caches, or a
dedicatedTagHiregister for each cache. If multipleTagHiregisters are implemented, they occupy the even select values
for this register encoding, with select 0 addressing the instruction cache and select 2 addressing the data cache. Whether
individualTagHi registers are implemented or not for each cache, processors must accept a write of zero to select 0 and
select 2 ofTagHi as part of the software process of initializing the cache tags at powerup.

MIPS32™ Architecture For Programmers Volume III, Revision 0.95 87

6.36 DataHi Register (CP0 Register 29, Select 1, 3)

Compliance Level:Optional.

TheDataLoandDataHi registers are read-only registers that act as the interface to the cache data array and are intended
for diagnostic operation only. The Index Load Tag operation of the CACHE instruction reads the corresponding data
values into theDataLo andDataHi registers.

The exact format and operation of theDataLoandDataHi registers is implementation dependent. Refer to the processor
specification for the format of this register and a description of the fields.

MIPS32™ Architecture For Programmers Volume III, Revision 0.95 88

6.37 ErrorEPC (CP0 Register 30, Select 0)

Compliance Level:Required.

TheErrorEPC register is a read-write register, similar to theEPC register, except thatErrorEPC is used on error
exceptions. All bits of theErrorEPC register are significant and must be writable. It is also used to store the program
counter on Reset, Soft Reset, Nonmaskable Interrupt (NMI), and Cache Error exceptions.

TheErrorEPC register contains the virtual address at which instruction processing can resume after servicing an error.
ErrorEPC contains either:

• the virtual address of the instruction that was the direct cause of the exception, or

• the virtual address of the immediately preceding branch or jump instruction when the error causing instruction is in a
branch delay slot.

Unlike theEPC register, there is no corresponding branch delay slot indication for theErrorEPC register.

Figure 6-25 shows the format of theErrorEPC register;Table 6-30 describes theErrorEPC register fields.

6.37.1 Special Handling of the ErrorEPC Register in Processors That Implement the MIPS16 ASE

In processors that implement the MIPS16 ASE, a read of theErrorEPC register (via MFC0) returns the following value
in the destination GPR:

GPR[rt] ← RestartPC 31..1 || ISAMode

That is, the upper 31 bits of the restart PC are combined with theISA Mode bit and written to the GPR.

Similarly, a write to theErrorEPC register (via MTC0) takes the value from the GPR and distributes that value to the
restart PC and theISA Mode bit, as follows

RestartPC ← GPR[rt] 31..1 || 0
ISAMode ← GPR[rt] 0

That is, the upper 31 bits of the GPR are written to the upper 31 bits of the restart PC, and the lower bit of the restart PC
is cleared. TheISA Mode bit is loaded from the lower bit of the GPR.

Figure 6-25 ErrorEPC Register Format

31 0

ErrorEPC

Table 6-30 ErrorEPC Register Field Descriptions

Fields Description Read/
Write

Reset State Compliance

Name Bits

ErrorEPC 31..0 Error Exception Program Counter R/W Undefined Required

f this
6.38 DESAVE Register (CP0 Register 31)

Compliance Level:Optional.

TheDESAVEregister is part of the EJTAG specification. Refer to that specification for the format and description o
register.
MIPS32™ Architecture For Programmers Volume III, Revision 0.95 89

90 MIPS32™ Architecture For Programmers Volume III, Revision 0.95

rocessor,
number

ble to a
l

 the first
ks such
ssor vs.

ice of
tion of

mmon
e which
. An

inst the

n one,
eason
Chapter 7

CP0 Hazards

7.1 Introduction

Because resources controlled via Coprocessor 0 affect the operation of various pipeline stages of a MIPS32 p
manipulation of these resources may produce results that are not detectable by subsequent instructions for some
of execution cycles. When no hardware interlock exists between one instruction that causes an effect that is visi
second instruction, aCP0 hazard exists. Some MIPS implementations have placed the entire burden on the kerne
programmer to pad the instruction stream in such a way that the second instruction is spaced far enough from
that the effects of the first are seen by the second. Other MIPS implementations have added full hardware interloc
that the kernel programmer need not pad. The trade-off is between kernel software changes for each new proce
more complex hardware interlocks required in the processor.

The MIPS32 Architecture does not dictate the solution that is required for a compatible implementation. The cho
implementation ranges from full hardware interlocks to full dependence on software padding, to some combina
the two. For an implementation choice that relies on software padding,Table 7-1lists the “typical” spacing required to
allow the consumer to eliminate the hazard. The “typical” values shown in this table represent spacing that is in co
use by operating systems today. An implementation which requires less spacing to clear the hazard (including on
has full hardware interlocking) should operate correctly with and operating system which uses this hazard table
implementation which requires more spacing to clear the hazard incurs the burden of validating kernel code aga
new hazard requirements.

Note that, for superscalar MIPS implementations, the number of instructions issued per cycle may be greater tha
and thus that the duration of the hazard in instructions may be greater than the duration in cycles. It is for this r
that MIPS32 defines the SSNOP instruction to convert instruction issues to cycles in a superscalar design.

Table 7-1 “Typical” CP0 Hazard Spacing

Producer → Consumer
Hazard

On

“Typical”
Spacing
(Cycles)

TLBWR, TLBWI →
TLBP, TLBR TLB entry 3

Load/store using new TLB entry TLB entry 3

Instruction fetch using new TLB
entry

TLB entry 5

MTCO Status[CU] → Coprocessor instruction needs CU
set

Status[CU] 4

MTC0 Status → ERET Status 3

MTC0 Status[IE] → Interrupted Instruction Status[IE] 3

TLBR → MFC0 EntryHi
MFC0 PageMask

EntryHi,
PageMask

3

MTC0 EntryLo0
MTC0 EntryLo1
MTC0 Entry Hi
MTC0 PageMask
MTC0 Index

→
TLBP
TLBR
TLBWI
TLBWR

EntryLo0
EntryLo1
EntryHi
PageMask
Index

2

MIPS32™ Architecture For Programmers Volume III, Revision 0.95 91

Chapter 7 CP0 Hazards
TLBP → MFC0 Index Index 2

MTC0 EPC → ERET EPC 2

Producer → Consumer
Hazard

On

“Typical”
Spacing
(Cycles)
92 MIPS32™ Architecture For Programmers Volume III, Revision 0.95

r

ment
by the

 the low

e Status

re the
ception,
Appendix A

Alternative MMU Organizations

The main body of this specification describes the TLB-based MMU organization. This appendix describes othe
potential MMU organizations.

A.1 Fixed Mapping MMU

As an alternative to the full TLB-based MMU, the MIPS32 Architecture supports a lightweight memory manage
mechanism with fixed virtual-to-physical address translation, and no memory protection beyond what is provided
address error checks required of all MMUs. This may be useful for those applications which do not require the
capabilities of a full TLB-based MMU.

A.1.1 Fixed Address Translation

Address translation using the Fixed Mapping MMU is done as follows:

• Kseg0 and Kseg1 addresses are translated in an identical manner to the TLB-based MMU: they both map to
512MB of physical memory.

• Useg/Suseg/Kuseg addresses are mapped by adding 1GB to the virtual address when the ERL bit is zero in th
register, and are mapped using an identity mapping when the ERL bit is one in the Status register.

• Sseg/Ksseg/Kseg2/Kseg3 addresses are mapped using an identity mapping.

Table 7-2lists all mappings from virtual to physical addresses. Note that address error checking is still done befo
translation process. Therefore, an attempt to reference kseg0 from User Mode still results in an address error ex
just as it does with a TLB-based MMU.

Table 7-2 Physical Address Generation from Virtual Addresses

Segment
Name

Virtual Address Generates Physical Address

StatusERL = 0 StatusERL = 1

useg

suseg

kuseg

16#0000 0000

through

16#7FFF FFFF

16#4000 0000

through

16#BFFF FFFF

16#0000 0000

through

16#7FFF FFFF

kseg0

16#8000 0000

through

16#9FFF FFFF

16#0000 0000

through

16#1FFF FFFF

kseg1

16#A000 0000

through

16#BFFF FFFF

16#0000 0000

through

16#16#1FFF FFFF

sseg

ksseg

kseg2

16#C000 0000

through

16#DFFF FFFF

16#C000 0000

through

16#DFFF FFFF
MIPS32™ Architecture For Programmers Volume III, Revision 0.95 93

Appendix A Alternative MMU Organizations
Note that this mapping means that physical addresses16#2000 0000 through16#3FFF FFFF are inaccessible when
the ERL bit is off in theStatus register, and physical addresses16#8000 0000 through16#BFFF FFFF are
inaccessible when the ERL bit is on in theStatus register.

Figure 7-1 shows the memory mapping when the ERL bit in theStatus register is zero;Figure 7-2 shows the memory
mapping when the ERL bit is one.

kseg3

16#E000 0000

through

16#FFFF FFFF

16#E000 0000

through

16#FFFF FFFF

Table 7-2 Physical Address Generation from Virtual Addresses

Segment
Name

Virtual Address Generates Physical Address

StatusERL = 0 StatusERL = 1
94 MIPS32™ Architecture For Programmers Volume III, Revision 0.95

A.1 Fixed Mapping MMU
Figure 7-1 Memory Mapping when ERL = 0

16#FFFF FFFF

kseg3 kseg3 Mapped

16#FFFF FFFF

16#E000 0000 16#E000 0000

16#DFFF FFFF kseg2

ksseg

sseg

kseg2

ksseg

sseg Mapped

16#DFFF FFFF

16#C000 0000 16#C000 0000

16#BFFF FFFF

kseg1

kuseg

suseg

useg

Mapped

16#BFFF FFFF

16#A000 0000

16#9FFF FFFF

kseg0

16#8000 0000

16#7FFF FFFF

kuseg

suseg

useg

16#4000 0000

Unmapped

16#3FFF FFFF

16#2000 0000

kseg0

kseg1

Mapped

16#1FFF FFFF

16#0000 0000 16#0000 0000
MIPS32™ Architecture For Programmers Volume III, Revision 0.95 95

Appendix A Alternative MMU Organizations

nism is

ol the
Status
eld.

e

A.1.2 Cacheability Attributes

Because the TLB provided the cacheability attributes for the kuseg, kseg2, and kseg3 segments, some mecha
required to replace this capability when the fixed mapping MMU is used. Two additional fields are added to theConfig
register whose encoding is identical to that of the K0 field. These additions are the K23 and KU fields which contr
cacheability of the kseg2/kseg3 and the kuseg segments, respectively. Note that when the ERL bit is on in the
register, kuseg references are always treated as uncacheable references, independent of the value of the KU fi

The cacheability attributes for kseg0 and kseg1 are provided in the same manner as for a TLB-based MMU: th
cacheability attribute for kseg0 comes from the K0 field ofConfig, and references to kseg1 are always uncached.

Figure 7-3 shows the format of the additions to theConfig register;Table 7-3 describes the newConfig register fields.

Figure 7-2 Memory Mapping when ERL = 1

16#FFFF FFFF

kseg3
kseg3

Mapped

16#FFFF FFFF

16#E000 0000 16#E000 0000

16#DFFF FFFF
kseg2

ksseg

sseg

kseg2

ksseg

sseg

Mapped

16#DFFF FFFF

16#C000 0000 16#C000 0000

16#BFFF FFFF

kseg1

Unmapped

16#BFFF FFFF

16#A000 0000

16#9FFF FFFF

kseg0

16#8000 0000 16#8000 0000

16#7FFF FFFF

kuseg

suseg

useg

kuseg

suseg

useg

Mapped

16#7FFF FFFF

kseg0

kseg1

Mapped16#0000 0000 16#0000 0000
96 MIPS32™ Architecture For Programmers Volume III, Revision 0.95

A.2 Block Address Translation

gister

uired

ction

he
ism has

nces.

entries
ectively.
A.1.3 Changes to the CP0 Register Interface

Relative to the TLB-based address translation mechanism, the following changes are necessary to the CP0 re
interface:

• The Index, Random, EntryLo0, EntryLo1, Context, PageMask, Wired, and EntryHi registers are no longer req
and may be removed.

• The TLBWR, TLBWI, TLBP, and TLBR instructions are no longer required and should cause a Reserved Instru
Exception.

A.2 Block Address Translation

This section describes the architecture for a block address translation (BAT) mechanism that reuses much of t
hardware and software interface that exists for a TLB-Based virtual address translation mechanism. This mechan
the following features:

• It preserves as much as possible of the TLB-Based interface, both in hardware and software.

• It provides independent base-and-bounds checking and relocation for instruction references and data refere

• It provides optional support for base-and-bounds relocation of kseg2 and kseg3 virtual address regions.

A.2.1 BAT Organization

The BAT is an indexed structure which is used to translate virtual addresses. It contains pairs of instruction/data
which provide the base-and-bounds checking and relocation for instruction references and data references, resp
Each entry contains a page-aligned bounds virtual page number, a base page frame number (whose width is
implementation dependent), a cache coherence field (C), a dirty (D) bit, and a valid (V) bit.Figure 7-4shows the logical
arrangement of a BAT entry.

Figure 7-3 Config Register Additions

31 30 28 27 25 24 16 15 14 13 12 10 9 7 6 3 2 0

M K23 KU 0 BE AT AR MT 0 K0

Table 7-3 Config Register Field Descriptions

Fields Description Read/
Write

Reset State Compliance

Name Bits

K23 30:28 Kseg2/Kseg3 coherency algorithm. SeeTable 6-6 on
page 44 for the encoding of this field. R/W Undefined Optional

KU 27:25 Kuseg coherency algorithm when StatusERL is zero.
SeeTable 6-6 on page 44for the encoding of this field. R/W Undefined Optional
MIPS32™ Architecture For Programmers Volume III, Revision 0.95 97

Appendix A Alternative MMU Organizations

the needs
ndent
3 into a
ing at

s region
Invalid
a TLB
ded to
The BAT is indexed by the reference type and the address region to be checked as shown inTable 7-4.

Entries 0 and 1 are required. Entries 2, 3, 4 and 5 are optional and may be implemented as necessary to address
of the particular implementation. If entries for kseg2 and kseg3 are not implemented, it is implementation-depe
how, if at all, these address regions are translated. One alternative is to combine the mapping for kseg2 and kseg
single pair of instruction/data entries. Software may determine how many BAT entries are implemented by look
the MMU Size field of theConfig1 register.

A.2.2 Address Translation

When a virtual address translation is requested, the BAT entry that is appropriate to the reference type and addres
is read. If the virtual address is greater than the selected bounds address, or if the valid bit is off in the entry, a TLB
exception of the appropriate reference type is initiated. If the reference is a store and the D bit is off in the entry,
Modified exception is initiated. Otherwise, the base PFN from the selected entry, shifted to align with bit 12, is ad
the virtual address to form the physical address. The BAT process can be described as follows:

Figure 7-4 Contents of a BAT Entry

BoundsVPN

BasePFN C D V

Table 7-4 BAT Entry Assignments

Entry Index Reference
Type

Address Region

0 Instruction
useg/kuseg

1 Data

2 Instruction kseg2

(or kseg2 and kseg3)3 Data

4 Instruction
kseg3

5 Data
98 MIPS32™ Architecture For Programmers Volume III, Revision 0.95

A.2 Block Address Translation

value

gister

s the

ntry
i ← SelectIndex (reftype, va)
bounds ← BAT[i] BoundsVPN || 1 12

pfn ← BAT[i] BasePFN
c ← BAT[i] C
d ← BAT[i] D
v ← BAT[i] V
if (va > bounds) or (v = 0) then

InitiateTLBInvalidException(reftype)
endif
if (d = 0) and (reftype = store) then

InitiateTLBModifiedException()
endif
pa ← va + (pfn || 0 12)

Making all addresses out-of-bounds can only be done by clearing the valid bit in the BAT entry. Setting the bounds
to zero leaves the first virtual page mapped.

A.2.3 Changes to the CP0 Register Interface

Relative to the TLB-based address translation mechanism, the following changes are necessary to the CP0 re
interface:

• TheIndex register is used to index the BAT entry to be read or written by the TLBWI and TLBR instructions.

• TheEntryHi register is the interface to the BoundsVPN field in the BAT entry.

• TheEntryLo0 register is the interface to the BasePFN and C, D, and V fields of the BAT entry. The register ha
same format as for a TLB-based MMU.

• TheRandom, EntryLo1, Context, PageMask, andWired registers are eliminated. The effects of a read or write to
these registers isUNDEFINED .

• The TLBP and TLBWR instructions are unnecessary. The TLBWI and TLBR instructions reference the BAT e
whose index is contained in theIndex register. The effects of executing a TLBP or TLBWR areUNDEFINED , but
processors should prefer a Reserved Instruction Exception.
MIPS32™ Architecture For Programmers Volume III, Revision 0.95 99

Appendix A Alternative MMU Organizations
100 MIPS32™ Architecture For Programmers Volume III, Revision 0.95

MIPS32™ Architecture For Programmers Volume III, Revision 0.95 101

Appendix B

Revision History

Revision Date Description

0.92 January 20, 2001 Internal review copy of reorganized and updated architecture documentation.

0.95 March 12, 2001 Clean up document for external review release

	MIPS32™ Architecture For Programmers Volume�III: The MIPS32™ Privileged Resource Architecture
	Table of Contents
	List of Figures
	List of Tables
	About This Book
	1.1� Typographical Conventions
	1.1.1� Italic Text
	1.1.2� Bold Text
	1.1.3� Courier Text

	1.2� UNPREDICTABLE and UNDEFINED
	1.2.1� UNPREDICTABLE
	1.2.2� UNDEFINED

	1.3� Special Symbols in Pseudocode Notation
	1.4� For More Information

	The MIPS32 Privileged Resource Architecture
	2.1� Introduction
	2.2� The MIPS Coprocessor Model
	2.2.1� CP0 - The System Coprocessor
	2.2.2� CP0 Registers

	MIPS32 Operating Modes
	3.1� Debug Mode
	3.2� Kernel Mode
	3.3� Supervisor Mode
	3.4� User Mode

	Virtual Memory
	4.1� Terminology
	4.1.1� Address Space
	4.1.2� Segment and Segment Size
	4.1.3� Physical Address Size (PABITS)

	4.2� Virtual Address Spaces
	4.3� Compliance
	4.4� Access Control as a Function of Address and Operating Mode
	4.5� Address Translation and Cache Coherency Attributes for the kseg0 and kseg1 Segments
	4.6� Address Translation for the kuseg Segment when StatusERL = 1
	4.7� Special Behavior for the kseg3 Segment when DebugDM = 1
	4.8� TLB-Based Virtual Address Translation
	4.8.1� Address Space Identifiers (ASID)
	4.8.2� TLB Organization
	4.8.3� Address Translation

	Interrupts and Exceptions
	5.1� Interrupts
	5.2� Exceptions
	5.2.1� Exception Vector Locations
	5.2.2� General Exception Processing
	5.2.3� EJTAG Debug Exception
	5.2.4� Reset Exception
	5.2.5� Soft Reset Exception
	5.2.6� Non Maskable Interrupt (NMI) Exception
	5.2.7� Machine Check Exception
	5.2.8� Address Error Exception
	5.2.9� TLB Refill Exception
	5.2.10� TLB Invalid Exception
	5.2.11� TLB Modified Exception
	5.2.12� Cache Error Exception
	5.2.13� Bus Error Exception
	5.2.14� Integer Overflow Exception
	5.2.15� Trap Exception
	5.2.16� System Call Exception
	5.2.17� Breakpoint Exception
	5.2.18� Reserved Instruction Exception
	5.2.19� Coprocessor Unusable Exception
	5.2.20� Floating Point Exception
	5.2.21� Coprocessor 2 Exception
	5.2.22� Watch Exception
	5.2.23� Interrupt Exception

	Coprocessor 0 Registers
	6.1� Coprocessor 0 Register Summary
	6.2� Notation
	6.3� Index Register (CP0 Register 0, Select 0)
	6.4� Random Register (CP0 Register 1, Select 0)
	6.5� EntryLo0, EntryLo1 (CP0 Registers 2 and 3, Select 0)
	6.6� Context Register (CP0 Register 4, Select 0)
	6.7� PageMask Register (CP0 Register 5, Select 0)
	6.8� Wired Register (CP0 Register 6, Select 0)
	6.9� BadVAddr Register (CP0 Register 8, Select 0)
	6.10� Count Register (CP0 Register 9, Select 0)
	6.11� Reserved for Implementations (CP0 Register 9, Selects 6 and 7)
	6.12� EntryHi Register (CP0 Register 10, Select 0)
	6.13� Compare Register (CP0 Register 11, Select 0)
	6.14� Reserved for Implementations (CP0 Register 11, Selects 6 and 7)
	6.15� Status Register (CP Register 12, Select 0)
	6.16� Cause Register (CP0 Register 13, Select 0)
	6.17� Exception Program Counter (CP0 Register 14, Select 0)
	6.17.1� Special Handling of the EPC Register in Processors That Implement the MIPS16 ASE

	6.18� Processor Identification (CP0 Register 15, Select 0)
	6.19� Configuration Register (CP0 Register 16, Select 0)
	6.20� Configuration Register 1 (CP0 Register 16, Select 1)
	6.21� Configuration Register 2 (CP0 Register 16, Select 2)
	6.22� Configuration Register 3 (CP0 Register 16, Select 3)
	6.23� Reserved for Implementations (CP0 Register 16, Selects 6 and 7)
	6.24� Load Linked Address (CP0 Register 17, Select 0)
	6.25� WatchLo Register (CP0 Register 18)
	6.26� WatchHi Register (CP0 Register 19)
	6.27� Reserved for Implementations (CP0 Register 22, all Select values)
	6.28� Debug Register (CP0 Register 23)
	6.29� DEPC Register (CP0 Register 24)
	6.29.1� Special Handling of the DEPC Register in Processors That Implement the MIPS16 ASE

	6.30� Performance Counter Register (CP0 Register 25)
	6.31� ErrCtl Register (CP0 Register 26, Select 0)
	6.32� CacheErr Register (CP0 Register 27, Select 0)
	6.33� TagLo Register (CP0 Register 28, Select 0, 2)
	6.34� DataLo Register (CP0 Register 28, Select 1, 3)
	6.35� TagHi Register (CP0 Register 29, Select 0, 2)
	6.36� DataHi Register (CP0 Register 29, Select 1, 3)
	6.37� ErrorEPC (CP0 Register 30, Select 0)
	6.37.1� Special Handling of the ErrorEPC Register in Processors That Implement the MIPS16 ASE

	6.38� DESAVE Register (CP0 Register 31)

	CP0 Hazards
	7.1� Introduction

	Alternative MMU Organizations
	A.1� Fixed Mapping MMU
	A.1.1� Fixed Address Translation
	A.1.2� Cacheability Attributes
	A.1.3� Changes to the CP0 Register Interface

	A.2� Block Address Translation
	A.2.1� BAT Organization
	A.2.2� Address Translation
	A.2.3� Changes to the CP0 Register Interface

	Revision History

