MII—P S

TECHNOLOGIES

MIPS32™ Architecture For Programmers
Volume lll: The MIPS32™ Privileged Resource
Architecture

Document Number: MD0O0090
Revision 0.95
March 12, 2001

MIPS Technologies, Inc.
1225 Charleston Road
Mountain View, CA 94043-1353

Copyright © 2001 MIPS Technologies, Inc. All rights reserved.
Unpublished rights reserved under the Copyright Laws of the United States of America.

This document contains information that is proprietary to MIPS Technologies, Inc. (“MIPS Technologies™). Any
copying, modifyingor use of this information (in whole or in part) which is not expressly permitted in writing by MIPS
Technologies or a contractually-authorized third party is strictly prohibited. Ata minimum, this information is protected
under unfair competition laws and the expression of the information contained herein is protected under federal
copyright laws. Violations thereof may result in criminal penalties and fines.

MIPS Technologies or any contractually-authorized third party reserves the right to change the information contained in
this document to improve function, design or otherwise. MIPS Technologies does not assume any liability arising out of
the application or use of this information. Any license under patent rights or any other intellectual property rights owned
by MIPS Technologies or third parties shall be conveyed by MIPS Technologies or any contractually-authorized third
party in a separate license agreement between the parties.

The information contained in this document constitutes one or more of the following: commercial computer software,
commercial computer software documentation or other commercial items. If the user of this information, or any related
documentation of any kind, including related technical data or manuals, is an agency, department, or other entity of the
United States government (“Government”), the use, duplication, reproduction, release, modification, disclosure, or
transfer of this information, or any related documentation of any kind, is restricted in accordance with Federal
Acquisition Regulation 12.212 for civilian agencies and Defense Federal Acquisition Regulation Supplement 227.7202
for military agencies. The use of this information by the Government is further restricted in accordance with the terms
of the license agreement(s) and/or applicable contract terms and conditions covering this information from MIPS
Technologies or any contractually-authorized third party.

MIPS, R3000, R4000, R5000, R8000 and R10000 are among the registered trademarks of MIPS Technologies, Inc., and
R4300, R20K, MIPS16, MIPS32, MIPS64, MIPS-3D, MIPS |, MIPS I, MIPS 1lI, MIPS IV, MIPS V, MDMX,

SmartMIPS, 4K, 4Kc, 4Km, 4Kp, 5K, 5Kc, 20K, 20Kc, EC, MGB, SOC-it, SEAD, YAMON, ATLAS, JALGO, CoreLV

and MIPS-based are among the trademarks of MIPS Technologies, Inc.

All other trademarks referred to herein are the property of their respective owners.

MIPS32™ Architecture For Programmers Volume Ill, Revision 0.95

Table of Contents

Chapter 1 ADOUL THIS BOOKceiiiiiiiiiiee ettt e e e o444 —— £ £t 2222224111 nb bt be e 1.
1.1 Typographical Conventions
0 R 1 = [= T PP OPPPRPPPPPPRPRN
L1.1.2 BOI TEXE .eeeeiiiiiiee ettt ettt e e .
R I 01U 1= g I =) PP PR OUP PRSPPI 1.
1.2 UNPREDICTABLE and UNDEFINED
1.2.1 UNPREDICTABLE.......coiitiiiiii ettt
1.2.2 UNDERINED.......coiitiie ittt ettt e sttt e bt e e s st et e 41t et 42t st s £ 45444 b et e e b b e e 2
1.3 Special Symbols in PSEUAOCOTE NOTALION...........uuiiiiiiiiiee i+ s——— et e 2122
R o Y To] (=N [0 (o T4 4 F= X o o RO PP PP PPPPPRPOPPI 5.
Chapter 2 The MIPS32 Privileged ReSOUICe ArChItECIUIEccoiiiiiiiiiiiiiiiee et rmmeeeee e eeeaee e e e e e e 7
2% A 11 Yo [ox 1 o o PR PR UPPP 7.
2.2 The MIPS Coprocessor Model :
2.2.1 CPO - The SYSEM COPIOCESSON ...ceeiuverteetiutteeteeattaeteesateeeeeeaastsee e et abbeeeeesasbeeeeesassssmneeeaeaannnenaeesannneeas Z
2.2.2 CPO REQISTEIS ... tetieeiitet ettt ettt ettt e e ettt et e s ottt e e a4kt ettt a4 aat b e et e 4428t £ ¢ eo—— 44411115t 441 n e e s 7.
Chapter 3 MIPS32 Operating MOUESuuueiiiiieeeeieiiciiieie et e e e e e e s s s s et e e e ae e e e s s e s st et e eee s ammmmmeeeneeeenseeeeesesannnsnssnnneees Q.
G 0 A I 7= o1 o 1Y o o [SRR 9.
0 (=T 1 1= 1Y oo 1= PSPPSR 9..
3.3 Supervisor Mode 9.
Bi4 USEI IMOOE ...ttt ekttt e e et e st e e st e 4Rt e s Rt ——— 411t R et Q..
Chapter 4 VIFtUAI IMEIMOIYcooiiiiiitee ettt e e e e e e oottt et e e e e e e e o e o a bbbt e s mmmmeeeeeeeeeeeeeeeesaaasnbbbbneeeaaaaess 11
o R I =T 0 1 0] o o Y2 11
o N N [0 | 12T SR o F= (o OO PPPPRTPPP 11
4.1.2 Segment anNd SEOMENT SIZE.......uuuuiuiiiiii i ie et e e e ettt a e s e s e e e eeeeeeaeaaaaaaaansseseeeaaeas 11
4.1.3 Physical AddreSss SizZe (PABITS).. ..ottt e nea e 11
4.2 VIrtUB] AQAIESS SPACESuteeiiiiiiiee ettt oottt et e e e e e e oo bbbt et e e et e e e s smmmmmmmemmmmamt 4444 2o e e e s nebbbeneeees 11
G R 001001 o] 1= T (o = PP TP TP PPPTTPPPRP 14
4.4 Access Control as a Function of Address and Operating Mode .. " SO IV
4.5 Address Translation and Cache Coherency Attributes for the ksegO and ksegl Segments 15.............
4.6 Address Translation for the kuseg Segment when StatuseERL = 1
4.7 Special Behavior for the kseg3 Segment when DebugDM = 1ooiiiiiiiiiiiiiiieeee e
4.8 TLB-Based Virtual Address TransIlationcoccveiieiiiiriieniieee e
4.8.1 Address Space [dentifiers (ASID)eeeeiiiiiiiiiii ettt e e e e e e e e e e e e e e e e e s e aaae
B I = @ 1o =Y 4> 4o I
4.8.3 AAAreSS TraNSIALIONeiiiiiiiiiiee ittt s e e s e e s e e e e s e s e e e s s e e e s e anreae
Chapter 5 INtErrupts and EXCEPLIONSccciitiiiieiiitiiee ettt e ettt e ettt e e s st e e e e s st be e e e e s sk mneeeeaeaameeeeeeesanbeeeeesanbreeeeen
5.1 INTEITUPES ...ttt e e e e e e e e e e e e s s s e e e ees
5.2 EXCEPUIONS ...eiiiiitiitee ettt ettt
5.2.1 EXception VecCtor LOCAtIONS.........coiuuviiiiiiiieie et
5.2.2 General EXCEPLION PrOCESSING ..ccoiiiiiiiiiiiieitieae e et ettt ettt e e e e e e s sttt ae e e e e e e e e e s e s s s meeeeneeeaaanntaeeeeeeanns
5.2.3 EJTAG DEDUG EXCEPLION ..eoiiitiiiieiiitiie ettt etttk e e st e e e e st e e e e s sanree e e e e snbeeeeeeas
5.2.4 RESEE EXCEPLION ...ttt ettt et e e e e e e e e s s e bbbttt et e et e e e e e s smmmmmeeeeeeeesseeeeeeaaeeeeaaaanns
5.2.5 SOft RESEE EXCEOPLION.ttt e e e e e e ettt e e e e e s mmmmmmeeaes s ssbeseeeeeaaaeeas
5.2.6 Non Maskable Interrupt (NMI) EXCEPLONcoiiiiiiiiiiiiii et
5.2.7 Maching CheCK EXCEPLIONuuiiiieiiiiiie ettt ettt et e st e e s e e e e e e emmeeeeasre e e e e annreas
5.2.8 AdAress ErTOr EXCEPLIONciiiiiiiiie ittt e e s e ssn e e e e s s snn e e e e e s nnneeees
5.2.9 TLB REfill EXCOPLION. ...ttt ettt e e ekt e e anr e e e e e s ambe e e e e e nbeeeeeennes
5.2.10 TLB INVAIA EXCEPLION ..tttk e e ettt e e e sttt e e e e e sat e e s £ £+ £ 1 b et e e 21 e

MIPS32™ Architecture For Programmers Volume Ill, Revision 0.95 i

5.2.11 TLB Modified EXCEPLION.....coi ittt e e e e d s e

5.2.12 CaChe Error EXCEPLIONuuuiiiiiiiiiee ettt ettt et e e e e e e e s e s bbbt ettt e e e s emmmmmmmmeeaees s bssseeeeeeeeeas
5.2.13 BUS EITON EXCEPLION.utitiiiiiiiiie ettt et e e e e e e s e e bbbt e e et e e e+ Smmmmmmmmmmne e e et e e e e e e e e e e anns
5.2.14 Integer OVErflOW EXCEPLION.uuuiiiiiiiiieai ittt ettt e e e e e e s e s s et e e e
I T I =T o = ol =T o 1 [o F OO P PP PPPPPPPPR
5.2.16 System Call EXCEOPLIONccii ittt e e e e e e s et b e e e e e e e e e e s e ansbareeeeeeeaeeas
5.2.17 Breakpoint EXCEPLION.ciii ittt e e e e e e e e e e memmnnnan
5.2.18 Reserved INStruction EXCEPLIONueiiiiiiiiiiiiiiiieee e
5.2.19 Coprocessor Unusable Exception
5.2.20 Floating POiNt EXCEPLIONccooiiiiiiiiiiiiiiie ettt e e e e ettt et e e e e e+ 4 s £ 552222222220
5.2.21 COPrOCESSOr 2 EXCEPLIONuieiiiiiiieiiee e e e ettt et e e e e e e ettt e e e e e e e s e s s nsbebbe s e mmmneeeeeeeaaaaeeesesaannnnes
5.2.22 WALCH EXCEPLIONeeeiiiiieeeii ittt ettt e e e e e e e ettt et e e e e e e e e e s a st meeaammmmmmmmm s e b beseeeeeeaeeeas 34
5.2.23 INTEITUPL EXCEPLION .ottt e e e e e e s e s s bbb s et e e e e e e e e as 35
Chapter 6 COProCESSOr O REGISIENSceiiiiiiiieei ittt etttk e sttt e e e s bbb e e e e s ss b mneeeeaeeameeeeeeesanbreeeesanbrneeeeaas 37
6.1 Coprocessor 0 REGISIEr SUMMIAIYiiiiiiiieiiette e e e e ettt e e e e e e s e s st b ebe e et eaeaeeeessen s mmmeeeemonan—n s s 1 e s s stesreees 37
L2 o] =1 (o] o D OO EPP PP PPPON 39
6.3 Index Register (CPO RegiSter 0, SEIECTE 0).....uiiiiiieiiiiiiiiiiieiie ettt e e e e e e e e ememee s s e e e s 41
6.4 Random Register (CPO Register 1, SEIECT 0)oouuiiiiiiiiiiee ettt e e e 42
6.5 EntryLoO, EntryLol (CPO Registers 2 and 3, SElECt 0)ueviiiiiiiiieiiiiiiee et eeeesee e e eeeemee e 43
6.6 Context Register (CPO Register 4, SEIECE 0)ccivuuriiiiiiiiiie ittt s s 112100 D
6.7 PageMask Register (CPO Register 5, Select 0) SRR |
6.8 Wired Register (CPO RegiSter 6, SEIECT 0).......ciiiiiiiiieeiiiiiie ettt s smme e e e e esme e e e e e e s neees 47
6.9 BadVAddr Register (CPO Register 8, SElECt 0)cuuiiiiiiiiiiieiiiiiie e rreee e snneee e . A8
6.10 Count Register (CPO RegiSter 9, SEIECE 0)uiiiiiieieiiiiiiiiiiiiii ettt e e e e e e e mmmeeeeeeennnmn e e nnee 49
6.11 Reserved for Implementations (CPO Register 9, Selects 6 and 7)ccccceevvviiiiiiiiiiiiieee e eeveeeeeeeeeeeeen 49
6.12 EntryHi Register (CPO RegiSter 10, SEIECTE 0)cccoiiiiiiieiiiiiee ittt e e e e 51
6.13 Compare Register (CPO Register 11, SeleCt 0)cooiiiiiiiiiiiiiiiee e s e
6.14 Reserved for Implementations (CPO Register 11, SelectS 6 and 7)cccveveiiiiiiieeiniiiiee s e
6.15 Status Register (CP Register 12, SeleCt 0)c.ccuriieiiiiiiieeiiiiiie et
6.16 Cause Register (CPO Register 13, SeleCt 0)........ooviiiiiiiiiiiiiiiee i
6.17 Exception Program Counter (CPO Register 14, SeleCt 0)couveiiiiiiiiiiiiiiiiieiee et e
6.17.1 Special Handling of the EPC Register in Processors That Implement the MIPS16 ASE 61

6.18 Processor Identification (CPO Register 15, SEIECT 0)cciiuiiiiiiiiiiieeiiiiieee et s o200
6.19 Configuration Register (CP0 Register 16, SelECt 0)ccoviiiiiiiiiiiiiiiieee et smmmee e s

6.20 Configuration Register 1 (CPO Register 16, Select 1)
6.21 Configuration Register 2 (CPO Register 16, Select 2) ...
6.22 Configuration Register 3 (CP0O Register 16, Select 3) ...

6.23 Reserved for Implementations (CPO Register 16, Selects 6 and 7)

6.24 Load Linked Address (CPO Register 17, Select 0) ...

6.25 WatchLo Register (CPO REGISIEI 18)......cciiuiiiiieiiiiiee ettt ettt e et e e e e s emme e e e e e nree e e e ennnes 73
6.26 WatchHi Register (CPO REGISIEI 19)oiiiiiiiiiiiitieiie ittt e e e e e e et e e e e s cmmmmmmmmmmmeen et e e e e e e e e e s 74
6.27 Reserved for Implementations (CP0O Register 22, all Select values)cccccvvvevevieieniiiiiiciiiiceeacccccee 6
6.28 Debug Register (CPO REGISIEI 23) i iiiiiiiieaee e ittt e e e e e e e sttt ee e e e e e e e e e s e nbe s eemeesaaammmmn e s e e snnnesreeee 77
6.29 DEPC Register (CPO REQISIEI 24)uiiiiieiiiiiee ettt ettt e et e e e sttt e eeemneeeeaeemeeesannreeeenans 78

6.29.1 Special Handling of the DEPC Register in Processors That Implement the MIPS16 ASE 18
6.30 Performance Counter Register (CPO REQISIEr 25)ioiuiiiiiiiiiiieee et s e 79
6.31 ErrCtl Register (CPO Register 26, SEIECT 0).......uiiiiiiiiiiiiiiiiie ettt e e e s sn e e s 82
6.32 CacheErr Register (CPO Register 27, SEIECE 0)....ceii it e eeeeesss e e 33
6.33 TagLo Register (CPO Register 28, SEIECE 0, 2)uiiiiiiiiiiiiiiieieeee et e e mmmmeeeeeeennnn e 84
6.34 Datalo Register (CPO Register 28, SEIECT 1, 3)....ciiiiuiiiiiiiiiiiiie it mmmeeeseemmmeee e e 85

6.35 TagHi Register (CP0O Register 29, Select 0, 2)
6.36 DataHi Register (CPO Register 29, Select 1, 3)

6.37 ErrorEPC (CPO Register 30, SEIECT 0)iiiiiiiiiieeiiiiiie ettt ettt emmmmeeeeemmm e et e e
6.37.1 Special Handling of the ErrorEPC Register in Processors That Implement the MIPS16 ASE......... 88.
6.38 DESAVE RegiSter (CPO REGISIET 3L)......uuiiiieiiiiiiieeiiiie ettt e sttt e sttt e st e e+ s 115210 89

MIPS32™ Architecture For Programmers Volume Ill, Revision 0.95

Chapter 7 CPO HAZANSoo oottt oo oottt e e e e e o4 oo e a bbb b e et e et e aeaaeeaaaaanbabbebeeeeeeaeeesaeaannnne 91

4% N [11 (oo 18 o3 1o] I PP OPP PR PPPRR 91
Appendix A Alternative MMU OrganiZAtIONS...........icuuuiiiaiiiiiite ettt e st e e st e e s aab b e e eeemneeeasas e e s e annbeeeesanene a3
AL Fixed MapPINGg MMUuiiiiiiiiiiiiee ettt e ettt e e s sttt e e e s bbbt e e e e sk b b e e e s sanbeeeeesabbreeeeeanbrneeeea 93
A.1.1 Fixed AdAreSs TranSIALIONcoiuiiiiiiiiiiie ettt e et e e st emneeeaemmnen e e e e s annneeee s a3

A.1.2 Cacheability AMIDULESuueiiiiiiii et e e e e e e e et e e mmmmmmm et e e eeaeaeeas 96

A.1.3 Changes to the CPO RegiSter INtErfaCeuuiiiiiiiiiiiiiie e ommmmeeeeeeeee e 97

A.2 BIOCK AAreSS TraNSIALIONcoiiiiieiiiiiiiee ettt e e e e e e et e e e e aee e e e s s smmmemaeeeeeesseeeeaaaeeeseaannnnnnes 97
A.2.1 BAT OFQANIZATIONeiiiiiiiiieee ittt ettt e e ettt e e e a bt e e s e bttt e e aab b e et e o4 as s e e ¢ e 11124241 r e 97

A.2.2 AAAreSS TraNSIALIONcooiiiieeie ettt e e e e e e e e e s e e et e s mmmmmmmmmn b e b e e e e e e e et 98

A.2.3 Changes to the CPO RegiSter INEIfACEuuuiiiiiiieiiiii e mmmmmeeeeeeeee e 99
APPENTIX B REVISION HISTOIYttt e s s et r e e e e e e e s s st et e e e e« s— e et e a2 e e e e e annnn 101

MIPS32™ Architecture For Programmers Volume Ill, Revision 0.95 iii

List of Figures

Figure 4-1:
Figure 4-2:
Figure 4-3:
Figure 6-1:
Figure 6-2:
Figure 6-3:
Figure 6-4:
Figure 6-5:
Figure 6-6:
Figure 6-7:
Figure 6-8:
Figure 6-9:

Figure 6-10:
Figure 6-11:
Figure 6-12:
Figure 6-13:
Figure 6-14:
Figure 6-15:
Figure 6-16:
Figure 6-17:
Figure 6-18:
Figure 6-19:
Figure 6-20:
Figure 6-21:
Figure 6-22:
Figure 6-23:
Figure 6-24:
Figure 6-25:

Figure 7-1:
Figure 7-2:
Figure 7-3:
Figure 7-4:

VirTUBI AQAIESS SPACEottt e e oottt et e e e e e e e s e s aaseeeeeeeeaaeesaasnbbbebeeeeaaaeeesaaannn 12
References as a Function of Operating MOOEuuiiiiiiiiiiiiiii e e 14
LOT0]) (=T 1 k3) =T I = TN oY PO 17
INdeX ReQIStEr FOIMAL.........uiiiiiii i e s e e e e e e e s eaaaaaaaeeseesssesesssessssssssnrnnnnnnnns AL
RaNAOM ReQISIEr FOMMAL............eiviiiiiieiiiiee s e e e e e e e e e e e e et e et eeeeeenennnmmmn e aeseeeeaeaaaeaeeseees 42
EntryLo0, EntryLOL RegQiSter FOMMALuuuiiiiiiie i e s 5 2 10 n s a3
Context Register Format

PageMask RegiSter FOMMALcoooiiiiiii s s e e e e e e e e e et e aaeeeeeeeeseeeeeeeaeeeeeeeeeseeeenerenes 46
Wired And Random Entries In The TLB
Wired RegQiSter FOMMAL.......cccooiiii i s s s e s e e e e e e e e e e e e e s smmnmmmamnmnnnseeeeeaneaeseseseeseesesesss Z0D)
BadVAAAr REQISIEr FOIMAL.... ... ie i s e s e e e e e e e e mmmmmmmmmmmmm e eeeeeeeeeeeeeesesssnens 48
Count Register Format

EntryHi Register Format

CoMPAre REQGISEI FOIMMALeiiiiiiieiiii ittt et e e e e e e st e e e et e e e aaeaeeaa s s s nnbbbbeeeeeeaaaeeeas 52
Status REQISIEr FOMALeviiiiiiiitiicie s e s e e e e e e eeeeeeenn s e e e s e s eaeaaaaaaaaees 53
(OF- U RS =T Y= To] (=T g o] 0 = | PRSP 58

EPC Register Format .
PRI REQISIEr FOIMAL.......cccc e s r e e e e e e e e e e e e et et e e e e e eeeememenenenensseseeeeeaeeeeeseeeeeeeeenes) 62

Config REQISIEr FOIMAALccci i s e e e e e e e e e e e e e e e e e et et et et e s e eeeeaeaaaeeeeeeeeeeseesssensrnrnnnnnd 6.3
(O70] 010 N =T o TR (=T gl o] 4= | PRSP 65
CoNfig2 REQISIEr FOIMMAL........iii i e e e e e e e e e e e et ettt e e et aeee e e st aeaeeaaaseaeaaaaeeeeerseeserernrnnnd 69
(Of0] 010 ST R y=To 1] (=T gl o] 4= | PRSP 70
I o [=T 1] (=T o] = | PP PPPPUPTP 72
WatChLO REQISIEN FOIMALevviiiiiiiiiiiie e e e e e e e e e e e e e e aaaaaans 73

74
79
.81

WatchHi Register Format
Performance Counter Control Register Format
Performance Counter Counter Register Format

ErrOrEPC REQISIEI FOMMALvviiiiiiiiiiii e —— e e a2 e aaeaes 88
Memory Mapping when ERL =0 rerrrreeeeeeen. 95
Memory Mapping When ERL = 1 ...ttt e+ et £+ £+ 4111t 96
(0701 o) 1o RY=To |15 (=T g AN {o 11 o] o 1SR 97
CONtENTS Of @ BAT ENUIY . .ciiiiiiieiiieeetieeet s s s s e e e et e e e e e e e e e e et e te ettt et eeaetessete b s memmmmmmmmmmmseeseeeseeeesssssesssnnnnnnns 98

MIPS32™ Architecture For Programmers Volume Ill, Revision 0.95

List of Tables

Table 1-1:
Table 4-1:
Table 4-2:
Table 4-3:
Table 4-4:
Table 5-1:
Table 5-2:
Table 5-3:
Table 5-4:
Table 5-5:
Table 6-1:
Table 6-2:
Table 6-3:
Table 6-4:
Table 6-5:
Table 6-6:
Table 6-7:
Table 6-8:
Table 6-9:

Table 6-10:
Table 6-11:
Table 6-12:
Table 6-13:
Table 6-14:
Table 6-15:
Table 6-16:
Table 6-17:
Table 6-18:
Table 6-19:
Table 6-20:
Table 6-21:
Table 6-22:
Table 6-23:
Table 6-24:
Table 6-25:
Table 6-26:
Table 6-27:
Table 6-28:
Table 6-29:
Table 6-30:

Table 7-1:
Table 7-2:
Table 7-3:
Table 7-4:

Symbols Used in Instruction Operation StatemMeENtSuuuiiiiiiiiiiiiii e eeeeee e e 3

Virtual MemOry AGAIESS SPACESuueieiiiieiaiiiiittte ettt e e e e ettt et e e e e e e s e s s aaab s — 1111111111 ennen 12
Address Space Access as a Function of Operating Mode .. SRR K<)
Address Translation and Cache Coherency Attributes for the ksego and ksegl Segments 16.............

Physical AdAresSs GENEIALIONovviiiiiiiiitii s s s s e s e e e e e e e e e e et et e ettt et et e aeee e aaaeseeaeaaaaeaaeeerereennnnes
Mapping of Interrupts to the Cause and StatuS REQISTErS...........uuiiiiiiiiiiiiiiiiiiiieie e erreeeeeee e e
EXCEPLioN VECIOr BASE AUUIESSESttt ettt e e e e e+ s— ettt 222 e e
EXCEPLION VECION Off SIS ...ttt ettt e e e e e mmmneeeaemnnn e e e e e s e anebbebeeeeeaaeeas
o] o[0TV A= Tox (o] £ PO PP PPUPT TP PTPPP
Value Stored in EPC, ErrorEPC, or DEPC on an Exception
Coprocessor 0 Registers in NUMEKCAl OFAeruuuiiiiiiiiiiiiii e s——— e
Read/Write Bit FIeld NOTALIONviiiiiiiiiie e e e s e

Index Register Field DESCHPLIONSccoiiiiiiiiii ettt e e et e e e e e s e e s s nne e e e e e e e e e e e e snnnnnes 41
Random Register Field DESCHPUONSccoiiiiiiiiiiiieeie et semmmmmmmmee e eeeeeeeeeee e e e e D2
EntryLoO, EntryLol Register Field DeSCHPUONSuuuiiiiiiiieeaiiiiiiiiiieeee e s a2 A D
Cache CONEIrENCY ALIIDULESveieiiiiet e e et e et e e e ettt ettt mmmmmmmmmmmmmmm e e eeaeeeeeeeseeennenes 44
Context Register Field DESCIIPLIONSuiiiii ittt e e e eeeeeeeeesaamt e e e e e e e e annnbeneees 45
PageMask Register Field DeSCIPLONSuuuuiiiiiiieeaiei it meeee

Values for the Mask Field of the PageMask REQISENcccoiiiiiiiiiiiiiiiiieeeeee e s

Wired Register Field DeSCIIPLIONS.iii ittt e e e e e e e e e e s s e sinbbbbeeeeeeaeeas a7
BadVAddr Register Field DeSCIIPLIONSuiiiiiieiaiiiiite ittt e e e e e e et eeeaeaaee s 48
Count Register Field DESCIPLIONS.......ooi ittt e ettt e e e e e e s mmmmmnns et e e e e e e e e e e aanas 49
EntryHi Register Field DeSCIIPLIONS.ttt s bttt e e e e e e es

Compare Register Field Descriptions
Status Register Field DeSCIIPUONSuui it s e e ee e e me b eeeeaaeee e e s
Cause Register Field DeSCHPLIONSciiii ittt e e e e e e s ee e e e e e eeaaaeeesreeeeaaaeaeeaeanns
Cause Register ExcCode Field
EPC Register Field Descriptions

PRI Register Field DESCIPLIONSeiiiiiiieeiiiiiiiiee ettt e e e e e e s eneeeeeeeaamme e e e e e e s e ennnbebeeee

Config Register Field DESCIPLIONScooiiiiiiiiiie ittt meeeeeeeeeaae e e e e e s e nannbeeeeees

Configl Register Field DeSCIPLIONSccoiiiiiiiiiiiieiie ettt e e e e eeee e e e e e e e e s s s snnnrnreeeeeesd 65
Config2 Register Field DeSCIPLIONScoiiiiiiiiiiiiieiie ettt e et e e e e e e e e e s s s sannbnreeeeeesd 69
Config3 Register Field DeSCIPLIONSccoiiiiiiiiiiiieiee ettt e e e et e e e e e e e e e e s s annbbebeeeeeeas 70
LLAddr Register Field DESCHIPLIONScouiiiiiiiiiiiiiie ettt et e e e eeeeeeessme e e e e e e anneeeeees 12
WatchLo Register Field DeSCIPLIONS.ttt ee e mmmne e e e e e nee e 73
WatchHi Register Field DESCHPLIONScooiiiiiiiiitiiie ettt e e e e e e e e e e e e e s anereeeees 74

Example Performance Counter Usage of the PerfCnt CPO Register............oovoiiiiiiiiiiiiiiiiiiiceeeeeeeeeaaen 19
Performance Counter Control Register Field DesSCriptionScccvuvieiiiiiieeiiiiiiiiiieeeee s s 00 4 D

Performance Counter Counter Register Field DeSCriptionscccccevviiiiiiiiiiiieenennn. 81
ErrorEPC Register Field DeSCriptionsS.........ccc.uvviiiieiiiieieiiiiieeee e 38
“Typical” CPO Hazard SPacingcooouuiiiiiiiiieeee ettt 91
Physical Address Generation from Virtual AAArESSEScvvvvvviiiiiiiiiiiiie e e sm———— 111 93
Config Register Field DESCIPLIONSooiiiiiiiiie ittt e et e e mmmmmeseeeees e e e e e e e aeannnbeeeees 97
BAT ENLIY ASSIONIMENTS ...ceiiiiiiiiieiiiiiiiiiesse s e et e e e e eeeeaeeeeteteteeeeeaeassssestetatasnsnan s smmmmmmmmmmmmmseeeeeeeseeesesssssssssnes a8

MIPS32™ Architecture For Programmers Volume Ill, Revision 0.95 v

vi

MIPS32™ Architecture For Programmers Volume Ill, Revision 0.95

Chapter 1

About This Book

The MIPS32™ Architecture For Programmers Volume Ill comes as a multi-volume set.

» Volume | describes conventions used throughout the document set, and provides an introduction to the MIPS32™
Architecture

» Volume |l provides detailed descriptions of each instruction in the MIPS32™ instruction set

* Volume 11l describes the MIPS32™ Privileged Resource Architecture which defines and governs the behavior of the
privileged resources included in a MIPS32™ processor implementation

* \olume IV-a describes the MIPS16™ Application-Specific Extension to the MIPS32™ Architecture

* Volume IV-b describes the MDMX™ Application-Specific Extension to the MIPS32™ Architecture and is not
applicable to the MIPS32™ document set

* Volume IV-c describes the MIPS-3D™ Application-Specific Extension to the MIPS64™ Architecture and is not
applicable to the MIPS32™ document set

* \olume IV-d describes the SmartMIPS™ Application-Specific Extension to the MIPS32™ Architecture

1.1 Typographical Conventions

This section describes the usetalfic, bold andcourier fonts in this book.

1.1.1 Iltalic Text
* is used foemphasis

* is used fobits, fields registers that are important from a software perspective (for instance, address bits used by
software, and programmable fields and registers), and vditmating point instruction formatsuch ass, D, andPS

* is used for the memory access types, sudaesedanduncached

1.1.2 Bold Text
 represents a term that is beuhefined

* is used fobits andfields that are important from a hardware perspective (for instaggister bits, which are not
programmable but accessible only to hardware)

* is used for ranges of numbers; the range is indicated by an ellipsis. For inStdnndjcates numbers 5 through 1
* is used to emphasiz¢éNPREDICTABLE andUNDEFINED behavior, as defined below.

1.1.3 Courier Text

Courier fixed-width font is used for text that is displayed on the screen, and for examples of code and instruction
pseudocode.

MIPS32™ Architecture For Programmers Volume Ill, Revision 0.95 1

Chapter 1 About This Book

1.2 UNPREDICTABLE and UNDEFINED

The termdUNPREDICTABLE andUNDEFINED are used throughout this book to describe the behavior of the
processor in certain caséNDEFINED behavior or operations can occur only as the result of executing instructions
in a privileged mode (i.e., in Kernel Mode or Debug Mode, or with the CPO usable bit set in the Status register).
Unprivileged software can never callldDEFINED behavior or operations. Conversely, both privileged and
unprivileged software can caud®lPREDICTABLE results or operations.

1.2.1 UNPREDICTABLE

UNPREDICTABLE results may vary from processor implementation to implementation, instruction to instruction, or
as a function of time on the same implementation or instruction. Software can never depend on results that are
UNPREDICTABLE . UNPREDICTABLE operations may cause a result to be generated or not. If aresultis generated,
it is UNPREDICTABLE . UNPREDICTABLE operations may cause arbitrary exceptions.

UNPREDICTABLE results or operations have several implementation restrictions:

Implementations of operations generatiiyPREDICTABLE results must not depend on any data source (memory
or internal state) which is inaccessible in the current processor mode

UNPREDICTABLE operations must not read, write, or modify the contents of memory or internal state which is
inaccessible in the current processor mode. For exatdNIBREDICTABLE operations executed in user mode
must not access memory or internal state that is only accessible in Kernel Mode or Debug Mode or in another process

UNPREDICTABLE operations must not halt or hang the processor

1.2.2 UNDEFINED

UNDEFINED operations or behavior may vary from processor implementation to implementation, instruction to
instruction, or as a function of time on the same implementation or instrudh@EFINED operations or behavior
may vary from nothing to creating an environment in which execution can no longer coddiNDEFINED operations
or behavior may cause data loss.

UNDEFINED operations or behavior has one implementation restriction:

UNDEFINED operations or behavior must not cause the processor to hang (that is, enter a state from which there is
no exit other than powering down the processor). The assertion of any of the reset signals must restore the processor
to an operational state

1.3 Special Symbols in Pseudocode Notation

In this book, algorithmic descriptions of an operation are described as pseudocode in a high-level language notation
resembling Pascal. Special symbols used in the pseudocode notation are Tiatdd i1

MIPS32™ Architecture For Programmers Volume Ill, Revision 0.95

1.3 Special Symbols in Pseudocode Notation

Table 1-1 Symbols Used in Instruction Operation Statements

binary
efix is

Symbol Meaning
- Assignment
=% Tests for equality and inequality
Il Bit string concatenation
xY A y-bit string formed by copies of the single-bit value
A constant valua in baseb. For instance 10#100 represents the decimal value 100, 2#100 represents the
b#n value 100 (decimal 4), and 16#100 represents the hexadecimal value 100 (decimal 256). If the "b#" pr
omitted, the default base is 10.
X Selection of bitg/ throughz of bit stringx. Little-endian bit notation (rightmost bit is 0) is usedyli less than
y..Z z, this expression is an empty (zero length) bit string.
+, - 2's complement or floating point arithmetic: addition, subtraction
0 x 2's complement or floating point multiplication (both used for either)
div 2's complement integer division
mod 2's complement modulo
/ Floating point division
< 2's complement less-than comparison
> 2's complement greater-than comparison
< 2's complement less-than or equal comparison
> 2's complement greater-than or equal comparison
nor Bitwise logical NOR
xor Bitwise logical XOR
and Bitwise logical AND
or Bitwise logical OR
GPRLEN The length in bits (32 or 64) of the CPU general-purpose registers
GPRI[X] CPU general-purpose registerThe content o6PR[0] is always zero.
FPR[x] Floating Point operand register
FCC[CC] Floating Point condition code CECCJ0] has the same value @OC[1].
FPR[X] Floating Point (Coprocessor unit 1), general register
CPRJ[z,x,s] Coprocessor unit, general registex, selects
CCRJ[z,X] Coprocessor unit, control registek
COCJz] Coprocessor unit condition signal
Xlat[x] Translation of the MIPS16 GPR numbento the corresponding 32-bit GPR number
Endian mode as configured at chip reset.(Gttle-Endian, 1- Big-Endian). Specifies the endianness of t
BigEndianMem memory interface (see LoadMemory and StoreMemory pseudocode function descriptions), and the end
of Kernel and Supervisor mode execution.

ne
lanness

MIPS32™ Architecture For Programmers Volume lll, Revision 0.95

Chapter 1 About This Book

Table 1-1 Symbols Used in Instruction Operation Statements

Symbol Meaning
The endianness for load and store instructions (Ottle-Endian, 1 Big-Endian). In User mode, this
BigEndianCPU endianness may be switched by settingRifihit in the Statusregister. Thus, BigEndianCPU may be comput

as (BigendianMem XOR ReverseEndian).

ed

ReverseEndian

Signal to reverse the endianness of load and store instructions. This feature is available in User mode g
is implemented by setting tHREDbit of the Statusregister. Thus, ReverseEndian may be computed asg SR
User mode).

nly, and

LLbit

Bit of virtual state used to specify operation for instructions that provide atomic read-modify-wiritiis set
when a linked load occurs; it is tested and cleared by the conditional store. It is cleared, during other ¢
operation, when a store to the location would no longer be atomic. In particular, it is cleared by exception
instructions.

PU
return

This occurs as a prefix @perationdescription lines and functions as a label. It indicates the instruction {
during which the pseudocode appears to “execute.” Unless otherwise indicated, all effects of the curre
instruction appear to occur during the instruction time of the current instruction. No label is equivalent to
label ofl. Sometimes effects of an instruction appear to occur either earlier or later — that is, during th
instruction time of another instruction. When this happens, the instruction operation is written in sections |
with the instruction time, relative to the current instructioim which the effect of that pseudocode appears
occur. For example, an instruction may have a result that is not available until after the next instruction. S
instruction has the portion of the instruction operation description that writes the result register in a se
labeledl +1.

The effect of pseudocode statements for the current instruction labellexppears to occur “at the same timg
as the effect of pseudocode statements labldiecthe following instruction. Within one pseudocode sequen
the effects of the statements take place in order. However, between sequences of statements for diffe
instructions that occur “at the same time,” there is no defined order. Programs must not depend on a f
order of evaluation between such sections.

ime
nt

A time
e
abeled
to

uch an
tion

ce,
ent
articular

PC

TheProgram Countewralue. During the instruction time of an instruction, this is the address of the instru
word. The address of the instruction that occurs during the next instruction time is determined by assig
value toPC during an instruction time. If no value is assigneB@during an instruction time by any
pseudocode statement, it is automatically incremented by either 2 (in the case of a 16-bit MIPS16 inst|
or 4 before the next instruction time. A taken branch assigns the target addresP@dheng the instruction
time of the instruction in the branch delay slot.

tion
ning a

uction)

PABITS

The number of physical address bits implemented is represented by the symbol PABITS. As such, if 36 p
address bits were implemented, the size of the physical address space w6l '5e=22%6 bytes.

hysical

FP32RegistersMode

Indicates whether the FPU has 32-bit or 64-bit floating point registers (FPRs). In MIPS32, the FPU has 33
FPRs in which 64-bit data types are stored in even-odd pairs of FPRs. In MIPS64, the FPU has 32 64-b|
in which 64-bit data types are stored in any FPR.

In MIPS32 implementation§;P32RegistersModes always a 0. MIPS64 implementations have a compatibi
mode in which the processor references the FPRs as if it were a MIPS32 implementation. In such a c3
FP32RegisterModes computed from the FR bit in thetatusregister. If this bit is a 0, the processor operat
as if it had 32 32-bit FPRs. If this bit is a 1, the processor operates with 32 64-bit FPRs.

The value oFP32RegistersModds computed from the FR bit in ti8tatusregister.

» 32-bit
it FPRs

ity
1se
es

InstructioninBranchD
elaySlot

Indicates whether the instruction at the Program Counter address was executed in the delay slot of a
jump. This condition reflects thdyynamicstate of the instruction, not tsé&tic state. That is, the value is fals|
if a branch or jump occurs to an instruction whose PC immediately follows a branch or jump, but which
executed in the delay slot of a branch or jump.

pranch or
e
is not

SignalException(exce
ption, argument)

Causes an exception to be signaled, using the exception parameter as the type of exception and the 3
parameter as an exception-specific argument). Control does not return from this pseudocode function

rgument
- the

exception is signaled at the point of the call.

MIPS32™ Architecture For Programmers Volume Ill, Revision 0.95

1.4 For More Information

1.4 For More Information
Various MIPS RISC processor manuals and additional information about MIPS products can be found atthe MIPS URL.:
http://www.mips.com
Comments or questions on the MIPS32™ Architecture or this document should be directed to
Director of MIPS Architecture
MIPS Technologies, Inc.
1225 Charleston Road
Mountain View, CA 94043

or via E-mail to architecture@mips.com.

MIPS32™ Architecture For Programmers Volume lll, Revision 0.95 5

Chapter 1 About This Book

6 MIPS32™ Architecture For Programmers Volume Ill, Revision 0.95

Chapter 2

The MIPS32 Privileged Resource Architecture

2.1 Introduction

The MIPS32 Privileged Resource Architecture (PRA) is a set of environments and capabilities on which the Instruction
Set Architecture operates. The effects of some components of the PRA are user-visible, for instance, the virtual memory
layout. Many other components are visible only to the operating system kernel and to systems programmers. The PRA
provides the mechanisms necessary to manage the resources of the CPU: virtual memory, caches, exceptions and user
contexts. This chapter describes these mechanisms.

2.2 The MIPS Coprocessor Model

The MIPS ISA provides for up to 4 coprocessors. A coprocessor extends the functionality of the MIPS ISA, while
sharing the instruction fetch and execution control logic of the CPU. Some coprocessors, such as the system coprocessor
and the floating point unit are standard parts of the ISA, and are specified as such in the architecture documents.
Coprocessors are generally optional, with one exception: CPO, the system coprocessor, is required. CPO is the ISA
interface to the Privileged Resource Architecture and provides full control of the processor state and modes.

2.2.1 CPO - The System Coprocessor
CPO provides an abstraction of the functions necessary to support an operating system: exception handling, memory
management, scheduling, and control of critical resources. The interface to CPO is through various instructions encoded
with the COPOopcode, including the ability to move data to and from the CPO registers, and specific functions that

modify CPO state. The CPO registers and the interaction with them make up much of the Privileged Resource
Architecture.

2.2.2 CPO Registers

The CPO registers provide the interface between the ISA and the PRA. The CPO registers are described in Chapter 6.

MIPS32™ Architecture For Programmers Volume Ill, Revision 0.95 7

Chapter 2 The MIPS32 Privileged Resource Architecture

8 MIPS32™ Architecture For Programmers Volume Ill, Revision 0.95

Chapter 3

MIPS32 Operating Modes

The MIPS32 PRA requires two operating mode: User Mode and Kernel Mode. When operating in User Mode, the
programmer has access to the CPU and FPU registers that are provided by the ISA and to a flat, uniform virtual memory
address space. When operating in Kernel Mode, the system programmer has access to the full capabilities of the
processor, including the ability to change virtual memory mapping, control the system environment, and context switch
between processes.

In addition, the MIPS32 PRA supports the implementation of two additional modes: Supervisor Mode and EJTAG
Debug Mode. Refer to the EJTAG specification for a description of Debug Mode.

3.1 Debug Mode

For processors that implement EJTAG, the processor is operating in Debug Mode if the DM bit in tBel@Rgegister
is a one. If the processor is running in Debug Mode, it has full access to all resources that are available to Kernel Mode
operation.

3.2 Kernel Mode

The processor is operating in Kernel Mode when the DM bit imdkbugregister is a zero (if the processor implements
Debug Mode), and any of the following three conditions is true:

e The KSU field in the CP8tatusregister contains 2#00

e The EXL bit in theStatusregister is one

e The ERL bit in theStatusregister is one

The processor enters Kernel Mode at power-up, or as the result of an interrupt, exception, or error. The processor leaves

Kernel Mode and enters User Mode or Supervisor Mode when all of the previous three conditions are false, usually as
the result of an ERET instruction.

3.3 Supervisor Mode
The processor is operating in Supervisor Mode (if that optional mode is implemented by the processor) when all of the
following conditions are true:
« The DM bit in theDebugregister is a zero (if the processor implements Debug Mode)
e The KSU field in theStatusregister contains 2#01
e The EXL and ERL bits in th8tatusregister are both zero

3.4 User Mode

The processor is operating in User Mode when all of the following conditions are true:

» The DM bit in theDebugregister is a zero (if the processor implements Debug Mode)

MIPS32™ Architecture For Programmers Volume Ill, Revision 0.95 9

Chapter 3 MIPS32 Operating Modes

» The KSU field in theStatusregister contains 2#10
» The EXL and ERL bits in th8tatusregister are both zero

10 MIPS32™ Architecture For Programmers Volume Ill, Revision 0.95

Chapter 4

Virtual Memory

4.1 Terminology

4.1.1 Address Space

An Address Space the range of all possible addresses that can be generated. There is one 32-bit Address Space in the
MIPS32 Architecture.

4.1.2 Segment and Segment Size

A Segmenis a defined subset of an Address Space that has self-consistent reference and access behavior. Segments are
either 2% or 21 bytes in size, depending on the specific Segment.

4.1.3 Physical Address Size (PABITS)

The number of physical address bits implemented is represented by the $$ABIBIS As such, if 36 physical address
bits were implemented, the size of the physical address space woliltPhez2 236 bytes.

4.2 Virtual Address Spaces

The MIPS32 virtual address space is divided into five segments as shown in Figure 4-1.

MIPS32™ Architecture For Programmers Volume Ill, Revision 0.95 11

Chapter 4 Virtual Memory

12

Each Segment of an Address Space is classified as “Mapped” or “Unmapped”. A “Mapped” address is one that is
translated through the TLB or other address translation unit. An “Unmapped” address is one which is not translated
through the TLB and which provides a window into the lowest portion of the physical address space, starting at physical
address zero, and with a size corresponding to the size of the unmapped Segment.

Additionally, the ksegl Segment is classified as “Uncached”. References to this Segment bypass all levels of the cache

Figure 4-1 Virtual Address Space

16#FFFF FFFF
kseg3
16#E000 0000
16#DFFF FFFF
ksseg
16#C000 0000
16#BFFF FFFF
ksegl
16#A000 0000
16#9FFF FFFF
kseg0
16#8000 0000
16#7FFF FFFF

useg

16#0000 0000

Kernel Mapped

Supervisor Mapped

Kernel Unmapped Uncached

Kernel Unmapped

User Mapped

hierarchy and allow direct access to memory without any interference from the caches.

Table 4-1lists the same information in tabular form.

Table 4-1 Virtual Memory Address Spaces

VA31 09 | Segment | Address Range Associated| Reference Actual
Name(s) with Mode Legal from Segment
Mode(s) Size
16#FFFF FFFF
2#111 kseg3 through Kernel Kernel 2° bytes
16#E000 0000

MIPS32™ Architecture For Programmers Volume Ill, Revision 0.95

4.2 Virtual Address Spaces

Table 4-1 Virtual Memory Address Spaces

VA31 09 | Segment | Address Range | Associated| Reference Actual
Name(s) with Mode Legal from Segment
Mode(s) Size
16#DFFF FFFF .
2#110 ksssszg through Supervisor Slk%era\glsor 22 pytes
9 16#C000 0000
16#BFFF FFFF
2#101 ksegl through Kernel Kernel 3 pytes
16#A000 0000
16#9FFF FFFF
2#100 kseg0 through Kernel Kernel 29 bytes
16#8000 0000
useg 16#7FFF FFFF User
2#0xX suseg through User Supervisor 231 bytes
kuseg 16#0000 0000 Kernel

Each Segment of an Address Space is associated with one of the three processor operating modes (User, Supervisor, or
Kernel). A Segment that is associated with a particular mode is accessible if the processor is running in that or a more
privileged mode. For example, a Segment associated with User Mode is accessible when the processor is running in User,
Supervisor, or Kernel Modes. A Segment is not accessible if the processor is running in a less privileged mode than that
associated with the Segment. For example, a Segment associated with Supervisor Mode is not accessible when the
processor is running in User Mode and such a reference results in an Address Error Exception. The “Reference Legal
from Mode(s)” column in Table 4-2 lists the modes from which each Segment may be legally referenced.

If a Segment has more than one name, each nhame denotes the mode from which the Segment is referenced. For example,
the Segment name “useg” denotes a reference from user mode, while the Segment name “kuseg” denotes a reference to
the same Segment from kernel mode.

Figure 4-2shows the Address Space as seen when the processor is operating in each of the operating modes.

MIPS32™ Architecture For Programmers Volume Ill, Revision 0.95 13

Chapter 4 Virtual Memory

Figure 4-2 References as a Function of Operating Mode
User Mode References Supervisor Mode References Kernel Mode References
16#FFFF FFFF 16#FFFF FFFF 16#FFFF FFFF
Address Error kseg3 Kernel Mapped
16#E000 0000 16#E000 0000
16#DFFF FFFH 16#DFFF FFFF
sseg Supervisor Mapped ksseg Supervisor Mappefd
16#C000 0000 16#C000 0000
Address Error
16#BFFF FFFH 16#BFFF FFFF
Kernel Unmapped
ksegl Uncached
16#A000 0000
Address Error
16#9FFF FFFF
kseg0 Kernel Unmapped
16#8000 0000 16#8000 0000 16#8000 0000
16#7FFF FFFF 16#7FFF FFFF 16#7FFF FFFF
useg suseg kuseg
User Mapped User Mapped User Mapped
16#0000 0000 16#0000 0000 16#0000 0000

4.3 Compliance

A MIPS32 compliant processor must implement the following Segments:
 useg/kuseg

» ksegO

e ksegl

In addition, a MIPS32 compliant processor using the TLB-based address translation mechanism must also implement
the kseg3 Segment.

4.4 Access Control as a Function of Address and Operating Mode

Table 4-2enumerates the action taken by the processor for each section of the 32-bit Address Space as a function of the
operating mode of the processor. The selection of TLB Refill vector and other special-cased behavior is also listed for
each reference.

14 MIPS32™ Architecture For Programmers Volume Ill, Revision 0.95

4.5 Address Translation and Cache Coherency Attributes for the kseg0 and ksegl Segments

Table 4-2 Address Space Access as a Function of Operating Mode

Virtual Address Range Segment Action when Referenced from Operating
Name(s) Mode
User Mode Supervisor | Kernel Mode
Mode
164FFFF FFFF Mapped
through Seed4.7 on
9 kseg3 Address Error Address Error page 16or
special behavior
16#E000 0000 when Debugy
16#DFFF FFFF
sseg
through Address Error Mapped Mapped
ksseg
16#C000 0000
16#BFFF FFFF UU”nfgggﬁggr
through ksegl Address Error Address Erro
16#A000 0000 4_§egfggg‘é“15
16#9FFF FFFF Unmapped
through kseg0 Address Error| Address Errof
See Section
16#8000 0000 4.5 on page 15
Unmapped if
StatU%RL:].
16#7FFF FFFF
useg)
through suseg Mapped Mapped See Section
kuseg 4.6 on page 16
16#0000 0000

Mapped if
Statu%RL=O

4.5 Address Translation and Cache Coherency Attributes for the kseg0 and ksegl Segments

The kseg0 and ksegl Unmapped Segments provide a window into the least sigf’rﬁibytetsZof physical memory,

and, as such, are not translated using the TLB or other address translation unit. The cache coherency attribute of the
kseg0 Segment is supplied by the KO field of the CB@figregister. The cache coherency attribute for the ksegl
Segmentis always Uncachdeble 4-3describes how this transformation is done, and the source of the cache coherency

attributes for each Segment.

MIPS32™ Architecture For Programmers Volume lll, Revision 0.95

15

Chapter 4 Virtual Memory

Table 4-3 Address Translation and Cache Coherency Attributes for the kseg0 and ksegl Segments

Segment Virtual Address Range Generates Physical Address Cache Attribute
Name
16#BFFF FFFF 16#1FFF FFFF
ksegl through through Uncached
16#A000 0000 16#0000 0000
16#9FFF FFFF 16#1FFF FFFF
From KO field of
ksegO through through ConfigRegister
16#8000 0000 16#0000 0000

4.6 Address Translation for the kuseg Segment when Stagyg =1

To provide support for the cache error handler, the kuseg Segment becomes an unmapped, uncached Segment, similar
to the ksegl Segment, if the ERL bit is set inSketusregister. This allows the cache error exception code to operate
uncached using GPR RO as a base register to save other GPRs before use.

4.7 Special Behavior for the kseg3 Segment when Debyg =1

If EJTAG is implemented on the processor, the EJTAG block must treat the virtual addresi6edre20 0000
throughl16#FF3F FFFF | inclusive, as a special memory-mapped region in Debug Mode. A MIPS32 compliant
implementation that also implements EJTAG must:

« explicitly range check the address range as given and not assume that the entire regiorl 6#h0000
and16#FFFF FFFF is included in the special memory-mapped region.

» not enable the special EJTAG mapping for this region in any mode other than in EJTAG Debug mode.

Even in Debug mode, normal memory rules may apply in some cases. Refer to the EJTAG specification for details on
this mapping.

4.8 TLB-Based Virtual Address Translation

This section describes the TLB-based virtual address translation mechanism. Note that sufficient TLB entries must be
implemented to avoid a TLB exception loop on load and store instructions.

4.8.1 Address Space Identifiers (ASID)

The TLB-based translation mechanism supports Address Space Identifiers to uniquely identify the same virtual address
across different processes. The operating system assigns ASIDs to each process and the TLB keeps track of the ASID
when doing address translation. In certain circumstances, the operating system may wish to associate the same virtual
address with all processes. To address this need, the TLB includes a global (G) bit which over-rides the ASID
comparison during translation.

16 MIPS32™ Architecture For Programmers Volume Ill, Revision 0.95

4.8 TLB-Based Virtual Address Translation

4.8.2 TLB Organization

The TLB is a fully-associative structure which is used to translate virtual addresses. Each entry contains two logical
components: a comparison section and a physical translation section. The comparison section includes the virtual page
number (VPN2) (actually, the virtual page number/2 since each entry maps two physical pages) of the entry, the ASID,
the G(lobal) bit and a recommended mask field which provides the ability to map different page sizes with a single entry.
The physical translation section contains a pair of entries, each of which contains the physical page frame number (PFN),
avalid (V) bit, a dirty (D) bit, and a cache coherency field (C), whose valid encodings are giVablé6-6 on page 44

There are two entries in the translation section for each TLB entry because each TLB entry maps an aligned pair of
virtual pages and the pair of physical translation entries corresponds to the even and odd pages &ighesp&i

shows the logical arrangement of a TLB entry.

Figure 4-3 Contents of a TLB Entry
PageMask 20
VPN2 G ASID
PFNO CO DO V(
PEN1 Cl D1 V1

The fields of the TLB entry correspond exactly to the fields in theRaBeMaskEntryHi, EntryLoOandEntryLol
registers. The even page entries in the TLB (e.g., PFNO) comeefmogioQ Similarly, odd page entries come from
EntryLol

4.8.3 Address Translation

When an address translation is requested, the virtual page number and the current process ASID are presented to the
TLB. All entries are checked simultaneously for a match, which occurs when all of the following conditions are true:

» The current process ASID (as obtained from EreryHi register) matches the ASID field in the TLB entry, or the G
bit is set in the TLB entry.

» The appropriate bits of the virtual page number match the corresponding bits of the VPN2 field stored within the
TLB entry. The “appropriate” number of bits is determined by the PageMask field in each entry by ignoring each bit
in the virtual page number and the TLB VPNZ2 field corresponding to those bits that are set in the PageMask field.
This allows each entry of the TLB to support a different page size, as determined by the PageMask register at the
time that the TLB entry was written. If the recommended PageMask register is not implemented, the TLB operation
is as if the PageMask register was written with a zero, resulting in a minimum 4096-byte page size.

If a TLB entry matches the address and ASID presented, the corresponding PFN, C, V, and D bits are read from the
translation section of the TLB entry. Which of the two PFN entries is read is a function of the virtual address bit
immediately to the right of the section masked with the PageMask entry.

The valid and dirty bits determine the final success of the translation. If the valid bit is off, the entry is not valid and a
TLB Invalid exception is raised. If the dirty bit is off and the reference was a store, a TLB Modified exception is raised.

MIPS32™ Architecture For Programmers Volume Ill, Revision 0.95 17

Chapter 4 Virtual Memory

If there is an address match with a valid entry and no dirty exception, the PFN and the cache coherency bits are appended
to the offset-within-page bits of the address to form the final physical address with attributes.

The TLB lookup process can be described as follows:

found ~ 0
foriin 0...TLBEntries-1
if (TLBIi] vpnzand not (TLBIi] Mask)) = (V@ 3113 and not (TLB[i] Mask))) and

(TLB[l] Gor (TLB[l] ASID = EntryHI AS|D)) then
EvenOddBit selects between even and odd halves of the TLB as a function of
the page size in the matching TLB entry
case TLB[i] mask

2#0000000000000000: EvenOddBit ~ 12
2#0000000000000011: EvenOddBit -~ 14
2#0000000000001111: EvenOddBit ~ 16
2#0000000000111111: EvenOddBit ~ 18
2#0000000011111111: EvenOddBit ~ 20
2#0000001111111111: EvenOddBit ~ 22
2#0000111111111111: EvenOddBit ~ 24
2#0011111111111111: EvenOddBit ~ 26
2#1111111111111111: EvenOddBit ~ 28
otherwise: UNDEFINED
endcase

ifva gyenodasit = 0 then
pfn — TLB[] prno
V TLB[l] VO
c « TLBJi] co
d « TLB[il po
else
pfn — TLB[] prNna
C « TLB[l] c1
d « TLB[i] pz
endif
if v=0then
SignalException(TLBInvalid, reftype)
endif
if (d = 0) and (reftype = store) then
SignalException(TLBModified)

endif
#pfn papiTs1-12.0 corresponds to pa PABITS-1..12
pa « pf pagiTs-1-12. EvenoddBit-12 [lva EvenoddBit-1.0
found ~ 1
break
endif

endfor

if found = 0 then
SignalException(TLBMiss, reftype)

endif

Table 4-4demonstrates how the physical address is generated as a function of the page size of the TLB entry that
matches the virtual address. The “Even/Odd Select” colurnldé 4-dindicates which virtual address bit is used to
select between the even (EntryLo0) or odd (EntryLol) entry in the matching TLB entry. The “PA generated from”
column specifies how the physical address is generated from the selected PFN and the offset-in-page bits in the virtual

18 MIPS32™ Architecture For Programmers Volume Ill, Revision 0.95

4.8 TLB-Based Virtual Address Translation

address. In this column, PEN is the physical page number as loaded into the TLB from the EntryLoO or EntryLol
registers, and has the bit range BgBrs1.12.0 corresponding to Rfgits1. 12

Table 4-4 Physical Address Generation

Page Size Even/Odd PA generated from
Select

4K Bytes VA PFNoagiTs1-12.0ll VA11. 0
16K Bytes VA, PFNpagiTs1-12.21l VA13 0
64K Bytes VA PFNoaBITS1-12.4llVALS5..0
256K Bytes VAg PFNoaBITS1-12.6l1 VA17.0
1M Bytes VAo PFNeagiTs1-12..81 VA19..0
4M Bytes VAo, PFNoagTs1-12..101 VA21.0
16M Bytes VA, PFNoagiTs1-12..12] VA23.0
64MBytes VA PFNoagITS1-12..141 VA5 0
256MBytes VAg PFNpagiTs1-12..16l VA27.0

MIPS32™ Architecture For Programmers Volume Ill, Revision 0.95 19

Chapter 4 Virtual Memory

20 MIPS32™ Architecture For Programmers Volume Ill, Revision 0.95

Chapter 5

|

Interrupts and Exceptions

5.1 Interrupts

The processor supports eight interrupt requests, broken down into four categories:

 Software interrupts - Two software interrupt requests are made via software writes to bits IPO and IRAwudfdhe

register.

« Hardware interrupts - Up to six hardware interrupt requests numbered 0 through 5 are made via
implementation-dependent external requests to the processor.

 Timer interrupt - A timer interrupt is raised when teuntandCompareregisters reach the same value.

» Performance counter interripA performance counter interrupt is raised when the most significant bit of the counter

is a one, and the interrupt is enabled by the IE bit in the performance counter control register.

Timer interrupts, performance counter interrupts, and hardware interrupt 5 are combined in an implementation
dependent way to create the ultimate hardware interrupt 5.

The current interrupt requests are visible via the IP field infGhaseregister on any read of that register (not just after
an interrupt exception has occurred). The mappin@aafseregister bits to the various interrupt requests is shown in

Table 5-1

Table 5-1 Mapping of Interrupts to the Causeand StatusRegisters

CauseRegister Bit

StatusRegister Bit

Performance Counter Interrupt

Interrupt Type Interrupt Number Name Number Name
Number
0 8 IPO 8 IMO
Software Interrupt
1 9 IP1 9 IM1
0 10 P2 10 IM2
1 11 IP3 11 IM3
Hardware Interrupt 2 12 IP4 12 IM4
3 13 IP5 13 IM5
4 14 IP6 14 IM6
Hardware Interrupt, Timer Interrupt, or 5 15 P7 15 IM7

For each bit of the IP field in th@auseregister there is a corresponding bit in the IM field inStegusregister. An
interrupt is only taken when all of the following are true:

» An interrupt request bit is a one in the IP field of @aiseregister.

» The corresponding mask bit is a one in the IM field ofStausregister. The mapping of bits is showrilaeble 5-1

» The IE bit in theStatusregister is a one.

» The DM bit in theDebugregister is a zero (for processors implementing EJTAG)

MIPS32™ Architecture For Programmers Volume Ill, Revision 0.95

21

Chapter 5 Interrupts and Exceptions

» The EXL and ERL bits in th8tatusregister are both zero.

Logically, the IP field of theCauseregister is bit-wise ANDed with the IM field of thetatusregister, the eight resultant
bits are ORed together and that value is ANDed with the IE bit oBSta¢usregister. The final interrupt request is then
asserted only if both the EXL and ERL bits in tB&atusregister are zero, and the DM bit in tBebugregister is zero,
corresponding to a non-exception, non-error, non-debug processing mode, respectively.

5.2 Exceptions

Normal execution of instructions may be interrupted when an exception occurs. Such events can be generated as a
by-product of instruction execution (e.g., an integer overflow caused by an add instruction or a TLB miss caused by a
load instruction), or by an event not directly related to instruction execution (e.g., an external interrupt). When an
exception occurs, the processor stops processing instructions, saves sufficient state to resume the interrupted instruction
stream, enters Kernel Mode, and starts a software exception handler. The saved state and the address of the software
exception handler are a function of both the type of exception, and the current state of the processor.

5.2.1 Exception Vector Locations

The Reset, Soft Reset, and NMI exceptions are always vectored to lot&#&+C0 0000 . EJTAG Debug exceptions

are vectored to locatioh6#BFCO 0480 or to locationl6#FF20 0200 if the ProbEn bit is zero or one, respectively,

in the EJTAG_Control_register. Addresses for all other exceptions are a combination of a vector offset and a base
addressTable 5-2gives the base address as a function of the exception and whether the BEV bit is sthiushe
register.Table 5-3gives the offsets from the base address as a function of the exception. Note that the IV bit in the CPO
Causeregister causes Interrupts to use a dedicated exception vector offset, rather than the general exception vector.
Table 5-4combines these two tables into one that contains all possible vector addresses as a function of the state that can
affect the vector selection.

Table 5-2 Exception Vector Base Addresses

Exception Statugey

Reset, Soft Reset, NMI 16#BFCO0 0000

EJTAG Debug (with ProbEn =0 in

the EJTAG_Control_register) 16#BFCO0 0480

EJTAG Debug (with ProbEn =1 in

the EJTAG_Control_register) 16#FF20 0200

Cache Error 16#A000 0000 16#BFCO0 0200
Other 16#8000 0000 16#BFCO0 0200

Table 5-3 Exception Vector Offsets

Exception Vector Offset
TLB Refill, EXL =0 16#000
Cache error 16#100
General Exception 16#180
Interrupt, Causg = 1 16#200
Reset, Soft Reset, NMI None (Uses Reset Base Addrefss)

22 MIPS32™ Architecture For Programmers Volume Ill, Revision 0.95

5.2 Exceptions

Table 5-4 Exception Vectors

Exception Statuggy | Statusey, | Causgy | EJTAG Vector
ProbEn
Reset, Soft Reset, NM| X X X X 16#BFCO0 0000
EJTAG Debug X X X 0 16#BFCO0 0480
EJTAG Debug X X X 1 16#FF20 0200
TLB Refill 0 0 X X 16#8000 0000
TLB Refill 0 1 X X 16#8000 0180
TLB Refill 1 0 X X 16#BFCO0 0200
TLB Refill 1 1 X X 16#BFCO0 0380
Cache Error 0 X X X 16#A000 0100
Cache Error 1 X X X 16#BFCO0 0300
Interrupt 0 0 0 X 16#8000 0180
Interrupt 0 0 1 X 16#8000 0200
Interrupt 1 0 0 X 16#BFCO0 0380
Interrupt 1 0 1 X 16#BFCO0 0400
All others 0 X X X 16#8000 0180
All others 1 X X X 16#BFCO0 0380
‘X’ denotes don'’t care

5.2.2 General Exception Processing

With the exception of Reset, Soft Reset, and NMI exceptions, which have their own special processing as described
below, exceptions have the same basic processing flow:

« If the EXL bit in theStatusregister is zero, thEPCregister is loaded with the PC at which execution will be
restarted and the BD bit is set appropriately in @auseregister (sedable 6-16 on page 38The value loaded into
theEPCregister is dependent on whether the processor implements the MIPS16 ASE, and whether the instruction is
in the delay slot of a branch or jump which has delay Slatde 5-5shows the value stored in each of the CPO PC
registers, includingePC.

If the EXL bit in theStatusregister is set, thEPCregister is not loaded and the BD bit is not changed iCthese

register.
Table 5-5 Value Stored in EPC, ErrorEPC, or DEPC on an Exception
MIPS16 In Branch/Jump Value stored in EPC/ErrorEPC/DEPC
Implemented? Delay Slot?

No No Address of the instruction

No Yes Address of the branch or jump instruction (PC-4)

Yes No Upper 31 bits of the address of the instruction, combined

with thelSA Modebit

MIPS32™ Architecture For Programmers Volume Ill, Revision 0.95 23

Chapter 5 Interrupts and Exceptions

24

Table 5-5 Value Stored in EPC, ErrorEPC, or DEPC on an Exception

MIPS16 In Branch/Jump Value stored in EPC/ErrorEPC/DEPC
Implemented? Delay Slot?

=

Upper 31 bits of the branch or jump instruction (PC-2
Yes Yes the MIPS16 ISA Mode and PC-4 in the 32-bit ISA
Mode), combined with thESA Modebit

» The CE, and ExcCode fields of tBauseregisters are loaded with the values appropriate to the exception. The CE
field is loaded, but not defined, for any exception type other than a coprocessor unusable exception.

» The EXL bit is set in th&tatusregister.

» The processor is started at the exception vector.

The value loaded into EPC represents the restart address for the exception and need not be modified by exception handler
software in the normal case. Software need not look at the BD bit in the Cause register unless it wishes to identify the
address of the instruction that actually caused the exception.

Note that individual exception types may load additional information into other registers. This is noted in the description
of each exception type below.

Operation:

if Status EXL = 0

if InstructioninBranchDelaySlot then
EPC - restartPC # PC of branch/jump
Causegp ~ 1

else
EPC - restartPC # PC of instruction
Causegp ~ 0O

endif

if ExceptionType = TLBREfill then
vectorOffset ~ 16#000

elseif (ExceptionType = Interrupt) and
(Cause |y =1) then
vectorOffset ~ 16#200

else
vectorOffset ~ 16#180
endif
else
vectorOffset ~ 16#180
endif

Causecg ~ FaultingCoprocessorNumber
Causegyccode — EXxceptionType
Status gy < 1
if Status ggy= 1 then

PC ~ 16#BFCO0 0200 + vectorOffset
else

PC ~ 16#8000 0000 + vectorOffset
endif

5.2.3 EJTAG Debug Exception

An EJTAG Debug Exception occurs when one of a number of EJTAG-related conditions is met. Refer to the EJTAG
Specification for details of this exception.

MIPS32™ Architecture For Programmers Volume Ill, Revision 0.95

5.2 Exceptions

Entry Vector Used
16#BFCO 0480 if the ProbEn bit is zero in the EJTAG_Control_registe8#FF20 0200 if the ProbEn bit is one.

5.2.4 Reset Exception

A Reset Exception occurs when the Cold Reset signal is asserted to the processor. This exception is not maskable. When
a Reset Exception occurs, the processor performs a full reset initialization, including aborting state machines,
establishing critical state, and generally placing the processor in a state in which it can execute instructions from
uncached, unmapped address space. On a Reset Exception, only the following registers have defined state:

» TheRandonregister is initialized to the number of TLB entries - 1.

» TheWiredregister is initialized to zero.

» TheConfig, Configl, ConfigaandConfig3registers are initialized with their boot state.

» The RP, BEV, TS, SR, NMI, and ERL fields of tB@tusregister are initialized to a specified state.

Watch register enables and Performance Counter register interrupt enables are cleared.

TheErrorEPC register is loaded with the restart PC, as describ&dbte 5-5 Note that this value may or may not

be predictable if the Reset Exception was taken as the result of power being applied to the processor because PC may
not have a valid value in that case. In some implementations, the value loadeddri&®C register may not be

predictable on either a Reset or Soft Reset Exception.

PC is loaded witi6#BFCO0 0000 .

CauseRegister ExcCode Value
None

Additional State Saved
None

Entry Vector Used
Reset {6#BFC0 0000)

MIPS32™ Architecture For Programmers Volume Ill, Revision 0.95 25

Chapter 5 Interrupts and Exceptions

Operation

Random ~ TLBEntries - 1

Wired ~ 0

Config « ConfigurationState

Config kg < 2 # Suggested - see Config register description
Configl ~ ConfigurationState

Config2 ~ ConfigurationState # if implemented
Config3 ~ ConfigurationState # if implemented
Status RP < 0

Status BEV < 1

Status 15 < 0

Status SR < 0

Status pyy < O

Status gg. < 1

WatchLo[n] | <O # For all implemented Watch registers
WatchLo[n] g < O # For all implemented Watch registers
WatchLo[n] w < O # For all implemented Watch registers
PerfCnt.Control[n] E <0 # For all implemented PerfCnt registers

if InstructionInBranchDelaySlot then

ErrorEPC — restartPC # PC of branch/jump
else

ErrorEPC — restartPC # PC of instruction
endif
PC ~ 16#BFCO0 0000

5.2.5 Soft Reset Exception

A Soft Reset Exception occurs when the Reset signal is asserted to the processor. This exception is not maskable. When
a Soft Reset Exception occurs, the processor performs a subset of the full reset initialization. Although a Soft Reset
Exception does not unnecessarily change the state of the processor, it may be forced to do so in order to place the
processor in a state in which it can execute instructions from uncached, unmapped address space. Since bus, cache, or
other operations may be interrupted, portions of the cache, memory, or other processor state may be inconsistent. In
addition to any hardware initialization required, the following state is established on a Soft Reset Exception:

e The RP, BEV, TS, SR, NMI, and ERL fields of tBmtusregister are initialized to a specified state.
» Watch register enables and Performance Counter register interrupt enables are cleared.

» TheErrorEPC register is loaded with the restart PC, as describ&dhte 5-5

* PCis loaded witi6#BFCO 0000 .

CauseRegister ExcCode Value

None

Additional State Saved
None

Entry Vector Used
Reset {6#BFCO0 0000)

26 MIPS32™ Architecture For Programmers Volume Ill, Revision 0.95

5.2 Exceptions

Operation

Config kg « 2 # Suggested - see Config register description
Status RP < 0
Status BEV < 1
Status 15 < 0
Status gg ~ 1
Status pyy < O
Status gg. < 1

WatchLo[n] | <O # For all implemented Watch registers
WatchLo[n] g < O # For all implemented Watch registers
WatchLo[n] w < O # For all implemented Watch registers
PerfCnt.Control[n] E <0 # For all implemented PerfCnt registers

if InstructionInBranchDelaySlot then

ErrorEPC — restartPC # PC of branch/jump
else

ErrorEPC — restartPC # PC of instruction
endif
PC ~ 16#BFCO0 0000

5.2.6 Non Maskable Interrupt (NMI) Exception
A non maskable interrupt exception occurs when the NMI signal is asserted to the processor.

Unlike all other interrupts, this exception is not maskable. An NMI occurs only at instruction boundaries, so does not do
any reset or other hardware initialization. The state of the cache, memory, and other processor state is consistent and all
registers are preserved, with the following exceptions:

e The BEV, TS, SR, NMI, and ERL fields of tBéatusregister are initialized to a specified state.
e TheErrorEPC register is loaded with restart PC, as describ8dle 5-5
» PC is loaded witi6#BFCO0 0000 .

CauseRegister ExcCode Value
None

Additional State Saved
None

Entry Vector Used
Reset {6#BFC0 0000)

MIPS32™ Architecture For Programmers Volume Ill, Revision 0.95 27

Chapter 5 Interrupts and Exceptions

28

Operation

Status ggy < 1
Status TS « 0
Status SR < 0
Status v < 1
Status g < 1
if InstructionInBranchDelaySlot then
ErrorEPC — restartPC # PC of branch/jump
else
ErrorEPC — restartPC # PC of instruction
endif
PC ~ 16#BFCO0 0000

5.2.7 Machine Check Exception

A machine check exception occurs when the processor detects an internal inconsistency.

The following conditions cause a machine check exception:

 Detection of multiple matching entries in the TLB in a TLB-based MMU.

CauseRegister ExcCode Value
MCheck (Sedable 6-17 on page »9

Additional State Saved
Depends on the condition that caused the exception. See the descriptions above.

Entry Vector Used
General exception vector (offset 16#180)

5.2.8 Address Error Exception

An address error exception occurs under the following circumstances:
» Aninstruction is fetched from an address that is not aligned on a word boundary.
» A load or store word instruction is executed in which the address is not aligned on a word boundary.
» A load or store halfword instruction is executed in which the address is not aligned on a halfword boundary.
» A reference is made to a kernel address space from User Mode or Supervisor Mode.
» A reference is made to a supervisor address space from User Mode.
Note that in the case of an instruction fetch that is not aligned on a word boundary, the PC is updated before the condition
is detected. Therefore, both EPC and BadVAddr point at the unaligned instruction address.
CauseRegister ExcCode Value
AdEL: Reference was a load or an instruction fetch
AdES: Reference was a store
SeeTable 6-17 on page 59

MIPS32™ Architecture For Programmers Volume Ill, Revision 0.95

5.2 Exceptions

Additional State Saved

Register State

Value

BadVAddr

failing address

Contex{/pnz

UNPREDICTABLE

EntryHiypno

UNPREDICTABLE

EntryLoO

UNPREDICTABLE

EntryLol

Entry Vector Used

General exception vector (offset 16#180)

5.2.9 TLB Refill Exception

UNPREDICTABLE

A TLB Refill exception occurs in a TLB-based MMU when no TLB entry matches a reference to a mapped address space
and the EXL bit is zero in th8tatusregister. Note that this is distinct from the case in which an entry matches but has
the valid bit off, in which case a TLB Invalid exception occurs.

CauseRegister ExcCode Value

TLBL: Reference was a load or an instruction fetch

TLBS: Reference was a store
SeeTable 6-17 on page 59

Additional State Saved

Register State Value
BadVAddr failing address
Context The BadVPN2 field contains YA 130f the failing address
EntryHi XE?B/FNZ field contains V4 130f the failing address; the
ield contains the ASID of the reference that missed.
EntryLoO UNPREDICTABLE
EntryLol UNPREDICTABLE

Entry Vector Used

» TLB Refill vector (offset 16#000) if Statdg, = O at the time of exception.

» General exception vector (offset 16#180) if Stajys= 1 at the time of exception

5.2.10 TLB Invalid Exception

A TLB invalid exception occurs when a TLB entry matches a reference to a mapped address space, but the matched entry

has the valid bit off.

Note that the condition in which no TLB entry matches a reference to a mapped address space and the EXL bitis one in
the Statusregister is indistinguishable from a TLB Invalid Exception in the sense that both use the general exception
vector and supply an ExcCode value of TLBL or TLBS. The only way to distinguish these two cases is by probing the

TLB for a matching entry (using TLBP).

MIPS32™ Architecture For Programmers Volume Ill, Revision 0.95

29

Chapter 5 Interrupts and Exceptions

CauseRegister ExcCode Value

TLBL: Reference was a load or an instruction fetch
TLBS: Reference was a store

SeeTable 6-16 on page 58

Additional State Saved

Register State Value
BadVAddr failing address
Context The BadVPN2 field contains YA 130f the failing address
EntryHi Xg?B/F’NZ field contains VA 130f the failing address; the
ield contains the ASID of the reference that missed.
EntryLoO UNPREDICTABLE
EntryLol UNPREDICTABLE

Entry Vector Used

General exception vector (offset 16#180)

5.2.11 TLB Modified Exception

A TLB modified exception occurs onstorereference to a mapped address when the matching TLB entry is valid, but
the entry’s D bit is zero, indicating that the page is not writable.

CauseRegister ExcCode Value
Mod (See€Table 6-16 on page %8

Additional State Saved

Register State Value
BadVAddr failing address
Context The BadVPN2 field contains YA 130f the failing address
EntryHi XE?B/FNZ field contains V4 130f the failing address; the
ield contains the ASID of the reference that missed.
EntryLoO UNPREDICTABLE
EntryLol UNPREDICTABLE

Entry Vector Used

General exception vector (offset 16#180)

5.2.12 Cache Error Exception

A cache error exception occurs when an instruction or data reference detects a cache tag or data error, or a parity or ECC
error is detected on the system bus when a cache miss occurs. This exception is not maskable. Because the error was in
a cache, the exception vector is to an unmapped, uncached address.

CauseRegister ExcCode Value
N/A

30 MIPS32™ Architecture For Programmers Volume Ill, Revision 0.95

5.2 Exceptions

Additional State Saved

Register State Value

CacheErr Error state
ErrorEPC Restart PC

Entry Vector Used
Cache error vector (offset 16#100)

Operation

CacheErr ~ ErrorState
Status ERL < 1
if InstructioninBranchDelaySlot then
ErrorEPC ~ restartPC # PC of branch/jump
else
ErrorEPC — restartPC # PC of instruction
endif
if Status ggy=1then
PC ~ 16#BFCO0 0200 + 16#100
else
PC ~ 16#A000 0000 + 16#100
endif

5.2.13 Bus Error Exception

A bus error occurs when an instruction, data, or prefetch access makes a bus request (due to a cache miss or an
uncacheable reference) and that request is terminated in an error. Note that parity errors detected during bus transactions
are reported as cache error exceptions, not bus error exceptions.

CauseRegister ExcCode Value

IBE: Error on an instruction reference
DBE: Error on a data reference
SeeTable 6-17 on page 59

Additional State Saved
None

Entry Vector Used
General exception vector (offset 16#180)

5.2.14 Integer Overflow Exception

An integer overflow exception occurs when selected integer instructions result in a 2’'s complement overflow.

CauseRegister ExcCode Value
Ov (SeeTable 6-17 on page 59

Additional State Saved
None

MIPS32™ Architecture For Programmers Volume Ill, Revision 0.95 31

Chapter 5 Interrupts and Exceptions

Entry Vector Used
General exception vector (offset 16#180)

5.2.15 Trap Exception

A trap exception occurs when a trap instruction results in a TRUE value.

CauseRegister ExcCode Value
Tr (SeeTable 6-17 on page %9

Additional State Saved
None

Entry Vector Used
General exception vector (offset 16#180)

5.2.16 System Call Exception

A system call exception occurs when a SYSCALL instruction is executed.

CauseRegister ExcCode Value
Sys (Sedable 6-16 on page »8

Additional State Saved
None

Entry Vector Used
General exception vector (offset 16#180)

5.2.17 Breakpoint Exception

A breakpoint exception occurs when a BREAK instruction is executed.

CauseRegister ExcCode Value
Bp (SeeTable 6-17 on page %9

Additional State Saved
None

Entry Vector Used
General exception vector (offset 16#180)

5.2.18 Reserved Instruction Exception

A Reserved Instruction Exception occurs if any of the following conditions is true:

» An instruction was executed that specifies an encoding of the opcode field that is flaggéti (nesetved), B”
(higher-order ISA), or an unimplementes! {ASE).

32 MIPS32™ Architecture For Programmers Volume Ill, Revision 0.95

5.2 Exceptions

» An instruction was executed that specificaPECIALopcode encoding of the function field that is flagged with “
(reserved), orp” (higher-order ISA).

» An instruction was executed that specifid8EGIMM opcode encoding of the rt field that is flagged with “
(reserved).

* Aninstruction was executed that specifies an unimpleme®REICIAL 2opcode encoding of the function field that is
flagged with an unimplemente@™(partner available), or an unimplemented (EJTAG).

» Aninstruction was executed that specifie&@Pzopcode encoding of the rs field that is flagged with (feserved),
“B” (higher-order ISA), or an unimplementegl (ASE), assuming that access to the coprocessor is allowed. If
access to the coprocessor is not allowed, a Coprocessor Unusable Exception occurs instegiOPdojende,
some implementations of previous ISAs reported this case as a Floating Point Exception, setting the Unimplemented
Operation bit in the Cause field of tRESRregister.

An instruction was executed that specifies an unimplemed@gOopcode encoding of the function field when rs is
COthat is flagged with[¥ (reserved), or an unimplemented™(EJTAG), assuming that access to coprocessor 0 is
allowed. If access to the coprocessor is not allowed, a Coprocessor Unusable Exception occurs instead.

An instruction was executed that specifi€@@P1lopcode encoding of the function field that is flagged with “
(reserved), B (higher-order ISA), or an unimplementegl (ASE), assuming that access to coprocessor 1 is
allowed. If access to the coprocessor is not allowed, a Coprocessor Unusable Exception occurs instead. Some
implementations of previous ISAs reported this case as a Floating Point Exception, setting the Unimplemented
Operation bit in the Cause field of tRESRregister.

CauseRegister ExcCode Value
RI (SeeTable 6-17 on page %9

Additional State Saved

None

Entry Vector Used
General exception vector (offset 16#180)

5.2.19 Coprocessor Unusable Exception

A coprocessor unusable exception occurs if any of the following conditions is true:

» A COPO or Cache instruction was executed while the processor was running in a mode other than Debug Mode or
Kernel Mode, and the CUO bit in tis#atusregister was a zero

« ACOP1, LWC1, SWC1, LDC1, SDC1 or MOVCI (Special opcode function field encoding) instruction was executed
and the CUL1 bit in th8tatusregister was a zero.

» ACOP2, LWC2, SWC2, LDC2, or SDC2 instruction was executed, and the CU2 bit Btéttesregister was a zero.

* A COP3 instruction was executed, and the CU3 bit irStiagusregister was a zero.

CauseRegister ExcCode Value
CpU (SeeTable 6-16 on page 58

Additional State Saved

Register State Value
Causeg unit number of the coprocessor being referenced

MIPS32™ Architecture For Programmers Volume Ill, Revision 0.95 33

Chapter 5 Interrupts and Exceptions

34

Entry Vector Used
General exception vector (offset 16#180)

5.2.20 Floating Point Exception

A floating point exception is initiated by the floating point coprocessor to signal a floating point exception.

Register ExcCode Value
FPE (Sedable 6-16 on page »8

Additional State Saved

Register State Value
FCSR indicates the cause of the floating point exception

Entry Vector Used
General exception vector (offset 16#180)

5.2.21 Coprocessor 2 Exception

A coprocessor 2 exception is initiated by coprocessor 2 to signal a precise coprocessor 2 exception.

Register ExcCode Value
C2E (Se€Table 6-16 on page %8

Additional State Saved
Defined by the coprocessor

Entry Vector Used
General exception vector (offset 16#180)

5.2.22 Watch Exception

The watch facility provides a software debugging vehicle by initiating a watch exception when an instruction or data
reference matches the address information stored WalehHiandWatchLoregisters. A watch exception is taken
immediately if the EXL and ERL bits of ti&tatusregister are both zero. If either bit is a one at the time that a watch
exception would normally be taken, the WP bit in@aseregister is set, and the exception is deferred until both the
EXL and ERL bits in the Status register are zero. Software may use the WP bitQatlseregister to determine if the

EPC register points at the instruction that caused the watch exception, or if the exception actually occurred while in
kernel mode.

If the EXL or ERL bits are one in th8tatusregister and a single instruction generates both a watch exception (which is
deferred by the state of the EXL and ERL bits) and a lower-priority exception, the lower priority exception is taken.

Watch exceptions are never taken if the processor is executing in Debug Mode. Should a watch register match while the
processor is in Debug Mode, the exception is inhibited and the WP bit is not changed.

It is implementation dependent whether a data watch exception is triggered by a prefetch or cache instruction whose
address matches the Watch register address match conditions.

MIPS32™ Architecture For Programmers Volume Ill, Revision 0.95

5.2 Exceptions

Register ExcCode Value
WATCH (SeeTable 6-16 on page %8

Additional State Saved

Register State Value

indicates that the watch exception was deferred until after
both Statusy, and Statysg, were zero. This bit directly

Causgyp causes a watch exception, so software must clear this bit as
part of the exception handler to prevent a watch exception
loop at the end of the current handler execution.

Entry Vector Used
General exception vector (offset 16#180)

5.2.23 Interrupt Exception

The interrupt exception occurs when one or more of the eight interrupt requests is enabled by the Status registers. See
Section5.1 on page 2for more information.

Register ExcCode Value
Int (SeeTable 6-17 on page »9

Additional State Saved

Register State Value

Causg indicates the interrupts that are pending.

Entry Vector Used
General exception vector (offset 16#180) if the IV bit in@la@iseregister is zero.
Interrupt vector (offset 16#200) if the IV bit in tAuseregister is one.

MIPS32™ Architecture For Programmers Volume Ill, Revision 0.95 35

Chapter 5 Interrupts and Exceptions

36 MIPS32™ Architecture For Programmers Volume Ill, Revision 0.95

Chapter 6

Coprocessor 0 Registers

The Coprocessor 0 (CPO) registers provide the interface between the ISA and the PRA. Each register is discussed below,
with the registers presented in numerical order, first by register number, then by select field number.

6.1 Coprocessor 0 Register Summary

Table 6-1lists the CPO registers in numerical order. The individual registers are described later in this document. If the
compliance level is qualified (e.g Required TLB MMU)"), it applies only if the qualifying condition is true. The Sel
column indicates the value to be used in the field of the same name in the MFCO and MTCO instructions.

Table 6-1 Coprocessor 0 Registers in Numerical Order

Register | Sel Register Function Reference Compliance
Number Name Level
Required
: Section6.3 on (TLB MMU);
0 0 Index Index into the TLB array page 41 Optional
(others)
Required
: : ection6.4 on (TLB MMU);
1 0 Random Randomly generated index into the TLB ar| a§" page 42 Optional
(others)
Required
2 0 EntrvLo0 Low-order portion of the TLB entry for Section6.5 on (TLB MMU);
y even-numbered virtual pages page 43 Optional
(others)
Low-order portion of the TLB entry for Section6.5 on Required .(TLB
3 0 EntryLol odd-numbered virtual pages page 43 MMU);
Optional (others)
Required
. : Section6.6 on (TLB MMU);
4 0 Context Pointer to page table entry in memory nage 45 Optional
(others)
Required
; R 1. Section6.7 on (TLB MMU);
5 0 PageMask Control for variable page size in TLB entri¢s nage 46 Optional
(others)
Required
6 0 Wired Controls the number of fixed (“wired”) TLB | Section6.8 on (TLB MMU);
entries page 47 Optional
(others)
7 all Reserved for future extensions Reserved
Reports the address for the most recent Section6.9 on :
8 0 BadVAddr address-related exception page 48 Required
Sectior6.10 on .
9 0 Count Processor cycle count page 49 Required
: : ; Sectior.11 on Implementation
9 6-7 Available for implementation dependent user page 49 Dependent

MIPS32™ Architecture For Programmers Volume Ill, Revision 0.95

37

Chapter 6 Coprocessor 0 Registers

38

Table 6-1 Coprocessor 0 Registers in Numerical Order

Register | Sel Register Function Reference Compliance
Number Name Level
Required
: : ; Sectior.12 on (TLB MMU);
10 0 EntryHi High-order portion of the TLB entry page 51 Optional
(others)
. ; Sectior6.13 on ;
11 0 Compare Timer interrupt control page 52 Required
; : : .. Sectior6.14 on | Implementation
11 6-7 Available for implementation dependent user page 52 Dependent
Sectior6.15 on ;
12 0 Status Processor status and control page 53 Required
; Sectior6.16 on ;
13 0 Cause Cause of last general exception page 58 Required
; Sectior6.17 on :
14 0 EPC Program counter at last exception page 61 Required
. I - Sectior5.18 on ;
15 0 PRId Processor identification and revision page 62 Required
)) . . Sectior6.19 on ;
16 0 Config Configuration register page 63 Required
' ' . . Sectior6.20 on ;
16 1 Configl Configuration register 1 page 65 Required
) ' . . Sectior5.21 on ;
16 2 Config2 Configuration register 2 page 69 Optional
. s ; ; Sectiorb.22 on ;
16 3 Config3 Configuration register 3 page 70 Optional
: : : | .Sectior6.23 on | Implementation
16 6-7 Available for implementation dependent user page 71 Dependent
: Sectior6.24 on ;
17 0 LLAddr Load linked address page 72 Optional
; Sectior.25 on ;
18 0-n | WatchLo Watchpoint address page 73 Optional
; ; Sectior6.26 on :
19 0-n | WatchHi Watchpoint control page 74 Optional
20 0 XContext in 64-bit implementations Reserved
21 all Reserved for future extensions Reserved
; ; ; Sectior6.27 on | Implementation
22 all Available for implementation dependent usq page 76 Dependent
: EJTAG ;
23 0 Debug EJTAG Debug register Specification Optional
Program counter at last EJTAG debug EJTAG ;
24 0 DEPC exception Specification Optional
25 0-n PerfCnt Performance counter interface Sectiors.30 on Recommended
page 79
26 0 ErrCitl Parity/ECC error control and status Sectior6.31 on Optional

page 82

MIPS32™ Architecture For Programmers Volume Ill, Revision 0.95

6.2 Notation

Table 6-1 Coprocessor 0 Registers in Numerical Order

Register | Sel Register Function Reference Compliance
Number Name Level
27 0-3 CacheErr Cache parity error control and status Sectpi)ggié3823 on Optional
28 0 TagLo Low-order portion of cache tag interface Secggg‘)é3834 on Required (Cache
28 1 Datalo Low-order portion of cache data interface Secgc;r;é3é5 on Optional
29 0 TagHi High-order portion of cache tag interface SectFi)(;rgé3856 on Required (Cache)
29 1 DataHi High-order portion of cache data interface Sectri)gr;)éSSGY on Optional
30 0 ErrorEPC Program counter at last error SectFi)c;r;é3878 on Required
31 0 DESAVE EJTAG debug exception save register SpEgi}-l%Sti on Optional
6.2 Notation

For each register described below, field descriptions include the read/write properties of the field, and the reset state of
the field. For the read/write properties of the field, the following notation is used:

Table 6-2 Read/Write Bit Field Notation

Read/Write
Notation

Hardware Interpretation Software Interpretation

A field in which all bits are readable and writable by software and, potentially, by hardware.

Hardware updates of this field are visible by software read. Software updates of this field jare
R/W visible by hardware read.

If the Reset State of this field is “Undefined”, either software or hardware must initialize the Value
before the first read will return a predictable value. This should not be confused with the fprmal
definition of UNDEFINED behavior.

A field which is either static or is updated onl

y 1 i i h
by hardware. A field to which the value written by softwarég

is ignored by hardware. Software may write
any value to this field without affecting

hardware behavior. Software reads of this figld
return the last value updated by hardware.

If the Reset State of this field is either “0” or
“Preset”, hardware initializes this field to zero
R or to the appropriate state, respectively, on

powerup. If the Reset State of this field is “Undefined’]

software reads of this field result in an

! UNPREDICTABLE value except after a
hardware update done under the conditions|
specified in the description of the field.

If the Reset State of this field is “Undefined”]
hardware updates this field only under thosg
conditions specified in the description of the
field.

MIPS32™ Architecture For Programmers Volume Ill, Revision 0.95 39

Chapter 6 Coprocessor 0 Registers

Table 6-2 Read/Write Bit Field Notation

Read/Write Hardware Interpretation Software Interpretation
Notation

A field to which the value written by software

must be zero. Software writes of non-zero

values to this field may result iNDEFINED

behavior of the hardware. Software reads o

0 A field which hardware does not update, ang this field return zero as long as all previous
for which hardware can assume a zero valug.software writes are zero.

If the Reset State of this field is “Undefined”
software must write this field with zero befor
it is guaranteed to read as zero.

1%

40 MIPS32™ Architecture For Programmers Volume Ill, Revision 0.95

6.3 Index Register (CPO Register 0, Select 0)

Compliance Level:Requiredfor TLB-based MMUsQOptional otherwise.

Thelndexregister is a 32-bit read/write register which contains the index used to access the TLB for TLBP, TLBR, and
TLBWI instructions. The width of the index field is implementation-dependent as a function of the number of TLB

entries that are implemented. The minimum value for TLB-based MMUs is Ceiling(Log2(TLBEntries)). For example,
six bits are required for a TLB with 48 entries).

The operation of the processotdSNDEFINED if a value greater than or equal to the number of TLB entries is written

to thelndexregister.

Figure 6-1shows the format of thedexregister;Table 6-3describes thindexregister fields.

31

Figure 6-1 Index Register Format

Index

Table 6-3 Index Register Field Descriptions

Fields

Name

Bits

Description

Read/
Write

Reset State

Compliance

31

Probe Failure. Hardware writes this bit during
execution of the TLBP instruction to indicate wheth
a TLB match occurred:

Encoding Meaning

0 A match occurred, and the Index field
contains the index of the matching entry|

1 No match occurred and the Index field ig
UNPREDICTABLE

4%

Undefined

Required

30..n

Must be written as zero; returns zero on read.

Reseny

Index

n-1..0

TLB index. Software writes this field to provide the
index to the TLB entry referenced by the TLBR and
TLBWI instructions.

Hardware writes this field with the index of the
matching TLB entry during execution of the TLBP
instruction. If the TLBP fails to find a match, the
contents of this field aldNPREDICTABLE .

R/W

Undefined

Required

MIPS32™ Architecture For Programmers Volume Ill, Revision 0.95

41

6.4 Random Register (CPO Register 1, Select 0)

Compliance Level:Requiredfor TLB-based MMUsQOptional otherwise.

TheRandonregister is a read-only register whose value is used to index the TLB during a TLBWR instruction. The
width of the Random field is calculated in the same manner as that describedrideregister above.
The value of the register varies between an upper and lower bound as follow:

» A lower bound is set by the number of TLB entries reserved for exclusive use by the operating system (the contents
of theWiredregister). The entry indexed by tNdredregister is the first entry available to be written by a TLB Write
Random operation.

» An upper bound is set by the total number of TLB entries minus 1.

Within the required constraints of the upper and lower bounds, the manner in which the processor selects values for the
Random register is implementation-dependent.

The processor initializes tiandonregister to the upper bound on a Reset Exception, and whefirddregister is
written.

Figure 6-2shows the format of thRandonregister;Table 6-4describes th®andonregister fields.

Figure 6-2 Random Register Format

n n-1 0
0 Random
Table 6-4 Random Register Field Descriptions
Fields Description Read/ Reset State Compliance
- Write
Name Bits
0 31..n Must be written as zero; returns zero on read. (0 Reserved

Random n-1..0 TLB Random Index R TLB Entries -|1 Requireq

MIPS32™ Architecture For Programmers Volume Ill, Revision 0.95 42

6.5 EntryLoO, EntryLol (CPO Registers 2 and 3, Select 0)

Compliance Level:EntryLo0O isRequiredfor a TLB-based MMUQptional otherwise.
Compliance Level:EntryLol isRequiredfor a TLB-based MMUQptional otherwise.

The pair of EntryLo registers act as the interface between the TLB and the TLBP, TLBR, TLBWI, and TLBWR
instructions. EntryLo0 holds the entries for even pages and EntryLol holds the entries for odd pages.

The contents of the EntryLo0O and EntryLo1l registers are not defined after an address error exception and some fields
may be modified by hardware during the address error exception sequence. Software writ€ntfthieegister (via
MTCO) do not cause the implicit update of address-related fields BetiiiéAddror Contextregisters.

Figure 6-3shows the format of the EntryLo0O and EntryLol regisfeabje 6-5describes the EntryLo0 and EntryLol
register fields.

Figure 6-3 EntryLoO, EntryLol Register Format
31 30 29 6 5 3 2 10
| o | PFN | c [Do]vd

Table 6-5 EntryLoO, EntryLol Register Field Descriptions

Fields Description Read/ | Reset State| Compliance
Write

Name Bits

o

0 31..30 Ignored on write; returns zero on read. R 0 Requirg

Page Frame Number. Corresponds toRABITS1..12
PFN 29..6 | of the physical address, whd?ABITSis the width of R/W Undefined Required
the physical address in bits.

C 5.3 Coherency attribute of the page. $alele 6-6below. R/W Undefined Required

“Dirty” bit, indicating that the page is writable. If this
bit is a one, stores to the page are permitted. If this| bit
is a zero, stores to the page cause a TLB Modified
exception.

Kernel software may use this bit to implement paging . .
algorithms that require knowing which pages have been */W Undefined Required
written. If this bitis always zero when a page is initially
mapped, the TLB Modified exception that results on
any store to the page can be used to update kernel gata
structures that indicate that the page was actually
written.

Valid bit, indicating that the TLB entry, and thus the
virtual page mapping are valid. If this bit is a one, - .

M : accesses to the page are permitted. If this bit is a zero,R/W Undefined Required

accesses to the page cause a TLB Invalid exceptiop.

Global bit. On a TLB write, the logical AND of the G
bits from both EntryLo0 and EntryLol becomes the |G
bit in the TLB entry. If the TLB entry G bit is a one,
G 0 ASID comparisons are ignored during TLB matches. R/W Undefined
On aread from a TLB entry, the G bits of both
EntryLoO and EntryLol reflect the state of the TLB |G
bit.

Required
(TLB MMU)

Table 6-6lists the encoding of the C field of tlentryLoOandEntryLolregisters and the KO field of ti@onfigregister.
An implementation may choose to implement a subset of the cache coherency attributes shown, but must implement at

MIPS32™ Architecture For Programmers Volume Ill, Revision 0.95 43

least encodings 2 and 3 such that software can always depend on these encodings working appropriately. In other cases,
the operation of the processotBIDEFINED if software specifies an unimplemented encoding.

Table 6-6lists the required and optional encodings for the coherency attributes.
Table 6-6 Cache Coherency Attributes

C(5:3) Value Cache Coherency Attributes Compliance
With Historical Usage
0 Available for implementation dependent use Optional
1 Available for implementation dependent use Optional
2 Uncached Required
3 Cacheable Required
4 Available for implementation dependent use Optional
5 Available for implementation dependent use Optional
6 Available for implementation dependent use Optional
7 Available for implementation dependent use Optional

MIPS32™ Architecture For Programmers Volume Ill, Revision 0.95

6.6 Context Register (CPO Register 4, Select 0)

Compliance Level:Requiredfor TLB-based MMUsQOptional otherwise.

The Contextregister is a read/write register containing a pointer to an entry in the page table entry (PTE) array. This
array is an operating system data structure that stores virtual-to-physical translations. During a TLB miss, the operating
system loads the TLB with the missing translation from the PTE arrayCaihextregister duplicates some of the
information provided in th8adVAddrregister, but is organized in such a way that the operating system can directly
reference a 16-byte structure in memory that describes the mapping.

A TLB exception (TLB Refill, TLB Invalid, or TLB Modified) causes bits MA;30f the virtual address to be written
into theBadVPNZ2field of theContextregister. ThdTEBasdfield is written and used by the operating system.

The BadVPN2 field of th€ontextregister is not defined after an address error exception and this field may be modified
by hardware during the address error exception sequence.

Figure 6-4shows the format of theontextRegisterTable 6-7describes th€ontextregister fields.

Figure 6-4 Context Register Format

31 23 22 3 0
PTEBase BadVPN2 0
Table 6-7 Context Register Field Descriptions
Fields Description Read/| Reset State| Compliance
- Write
Name Bits
This field is for use by the operating system and|is
normally written with a value that allows the - :
PTEBase 31.23 operating system to use tB@entextRegister as a RIW Undefined Required
pointer into the current PTE array in memory.
This field is written by hardware on a TLB
BadVPN2 22.4 exception. It contains bits VA 30f the virtual R Undefined Required
address that caused the exception.
0 3.0 Must be written as zero; returns zero on read. 0 Reserved

MIPS32™ Architecture For Programmers Volume Ill, Revision 0.95

45

6.7 PageMask Register (CPO Register 5, Select 0)

Compliance Level:Requiredfor TLB-based MMUsQOptional otherwise.

ThePageMaskegister is a read/write register used for reading from and writing to the TLB. It holds a comparison mask
that sets the variable page size for each TLB entry, as shoiathile 6-9 Figure 6-5shows the format of thBageMask
register;Table 6-8describes thPageMaskegister fields.

Figure 6-5 PageMask Register Format
31 29 28 13 12 0
o | Mask 0

Table 6-8 PageMask Register Field Descriptions

Fields Description Read/ | Reset State| Compliance
Write

Name Bits

The Mask field is a bit mask in which a “1” bit indicateps
Mask 28..13 | thatthe corresponding bit of the virtual address should R/W Undefined Required
not participate in the TLB match.

0 311223 ' | Must be written as zero; returns zero on read. 0 0 Reserved
Table 6-9 Values for the Mask Field of the PageMask Register
Page Size Bit
28| 27| 26| 25| 24 23 22 21 20 19 18 17 16 (5 {14 |13

4 KBytes 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 KBytes 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1
64 KBytes 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1
256 KBytes 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1

1 MByte 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

4 MByte 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1
16 MByte 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1
64 MByte 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1
256 MByte 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Itis implementation dependent how many of the encodings descrili@dbla 6-%are implemented. All processors must
implement the 4KB page size (an encoding of all zeros). If a particular page size encoding is not implemented by a
processor, a read of tikageMaskegister must return zeros in all bits that correspond to encodings that are not
implemented. Software may determine which page sizes are supported by writing the encoding for a 256MB page to the
PageMaskegister, then examine the value returned from a read dPdlgeMaskegister. If a pair of bits reads back as

ones, the processor implements that page size. The operation of the prode¢N&FFNED if software loads the
PageMask register with a value other than one of those listiebia 6-9

MIPS32™ Architecture For Programmers Volume Ill, Revision 0.95 46

6.8 Wired Register (CPO Register 6, Select 0)

Compliance Level:Requiredfor TLB-based MMUsQOptional otherwise.

TheWiredregister is a read/write register that specifies the boundary between the wired and random entries in the TLB
as shown irFigure 6-6

Figure 6-6 Wired And Random Entries In The TLB

Entry TLBSize-1 A
: S
X @)
' ©
' c
X ©
. e
Wired Register — Entry 10
: §®)
' Qo
=
Entlry 0

The width of the Wired field is calculated in the same manner as that described fodéxeegister. Wired entries are
fixed, non-replaceable entries which are not overwritten by a TLBWR instruction.Wired entries can be overwritten by a
TLBWI instruction.

TheWiredregister is set to zero by a Reset Exception. WritingwWhredregister causes tHiRandonregister to reset to
its upper bound.

The operation of the processotdNDEFINED if a value greater than or equal to the number of TLB entries is written
to theWiredregister.

Figure 6-6shows the format of thé/iredrregister;Table 6-10describes th&Vired register fields.

Figure 6-7 Wired Register Format
31 n n-1 0
0 Wired

Table 6-10 Wired Register Field Descriptions

Fields Description Read/ | Reset State| Compliance
- Write
Name Bits
0 31..n Must be written as zero; returns zero on read. (0 Resenrjed
Wired n-1..0 TLB wired boundary R/W 0 Required

MIPS32™ Architecture For Programmers Volume Ill, Revision 0.95 47

6.9 BadVAddr Register (CPO Register 8, Select 0)

Compliance Level:Required

TheBadVAddrregister is a read-only register that captures the most recent virtual address that caused one of the
following exceptions:

» Address error (AdEL or AdES)

* TLB Refill

e TLB Invalid (TLBL, TLBS)
» TLB Modified

TheBadVAddregister does not capture address information for cache or bus errors, or for Watch exceptions, since none
is an addressing error.

Figure 6-8shows the format of thRadVAddrregister;Table 6-11describes the BadVAddr register fields.

Figure 6-8 BadVAddr Register Format

31 0
BadVAddr
Table 6-11 BadVAddr Register Field Descriptions
Fields Description Read/ | Reset State| Compliance
- Write
Name Bits
BadVAddr 31..0 Bad virtual address R Undefined Requireqj

MIPS32™ Architecture For Programmers Volume Ill, Revision 0.95

48

6.10 Count Register (CPO Register 9, Select 0)

Compliance Level:Required

The Count register acts as a timer, incrementing at a constant rate, whether or not an instruction is executed, retired, or
any forward progress is made through the pipeline. The rate at which the counter increments is implementation
dependent, and is a function of the pipeline clock of the processor, not the issue width of the processor.

The Count register can be written for functional or diagnostic purposes, including at reset or to synchronize processors.

Figure 6-9shows the format of the Count regisfeaible 6-12describes the Count register fields.

Figure 6-9 Count Register Format

31 0
Count

Table 6-12 Count Register Field Descriptions

Fields Description Read/ | Reset State| Compliance
- Write
Name Bits
Count 31..0 Interval counter R/W Undefineq Required

6.11 Reserved for Implementations (CPO Register 9, Selects 6 and 7)

Compliance Level:Optional: Implementation Dependent.

CPO register 9, Selects 6 and 7 are reserved for implementation dependent use and are not defined by the architecture.

MIPS32™ Architecture For Programmers Volume Ill, Revision 0.95 49

50

MIPS32™ Architecture For Programmers Volume Ill, Revision 0.95

6.12 EntryHi Register (CPO Register 10, Select 0)
Compliance Level:Requiredfor TLB-based MMU;Optional otherwise.
TheEntryHi register contains the virtual address match information used for TLB read, write, and access operations.

A TLB exception (TLB Refill, TLB Invalid, or TLB Modified) causes bits MA;30f the virtual address to be written
into the VPN2 field of th&ntryHi register. The ASID field is written by software with the current address space
identifier value and is used during the TLB comparison process to determine TLB match.

The VPN2 field of theEntryHi register is not defined after an address error exception and this field may be modified by
hardware during the address error exception sequence.

Figure 6-10shows the format of thentryHi register;Table 6-13describes th&ntryHi register fields.

Figure 6-10 EntryHi Register Format
31 13 12 8 7 0
VPN2 | o | ASID

Table 6-13 EntryHi Register Field Descriptions

Fields Description Read/ Reset Compliance
Write State

Name Bits

VA3, 130f the virtual address (virtual page number/ 2
This fie?d is written by hardware on a TLB exception ¢

TS

VPN2 31.13 on a TLB read, and is written by software before a TL RIW Undefined Required
write.
0 12..8 | Must be written as zero; returns zero on read. D 0 Reseryed

Address space identifier. This field is written by
ASID 7.0 hardware on a TLB read and by software to establish theR/W

- current ASID value for TLB write and against which
TLB references match each entry’s TLB ASID field.

Required

Undefined (TLB MMU)

MIPS32™ Architecture For Programmers Volume Ill, Revision 0.95 51

6.13 Compare Register (CPO Register 11, Select 0)

Compliance Level:Required.

TheCompareregister acts in conjunction with tli@ountregister to implement a timer and timer interrupt function. The
Compareregister maintains a stable value and does not change on its own.

When the value of th€ountregister equals the value of tBempareregister, an interrupt request is combined in an
implementation-dependent way with hardware interrupt 5 to set interrupt bit IP(7) @ethgeregister. This causes an
interrupt as soon as the interrupt is enabled.

For diagnostic purposes, tRmmpareregister is a read/write register. In normal use howeveCdonepareregister is
write-only. Writing a value to th€ompareregister, as a side effect, clears the timer interiigtire 6-11shows the
format of theCompareregister;Table 6-14describes the Compare register fields.

Figure 6-11 Compare Register Format
31 0
Compare

Table 6-14 Compare Register Field Descriptions

Fields Description Read/ | Reset State| Compliance
- Write
Name Bits
Compare 31..0 Interval count compare value R/W Undefined Required

6.14 Reserved for Implementations (CPO Register 11, Selects 6 and 7)

Compliance Level:Optional: Implementation Dependent.

CPO register 11, Selects 6 and 7 are reserved for implementation dependent use and are not defined by the architecture.

MIPS32™ Architecture For Programmers Volume Ill, Revision 0.95 52

6.15 Status Register (CP Register 12, Select 0)

Compliance Level:Required.

The Statugregister is a read/write register that contains the operating mode, interrupt enabling, and the diagnostic states
of the processor. Fields of this register combine to create operating modes for the processorGRefigteio3, “MIPS32

Operating Modes,” on pagefér a discussion of operating modes, and Se&idn on page 2for a discussion of

interrupt enable.

Figure 6-12shows the format of the Status registetle 6-15describes the Status register fields.

31

Figure 6-12 Status Register Format

2827 26 25 24 23 22 21 20 19 18 17 16 15

8 7 6 5 4 3

CU3.CUQ RP FR RE MX PX BEY TS SRNNII 0 Impl

IM7..IMO

| KK S)K UX U RD ERL E>{Ll¢

Table 6-15 Status Register Field Descriptions

KSU

Fields

Name

Bits

Description

Read/
Write

Reset State

Compliance

cu
(CU3..
Cu0)

31..28

Controls access to coprocessors 3, 2, 1, and 0,
respectively:

Encoding Meaning

0 Access not allowed

1 Access allowed

Coprocessor 0 is always usable when the processor i
running in Kernel Mode or Debug Mode, independent
the state of the Cibit.

If there is no provision for connecting a coprocessor,
corresponding CU bit must be ignored on write and r¢
as zero.

R/W

he
ad

Undefined

Required for
all

implemented

Coprocessors

RP

27

Enables reduced power mode on some implementati
The specific operation of this bit is implementation
dependent.

If this bit is not implemented, it must be ignored on wrif
and read as zero. If this bit is implemented, the reset s
must be zero so that the processor starts at full
performance.

ns.

R/W
ate

@D

Optional

FR

26

Controls the floating point register mode on MIPS64

processors. Not used by MIPS32 processors. This bit must

be ignored on write and read as zero.

R

Required

MIPS32™ Architecture For Programmers Volume Ill, Revision 0.95

54

Table 6-15 Status Register Field Descriptions

Fields

Name

Bits

Description

Read/
Write

Reset State

Compliance

RE

25

Used to enable reverse-endian memory references while

the processor is running in user mode:

Encoding Meaning

0 User mode uses configured endianness

1 User mode uses reversed endianngss

Neither Debug Mode nor Kernel Mode nor Supervisor
Mode references are affected by the state of this bit.

If this bit is not implemented, it must be ignored on writ
and read as zero.

R/W

Undefined

Optional

MX

24

Enables access to MDMX™ resources on MIPS64

processors. Not used by MIPS32 processors. This bit must g

be ignored on write and read as zero.

Optional

PX

23

Enables access to 64-bit operations on MIPS64

processors. Not used by MIPS32 processors. This bit must g

be ignored on write and read as zero.

Required

BEV

22

Controls the location of exception vectors:

Encoding Meaning

0 Normal

1 Bootstrap

See SectioB.2.1 on page 2fr details.

R/W

Required

TS

21

Indicates that the TLB has detected a match on multi
entries. When such a detection occurs, the processor|
initiates a machine check exception and sets this bit.
implementation dependent whether this condition can
corrected by software. If the condition can be correctg
this bit should be cleared by software before resumin
normal operation.

If this bit is not implemented, it must be ignored on writ
and read as zero.

Software should not write a 1 to this bit when its value
a0, thereby causing a 0-to-1 transition. If such a transit
is caused by software, it SINPREDICTABLE whether

hardware ignores the write, accepts the write with no s
effects, or accepts the write and initiates a machine ch

ple

tis
be

e R/W
is
on

de
eck

exception.

Required if
TLB

Shutdown is

implemented

MIPS32™ Architecture For Programmers Volume Ill, Revision 0.95

6.15 Status Register (CP Register 12, Select 0)

Table 6-15 Status Register Field Descriptions

Fields

Name

Bits

Description

Read/
Write

Reset State

Compliance

SR

20

Indicates that the entry through the reset exception ve
was due to a Soft Reset:

Encoding Meaning
0 Not Soft Reset (NMI or Reset)

1 Soft Reset

If this bit is not implemented, it must be ignored on writ
and read as zero.

Software should not write a 1 to this bit when its value
a0, thereby causing a 0-to-1 transition. If such a transit
is caused by software, it SINPREDICTABLE whether
hardware ignores or accepts the write.

tor

R/W

is
on

1 for Soft
Reset; 0
otherwise

Required if
Soft Reset is
implemented

NMI

19

Indicates that the entry through the reset exception ve
was due to an NMI:

Encoding
0 Not NMI (Soft Reset or Reset)
1 NMI

Meaning

If this bit is not implemented, it must be ignored on writ
and read as zero.

Software should not write a 1 to this bit when its value
a 0, thereby causing a 0-to-1 transition. If such a transit|
is caused by software, it SINPREDICTABLE whether
hardware ignores or accepts the write.

ctor

R/W

0]

is
on

1 for NMI; O
otherwise

Required if
NMI is
implemented

18

Must be written as zero; returns zero on read.

ReserV

ed

Impl

17..16

These bits are implementation dependent and are no

defined by the architecture. If they are not implemente

they must be ignored on write and read as zero.

)d’

Undefined

Optional

IM7:IMO

15..8

Interrupt Mask: Controls the enabling of each of the
external, internal and software interrupts. Refer to Sect
5.1 on page 2for a complete discussion of enabled
interrupts.

Encoding Meaning

0 Interrupt request disabled

1 Interrupt request enabled

on

R/W

Undefined

Required

KX

Enables access to 64-bit kernel address space on 64
MIPS processors. Not used by MIPS32 processors. Tl
bit must be ignored on write and read as zero.

bit
his

Reserved

SX

Enables access to 64-bit supervisor address space o
64-bit MIPS processors. Not used by MIPS32 process
This bit must be ignored on write and read as zero.

N
DI'S.
R

Reserved

MIPS32™ Architecture For Programmers Volume lll, Revision 0.95

55

Table 6-15 Status Register Field Descriptions

Fields Description Read/| Reset State| Compliance

- Write
Name Bits

Enables access to 64-bit user address space on 64-hjt
MIPS processors Not used by MIPS32 processors. This
UXx 5 bit must be ignored on write and read as zero. R 0 Reserved

If Supervisor Mode is implemented, the encoding of this

field denotes the base operating mode of the processor. Required if
SeeChapter 3, “MIPS32 Operating Modes,” on page® Supervisor
a full discussion of operating modes. The encoding of this) Mode is
KSU 4.3 | fieldis: R/W Undefined implemented:
Optional
Note: This field overlaps the UM and RO fields, describgd otherwise
below.

If Supervisor Mode is not implemented, this bit denotes
the base operating mode of the processor.Swpter 3,
“MIPS32 Operating Modes,” on pagd@ a full

discussion of operating modes. The encoding of this bi

S.

UM 4 Encoding Meaning RIW Undefined Required
0 Base mode is Kernel Mode

1 Base mode is User Mode

174

Note: This bit overlaps the KSU field, described above.

If Supervisor Mode is not implemented, this bit is
reserved. This bit must be ignored on write and read as
RO 3 zero. R 0 Reserved

174

Note: This bit overlaps the KSU field, described above.

Error Level; Set by the processor when a Reset, Soft
Reset, NMI or Cache Error exception are taken.

Encoding Meaning
0 Normal level
1 Error level

When ERL is set:

¢ The processor is running in kernel mode .
ERL 2 . R/W 1 Required
 Interrupts are disabled

¢ The ERET instruction will use the return address held

in ErrorEPC instead of EPC

« The lower 2° bytes of kuseg are treated as an
unmapped and uncached region. See Sedt®dnon
page 16This allows main memory to be accessed in the
presence of cache errors. The operation of the processor
is UNDEFINED if the ERL bit is set while the
processor is executing instructions from kuseg.

MIPS32™ Architecture For Programmers Volume Ill, Revision 0.95

6.15 Status Register (CP Register 12, Select 0)

Table 6-15 Status Register Field Descriptions

Fields Description Read/| Reset State| Compliance
Write

Name Bits

Exception Level; Set by the processor when any exception
other than Reset, Soft Reset, NMI| or Cache Error
exception are taken.

Encoding Meaning
0 Normal level
1 Exception level
EXL 1 R/W Undefined Required

When EXL is set:
e The processor is running in Kernel Mode

* Interrupts are disabled.

« TLB Refill exceptions use the general exception vecior
instead of the TLB Refill vector.

* EPC and Caugg will not be updated if another
exception is taken

Interrupt Enable: Acts as the master enable for software
and hardware interrupts:

IE 0 Encoding Meaning RIW Undefined Required
0 Interrupts are disabled
1 Interrupts are enabled

MIPS32™ Architecture For Programmers Volume lll, Revision 0.95 57

6.16 Cause Register (CPO Register 13, Select 0)

Compliance Level:Required.

The Causeregister primarily describes the cause of the most recent exception. In addition, fields also control software
interrupt requests and the vector through which interrupts are dispatched. With the exceptiomgf thedRd WP
fields, all fields in the Cause register are read-only.

Figure 6-13shows the format of the Cause registahle 6-16describes the Cause register fields.

Figure 6-13 Cause Register Format
31 30 29 28 27 24 23 22 21 16 15 8 7 6 2 1 0
BD 0| CE | 0 | V] we| 0 | IP7:1PO | Exc Code | 0|

Table 6-16 Cause Register Field Descriptions

Fields Description Read/W | Reset State| Compliance
rite

Name Bits

Indicates whether the last exception taken occurred in

a branch delay slot:

Encoding Meaning
BD 31 0 Notiin delay slot R Undefined Required
1 In delay slot

The processor updates BD only if Stagtyg was zero
when the exception occurred.

Coprocessor unit number referenced when a
Coprocessor Unusable exception is taken. This fip
CE 29..28 | is loaded by hardware on every exception, but is R Undefined Required
UNPREDICTABLE for all exceptions except for
Coprocessor Unusable.

o

Indicates whether an interrupt exception uses the
general exception vector or a special interrupt vector:

v 23 Encoding Meaning R/W Undefined Required
0 Use the general exception vector (16#180)

1 Use the special interrupt vector (164200

MIPS32™ Architecture For Programmers Volume Ill, Revision 0.95 58

6.16 Cause Register (CPO Register 13, Select 0)

Table 6-16 Cause Register Field Descriptions

Fields

Name

Bits

Description

Read/W
rite

Reset State

Compliance

WP

22

Indicates that a watch exception was deferred
because Statgg, or Statugg, were a one at the
time the watch exception was detected. This bit bg
indicates that the watch exception was deferred, 3
causes the exception to be initiated once Stgtus
and Statusg, are both zero. As such, software mu
clear this bit as part of the watch exception handler
prevent a watch exception loop.

Software should not write a 1 to this bit when its
value is a 0, thereby causing a 0-to-1 transition. |
such a transition is caused by software, it is
UNPREDICTABLE whether hardware ignores th
write, accepts the write with no side effects, or

th
nd

to

R/W

D

accepts the write and initiates a watch exception once

Statugy, and Statusg, are both zero.

If watch registers are not implemented, this bit my
be ignored on write and read as zero.

St

Undefined

Required if
watch

registers are

implemented

IP[7:2]

15..10

Indicates an external interrupt is pending:

Encoding Meaning

15 Hardware interrupt 5, timer or performanice
counter interrupt

14 Hardware interrupt 4

13 Hardware interrupt 3

12 Hardware interrupt 2

11 Hardware interrupt 1

10 Hardware interrupt O

Undefined

Required

IP[1:0]

9.8

Controls the request for software interrupts:

Encoding Meaning

9 Request software interrupt 1

8 Request software interrupt 0

R/W

Undefined

Required

ExcCode

6..2

Exception code - sksble 6-17

Undefined

Required

30,
27..24,
21..16,
7,1.0

Must be written as zero; returns zero on read.

Reserved

Table 6-17 Cause Register ExcCode Field

Exception Code Value

Decimal

Hexadecimal

Mnemonic

Description

0

16#00

Int

Interrupt

1

16#01

Mod

TLB modification exception

MIPS32™ Architecture For Programmers Volume Ill, Revision 0.95

59

60

Table 6-17 Cause Register ExcCode Field

Exception Code Value Mnemonic Description
Decimal Hexadecimal
2 16#02 TLBL TLB exception (load or instruction fetch)
3 16#03 TLBS TLB exception (store)
4 16#04 AdEL Address error exception (load or instruction fetch)
5 16#05 AdES Address error exception (store)
6 16#06 IBE Bus error exception (instruction fetch)
7 16#07 DBE Bus error exception (data reference: load or store)
8 16#08 Sys Syscall exception
9 16#09 Bp Breakpoint exception
10 16#0a RI Reserved instruction exception
11 16#0b CpU Coprocessor Unusable exception
12 16#0c Ov Arithmetic Overflow exception
13 16#0d Tr Trap exception
14 16#0e - Reserved
15 16#0f FPE Floating point exception
16-17 16#10-16#11 - Available for implementation dependent use
18 16#12 C2E Reserved for precise Coprocessor 2 exceptions
19-21 16#13-16#15 - Reserved
22 16416 MDMX iFrzﬁp;slgmgdnt?tgol\rlllng Unusable Exception in MIPS64
23 16#17 WATCH Reference to WatchHi/WatchLo address
24 16#18 MCheck Machine check
25-29 16#19-16#1d - Reserved
Cache error. In normal mode, a cache error exception has a
dedicated vector and the Cause register is hot updated. If EJTA
30 16#1e CacheErr | implemented and a cache error occurs while in Debug Mode,
code is used to indicate that re-entry to Debug Mode was cause
a cache error.
31 16#1f - Reserved

Gis
his
d by

MIPS32™ Architecture For Programmers Volume Ill, Revision 0.95

6.17 Exception Program Counter (CPO Register 14, Select 0)

Compliance Level:Required.

The Exception Program Counter (EP@)a read/write register that contains the address at which processing resumes
after an exception has been serviced. All bits oBRE register are significant and must be writable.

For synchronous (precise) exceptioBBC contains either:
« the virtual address of the instruction that was the direct cause of the exception, or

« the virtual address of the immediately preceding branch or jump instruction, when the exception causing instruction
is in a branch delay slot, and tBeanch Delaybit in theCauseregister is set.

For asynchronous (imprecise) exceptidfiBC contains the address of the instruction at which to resume execution.
The processor does not write to EleCregister when the EXL bit in tHétatusregister is set to one.

Figure 6-14shows the format of tHePCregister;Table 6-18describes thEPCregister fields.

Figure 6-14 EPC Register Format
31 0
EPC

Table 6-18 EPC Register Field Descriptions

Fields Description Read/ | Reset State| Compliance
- Write
Name Bits
EPC 31..0 Exception Program Counter R/W Undefinad Requirgd

6.17.1 Special Handling of the EPC Register in Processors That Implement the MIPS16 ASE

In processors that implement the MIPS16 ASE, a read dEf@register (via MFCO) returns the following value in the
destination GPR:

GPR[rt] ~ RestartPC 37 ; || ISAMode
That is, the upper 31 bits of the restart PC are combined witB£h®odebit and written to the GPR.

Similarly, a write to theEPCregister (via MTCO) takes the value from the GPR and distributes that value to the restart
PC and théSA Modebit, as follows

RestartPC =~ —~ GPR[rt] 311 [|O
ISAMode ~ GPR[rt] ¢

That is, the upper 31 bits of the GPR are written to the upper 31 bits of the restart PC, and the lower bit of the restart PC
is cleared. ThéSA Modebit is loaded from the lower bit of the GPR.

MIPS32™ Architecture For Programmers Volume Ill, Revision 0.95 61

6.18 Processor Identification (CPO Register 15, Select 0)

Compliance Level:Required.

TheProcessor Identification (PRIdggister is a 32 bit read-only register that contains information identifying the

manufacturer, manufacturer options, processor identification and revision level of the prdegssers-15shows the
format of thePRIdregister;Table 6-19describes theRIdregister fields.

31

Figure 6-15 PRId Register Format

24 23 16 15

Company Options

Company ID Processor ID

Revision

Table 6-19 PRId Register Field Descriptions

Fields

Name

Bits

Description

Read/

Write

Reset State

Compliance

Company
Options

31..24

Available to the designer or manufacturer of the
processor for company-dependent options. The
value in this field is not specified by the architectu

o

If this field is not implemented, it must read as zero.

Preset

Optional

Company
ID

23..16

Identifies the company that designed or
manufactured the processor.

Software can distinguish a MIPS32 or MIPS64
processor from one implementing an earlier MIP
ISA by checking this field for zero. If it is non-zer
the processor implements the MIPS32 or MIPS6
Architecture.

Company IDs are assigned by MIPS Technologie

+— U7

when a MIPS32 or MIPS64 license is acquired. The R

encodings in this field are:

Encoding Meaning
0 Not a MIPS32 or MIPS64 processor

1 MIPS Technologies, Inc.

2-255 | Contact MIPS Technologies, Inc. for the [ist
of Company ID assignments

Preset

Required

Processor
ID

15..8

Identifies the type of processor. This field allows
software to distinguish between various processd
implementations within a single company, and is

qualified by the CompanyID field, described aboye.

The combination of the CompanyID and
ProcessorlID fields creates a unique number assig
to each processor implementation.

=

ned

Preset

Required

Revision

7.0

Specifies the revision number of the processor. T
field allows software to distinguish between one
revision and another of the same processor type

this field is not implemented, it must read as zerqg.

is

f

Preset

Optional

MIPS32™ Architecture For Programmers Volume Ill, Revision 0.95

62

6.19 Configuration Register (CPO Register 16, Select 0)

Compliance Level:Required.

TheConfigregister specifies various configuration and capabilities information. Most of the fieldsQottiigregister

are initialized by hardware during the Reset Exception process, or are constant. One field, KO, must be initialized by

software in the reset exception handler.

Figure 6-16shows the format of th@onfigregister;Table 6-20describes th€onfigregister fields.

Figure 6-16 Config Register Format

31 30 16 15 14 13 12 10 9 7 6 3 2 0
M| Impl BE| AT | AR | wMT | 0 | Ko |
Table 6-20 Config Register Field Descriptions
Fields Description Read/ | Reset State| Compliance
- Write
Name Bits
Denotes that the Configl register is implemented at a ;
M 31 select field value of 1. R 1 Required
This field is reserved for implementations. Refer to the
Impl 30:16 | processor specification for the format and definition [of Undefined Optional
this field
Indicates the endian mode in which the processor is
running:
- - Preset or
BE 15 Encoding Meaning R Externally Required
0 Little endian Set
1 Big endian
Architecture type implemented by the processor:
Encoding Meaning
0 MIPS32
AT 14:13 1 MIPS64 with access only to 32-bit R Preset Required
compatibility segments
MIPS64 with access to all address segmgnts
Reserved
Architecture revision level:
Encoding Meaning .
AR 12:10 — R Preset Required
0 Revision 1
1-7 Reserved

MIPS32™ Architecture For Programmers Volume Ill, Revision 0.95

63

64

Table 6-20 Config Register Field Descriptions

Fields

Name

Bits

Description

Read/
Write

Reset State

Compliance

MT

9:7

MMU Type:

Encoding Meaning
0 None
1 Standard TLB

2 Standard BAT (see Sectidnl on page
93

3 Standard fixed mapping (see Section
on page 9Y¥

4-7 Reserved

Preset

Required

KO

2:0

Kseg0 coherency algorithm. S&able 6-6 on page 44
for the encoding of this field.

R/W

Undefined

Optional

6:3

Must be written as zero; returns zero on read.

0

Reserved

MIPS32™ Architecture For Programmers Volume Ill, Revision 0.95

6.20 Configuration Register 1 (CPO Register 16, Select 1)
Compliance Level:Required.

TheConfiglregister is an adjunct to ti@onfigregister and encodes additional capabilities information. All fields in the
Configlregister are read-only.

The Icache and Dcache configuration parameters include encodings for the number of sets per way, the line size, and the
associativity. The total cache size for a cache is therefore:

Cache Size = Associativity * Line Size * Sets Per Way
If the line size is zero, there is no cache implemented.

Figure 6-17shows the format of th@onfiglregister;Table 6-21describes th€onfiglregister fields.

Figure 6-17 Configl Register Format

31 30 25 24 22 21 19 18 16 15 13 12 10 9 7 6 5 4 3 2 10
M| mmusize-1 | 1s | L | 1A | ps | bL | DA [czMD|PG WR CAEP FP
Table 6-21 Configl Register Field Descriptions

Fields Description Read/ | Reset State| Compliance
- Write
Name Bits
This bit is reserved to indicate thaCmonfig2register is
present. If theConfig2register is not implemented, this .
M sl bit should read as a 0. If ti@onfig2register is R Preset Required
implemented, this bit should read as a 1.
Number of entries in the TLB minus one. The valueq 0
MMU through 63 is this field correspond to 1 to 64 TLB :
Size-1 30..25 entries. The value zero is implied by Conjfighaving R Preset Required
a value of ‘none’.
Icache sets per way:
Encoding Meaning
0 64
1 128
IS 24:22 2 256 R Preset Required
3 512
4 1024
5 2048
6 4096
7 Reserved

MIPS32™ Architecture For Programmers Volume Ill, Revision 0.95 65

Table 6-21 Configl Register Field Descriptions

Fields Description Read/ | Reset State| Compliance

- Write
Name Bits

Icache line size:

Encoding Meaning

0 No Icache present
4 bytes

8 bytes
16 bytes
32 bytes
64 bytes
128 bytes

Reserved

IL 21:19 R Preset Required

N|lo|loa|lbh|lw|[N|F

Icache associativity:

Encoding Meaning

0 Direct mapped

2-way

3-way

1A 18:16 R Preset Required

4-way

5-way

6-way

7-way

N|o|loa|lbh|[lw|[N|F

8-way

Dcache sets per way:

Encoding Meaning
0 64

128

256

512

1024

2048

4096

Reserved

DS 15:13 R Preset Required

N|joloa|lbh|lW[N|RF

MIPS32™ Architecture For Programmers Volume Ill, Revision 0.95

6.20 Configuration Register 1 (CPO Register 16, Select 1)

Table 6-21 Configl Register Field Descriptions

Fields Description Read/ | Reset State| Compliance
- Write
Name Bits
Dcache line size:
Encoding Meaning
0 No Dcache present
1 4 bytes
2 8 byt .
DL 12:10 yles R Preset Required
3 16 bytes
4 32 bytes
5 64 bytes
6 128 bytes
7 Reserved
Dcache associativity:
Encoding Meaning
0 Direct mapped
1 2-way
2 3-way .
DA 9:7 R Preset Required
3 4-way
4 5-way
5 6-way
6 7-way
7 8-way
Coprocessor 2 implemented:
Encoding Meaning
C2 6 -
0 No coprocessor 2 implemented
1 Coprocessor 2 implements
Used to denote MDMX ASE implemented on a
MIPS64 processor. Not used on a MIPS32 processor. .
MD 5 R 0 Required
Performance Counter registers implemented:
Encoding Meaning
PC 4 0 No performance counter registers R Preset Required
implemented
1 Performance counter registers implemented
Watch registers implemented:
Encoding Meaning)
WR 3 - - R Preset Required
0 No watch registers implemented
1 Watch registers implemented

MIPS32™ Architecture For Programmers Volume Ill, Revision 0.95

67

Table 6-21 Configl Register Field Descriptions

Fields Description Read/ | Reset State| Compliance

- Write
Name Bits

Code compression (MIPS16) implemented:

Encoding Meaning

CA 2 0 MIPS16 not implemented R Preset Required

1 MIPS16 implemented

EJTAG implemented:

Encoding Meaning

EP 1 0 No EJTAG implemented R Preset Required

1 EJTAG implemented

FPU implemented:

Encoding Meaning

0 No FPU implemented
FP 0 1 |FPUimplemented R Preset Required

If an FPU is implemented, the capabilities of the FRU
can be read from the capability bits in fH& CP1
register.

MIPS32™ Architecture For Programmers Volume Ill, Revision 0.95

6.21 Configuration Register 2 (CPO Register 16, Select 2)

Compliance Level:Optional.

The Config2register encodes level 2 and level 3 cache configurations. The exact format of these fields is under review
and will be resolved in the next release of this specification.

Figure 6-18shows the format of theonfig2register;Table 6-22describes th€onfig2register fields.

Figure 6-18 Config2 Register Format

31 30 0
\ M \ TBS

Table 6-22 Config2 Register Field Descriptions

Fields Description Read/ | Reset State| Compliance
Write

Name Bits

This bitis reserved to indicate that a Config3 registef is
present. If the Config3 register is not implemented, this R

M 31 bit should read as a 0. If the Config3 register is Preset Required
implemented, this bit should read as a 1.
The specific definitions of the fields used to define the
TBS 30..0 configuration of the level 2 and level 3 caches, will pe R Preset Optional

specified in the future. Until those fields are defined,
this field should read as zero and be ignored on writes.

MIPS32™ Architecture For Programmers Volume Ill, Revision 0.95 69

6.22 Configuration Register 3 (CPO Register 16, Select 3)

Compliance Level:Optional.

The Config3register encodes additional capabilities. All fields inGoafig3register are read-only.

Figure 6-19shows the format of theonfig3register;Table 6-23describes th€onfig3register fields.

Figure 6-19 Config3 Register Format

31 30 2 1 0
M| 0 SMTL|
Table 6-23 Config3 Register Field Descriptions
Fields Description Read/ | Reset State| Compliance
- Write
Name Bits
This bitis reserved to indicate that a Config4 registef is
M 31 present. With the current architectural definition, this R Preset Required
bit should always read as a 0.
0 30:2 Must be written as zeros; returns zeros on read D 0 Reserved
SmartMIPS™ ASE implemented. This bit indicates
whether the SmartMIPS ASE is implemented.
SM 1 Encoding Meaning R Preset Optional
0 SmartMIPS ASE is not implementgd
1 SmartMIPS ASE is implemented
Trace Logic implemented. This bit indicates whether
PC or data trace is implemented.
TL 0 Encoding Meaning R Preset Optional
0 Trace logic is not implemented
1 Trace logic is implemented
MIPS32™ Architecture For Programmers Volume Ill, Revision 0.95 70

6.23 Reserved for Implementations (CPO Register 16, Selects 6 and 7)

Compliance Level:Optional: Implementation Dependent.

CPO register 16, Selects 6 and 7 are reserved for implementation dependent use and is not defined by the architecture.
In order to use CPO register 16, Selects 6 and 7, it is not necessary to implement CPO register 16, Selects 2 through 5
only to set the M bit in each of these registers. That is, i€tirdig2andConfig3registers are not needed for the
implementation, they need not be implemented just to provide the M bits.

MIPS32™ Architecture For Programmers Volume Ill, Revision 0.95 71

6.24 Load Linked Address (CPO Register 17, Select 0)

Compliance Level:Optional.

TheLLAddrregister contains relevant bits of the physical address read by the most recent Load Linked instruction. This
register is implementation dependent and for diagnostic purposes only and serves no function during normal operation.

Figure 6-20shows the format of thel Addr register;Table 6-24describes theLAddr register fields.

Figure 6-20 LLAddr Register Format
31 0
PAddr

Table 6-24 LLAddr Register Field Descriptions

Fields Description Read/ | Reset State| Compliance
Write

Name Bits

This field encodes the physical address read by the
most recent Load Linked instruction. The format of this
PAddr 31..0 | register is implementation dependent, and an R Undefined Optional
implementation may implement as many of the bits jor
format the address in any way that it finds convenignt.

MIPS32™ Architecture For Programmers Volume Ill, Revision 0.95 72

6.25 WatchLo Register (CPO Register 18)
Compliance Level:Optional.

TheWatchLoandWatchHiregisters together provide the interface to a watchpoint debug facility which initiates a watch
exception if an instruction or data access matches the address specified in the registers. As such, they duplicate some
functions of the EJTAG debug solution. Watch exceptions are taken only if the EXL and ERL bits are zerStattise

register. If either bit is a one, the WP bit is set inGlaeseregister, and the watch exception is deferred until both the

EXL and ERL bits are zero.

An implementation may provide zero or more pairs of WatchLo and WatchHi registers, referencing them via the select
field of the MTCO/MFCO instructions, and each pair of Watch registers may be dedicated to a particular type of reference
(e.g., instruction or data). Software may determine if at least one palatthLoandWatchHiregisters are implemented

via the WR bit of theConfiglregister. See the discussion of the M bit in\WetchHiregister description below.

TheWatchLoregister specifies the base virtual address and the type of reference (instruction fetch, load, store) to match.
If a particular Watch register only supports a subset of the reference types, the unimplemented enables must be ignored
on write and return zero on read. Software may determine which enables are supported by a particular Watch register
pair by setting all three enables bits and reading them back to see which ones were actually set.

It is implementation dependent whether a data watch is triggered by a prefetch or a cache instruction whose address
matches the Watch register address match conditions.

Figure 6-21shows the format of thé/atchLoregister;Table 6-25describes th@vatchLoregister fields.

Figure 6-21 WatchLo Register Format
31 3210
VAddr |1 [R|W|

Table 6-25 WatchLo Register Field Descriptions

Fields Description Read/ | Reset State| Compliance
Write

Name Bits

This field specifies the virtual address to match. Ngte
VAddr 31..3 that this is a doubleword address, since bits [2:0] afe R/W Undefined Required
used to control the type of match.

If this bit is one, watch exceptions are enabled for
instruction fetches that match the address and are
actually issued by the processor (speculative

2 instructions never cause Watch exceptions). R/W 0 Optional

If this bit is not implemented, writes to it must be
ignored, and reads must return zero.

If this bit is one, watch exceptions are enabled for logds
that match the address.
R 1 R/W 0 Optional
If this bit is not implemented, writes to it must be
ignored, and reads must return zero.

If this bit is one, watch exceptions are enabled for
stores that match the address.

W 0 R/W 0 Optional
If this bit is not implemented, writes to it must be
ignored, and reads must return zero.

MIPS32™ Architecture For Programmers Volume Ill, Revision 0.95 73

6.26 WatchHi Register (CPO Register 19)

Compliance Level:Optional.

TheWatchLoandWatchHiregisters together provide the interface to a watchpoint debug facility which initiates a watch
exception if an instruction or data access matches the address specified in the registers. As such, they duplicate some
functions of the EJTAG debug solution. Watch exceptions are taken only if the EXL and ERL bits are zerStattise

register. If either bit is a one, the WP bit is set inGlaeseregister, and the watch exception is deferred until both the

EXL and ERL bits are zero.

An implementation may provide zero or more pairs of WatchLo and WatchHi registers, referencing them via the select
field of the MTCO/MFCO instructions, and each pair of Watch registers may be dedicated to a particular type of reference
(e.g., instruction or data). Software may determine if at least one palatthLoandWatchHiregisters are implemented

via the WR bit of theConfiglregister. If the M bit is one in th&atchHiregister reference with a select field @f *

another WatchHi/WatchLo pair are implemented with a select fielohdf .

TheWatchHiregister contains information that qualifies the virtual address specified WatehLoregister: an ASID,

a G(lobal) bit, and an optional address mask. If the G bit is one, any virtual address reference that matches the specified
address will cause a watch exception. If the G bit is a zero, only those virtual address references for which the ASID
value in thewatchHiregister matches the ASID value in tBatryHiregister cause a watch exception. The optional mask

field provides address masking to qualify the address specifigdtaihLo

Figure 6-22shows the format of thé&/atchHiregister;Table 6-26describes th&VatchHiregister fields.

Figure 6-22 WatchHi Register Format
31 30 29 24 23 16 15 12 11 3 2 0
M[G| 0 ASID 0 Mask | o |

Table 6-26 WatchHi Register Field Descriptions

Fields Description Read/ | Reset State| Compliance
Write

Name Bits

If this bit is one, another pair ¥¥atchHiWatchLo
M 31 registers is implemented at a MTCO or MFCO selegt R Preset Required
field value of h+1’

If this bit is one, any address that matches that specified
in theWatchLoregister will cause a watch exception. |f
G 30 this bit is zero, the ASID field of th&atchHiregister R/W Undefined Required
must match the ASID field of tHentryHi register to
cause a watch exception.

ASID value which is required to match that in the
ASID 23..16 | EntryHiregister if the G bit is zero in thWatchHi R/W Undefined Required
register.

Optional bit mask that qualifies the address in the
WatchLaregister. If this field is implemented, any bit i
this field that is a one inhibits the corresponding

address bit from participating in the address match

Mask 11..3 | If this field is not implemented, writes to it must be R/W Undefined Optional
ignored, and reads must return zero.

Software may determine how many mask bits are
implemented by writing ones the this field and then
reading back the result.

MIPS32™ Architecture For Programmers Volume Ill, Revision 0.95 74

6.26 WatchHi Register (CPO Register 19)

Table 6-26 WatchHi Register Field Descriptions

Fields Description Read/ | Reset State| Compliance
- Write
Name Bits
29..24,
0 15..12, | Must be written as zero; returns zero on read. 0 Reserved
2.0

MIPS32™ Architecture For Programmers Volume Ill, Revision 0.95

75

6.27 Reserved for Implementations (CP0O Register 22, all Select values)

Compliance Level:Optional: Implementation Dependent.

CPO register 22 is reserved for implementation dependent use and is not defined by the architecture.

MIPS32™ Architecture For Programmers Volume Ill, Revision 0.95

76

6.28 Debug Register (CPO Register 23)

Compliance Level:Optional.

TheDebugregister is part of the EJTAG specification. Refer to that specification for the format and description of this
register.

MIPS32™ Architecture For Programmers Volume Ill, Revision 0.95 77

6.29 DEPC Register (CPO Register 24)

Compliance Level:Optional.

TheDEPCregister is part of the EJTAG specification. Refer to that specification for the format and description of this
register.

All bits of theDEPCregister are significant and must be writable.

6.29.1 Special Handling of the DEPC Register in Processors That Implement the MIPS16 ASE

In processors that implement the MIPS16 ASE, a read obtBBCregister (via MFCO) returns the following value in
the destination GPR:

GPR[rt] ~ RestartPC 3; ; || ISAMode

That is, the upper 31 bits of the restart PC are combined witB#®Modebit and written to the GPR.

Similarly, a write to theDEPCregister (via MTCO) takes the value from the GPR and distributes that value to the restart
PC and théSA Modebit, as follows

RestartPC ~ — GPR[rt] 3,4 [0
ISAMode ~ GPRJrt] ¢

That s, the upper 31 bits of the GPR are written to the upper 31 bits of the restart PC, and the lower bit of the restart PC
is cleared. ThéSA Modebit is loaded from the lower bit of the GPR.

MIPS32™ Architecture For Programmers Volume Ill, Revision 0.95 78

6.30 Performance Counter Register (CPO Register 25)
Compliance Level:Recommended.

The MIPS32 Architecture supports implementation dependent performance counters that provide the capability to count
events or cycles for use in performance analysis. If performance counters are implemented, each performance counter
consists of a pair of registers: a 32-bit control register and a 32-bit counter register. To provide additional capability,
multiple performance counters may be implemented.

Performance counters can be configured to count implementation dependent events or cycles under a specified set of
conditions that are determined by the control register for the performance counter. The counter register increments once
for each enabled event. When bit 31 of the counter register is a one (the counter overflows), the performance counter
optionally requests an interrupt that is combined in an implementation dependent way with hardware interrupt 5 to set
interrupt bit IP(7) in theCauseregister. Counting continues after a counter register overflow whether or not an interrupt

is requested or taken.

Each performance counter is mapped into even-odd select valuesRerfi@amtregister: Even selects access the control
register and odd selects access the counter registde 6-27shows an example of two performance counters and how
they map into the select values of efCntregister.

Table 6-27 Example Performance Counter Usage of the PerfCnt CPO Register

Performance PerfCnt PerfCnt Register Usage
Counter Register Select
Value

PerfCnt, Select 0 Control Register 0

0
PerfCnt, Select 1 Counter Register 0
PerfCnt, Select 2 Control Register 1

1
PerfCnt, Select 3 Counter Register 1

More or less than two performance counters are also possible, extending the select field in the obvious way to obtain the
desired number of performance counters. Software may determine if at least one pair of Performance Counter Control
and Counter registers is implemented via the PC bit in the Configl register. If the M bitis one in the Performance Counter
Control register referenced via a select fieldrf another pair of Performance Counter Control and Counter registers

is implemented at the select valuesrof2’ and ‘n+3'.

The Control Register associated with each performance counter controls the behavior of the performance counter.
Figure 6-23shows the format of the Performance Counter Control Redistiele 6-28describes the Performance
Counter Control Register fields.

Figure 6-23 Performance Counter Control Register Format
31 30 11 10 5 4 3 2 1 0
M| 0 Event | 1E[U] s| K Ext]

Table 6-28 Performance Counter Control Register Field Descriptions

Fields Description Read/ | Reset State| Compliance
Write

Name Bits

If this bitis a one, another pair of Performance Counter
M 31 Control and Counter registers is implemented at a R Preset Required
MTCO or MFCO select field value ofi+2’ and ‘n+3'.

MIPS32™ Architecture For Programmers Volume Ill, Revision 0.95 79

Table 6-28 Performance Counter Control Register Field Descriptions

Fields Description Read/ | Reset State| Compliance

- Write
Name Bits

0 30..11 Must be written as zero; returns zero on read 0 Reseryed

Selects the event to be counted by the corresponding
Counter Register. The list of events is implementation
dependent, but typical events include cycles,
instructions, memory reference instructions, branch
Event 10.5 instructions, cache and TLB misses, etc. RIW Undefined Required
Implementations that support multiple performance
counters allow ratios of events, e.g., cache miss ratigs if

cache miss and memory references are selected ag the
events in two counters

>

Interrupt Enable. Enables the interrupt request whe
the corresponding counter overflows (bit 31 of the
counter is one).

Note that this bit simply enables the interrupt request.
The actual interrupt is still gated by the normal
IE 4 interrupt masks and enable in th@tusregister. R/W 0 Required

Encoding Meaning

0 Performance counter interrupt disabled

1 Performance counter interrupt enabled

Enables event counting in User Mode. Refer to Sectijon
3.4 on page %or the conditions under which the
processor is operating in User Mode.

U 3 Encoding Meaning R/W Undefined Required

0 Disable event counting in User Mode

1 Enable event counting in User Mode

Enables event counting in Supervisor Mode (for thase
processors that implement Supervisor Mode). Refer to
Section3.3 on page %or the conditions under which|
the processor is operating in Supervisor mode.

If the processor does not implement Supervisor Modle,

this bit must be ignored on write and return zero on . .
S 2 read. g R/IW Undefined Required

Encoding Meaning

0 Disable event counting in Supervisor Made

1 Enable event counting in Supervisor Mode

Enables event counting in Kernel Mode. Unlike the
usual definition of Kernel Mode as described in Sectipn
3.2 on page 2his bit enables event counting only
when the EXL and ERL bits in ti&tatusregister are
zero.

K 1 R/W Undefined Required

Encoding Meaning

0 Disable event counting in Kernel Mode

1 Enable event counting in Kernel Mode

MIPS32™ Architecture For Programmers Volume Ill, Revision 0.95

6.30 Performance Counter Register (CPO Register 25)

Table 6-28 Performance Counter Control Register Field Descriptions

Fields Description Read/ | Reset State| Compliance
Write

Name Bits

Enables event counting when the EXL bit in thtus
register is one and the ERL bit in tB&atusregister is

zero.
Encoding Meaning
0 Disable event counting while EXL =1,
EXL 0 ERL=0 RIW Undefined Required
1 Enable event counting while EXL = 1,
ERL=0

Counting is never enabled when the ERL bit in the
Statusregister or the DM bit in thBebugregister is
one.

The Counter Register associated with each performance counter increments once for each enabligd ievér24
shows the format of the Performance Counter Counter Regigtbie 6-29escribes the Performance Counter Counter
Register fields.

Figure 6-24 Performance Counter Counter Register Format
31 0
Event Count

Table 6-29 Performance Counter Counter Register Field Descriptions

Fields Description Read/ | Reset State| Compliance
Write

Name Bits

Increments once for each event that is enabled by the

Event corresponding Control Register. When bit 31 is one, |an . ;
Count 1.0 interrupt request is made if the IE bit in the Control RIW Undefined Required
Register is one.

MIPS32™ Architecture For Programmers Volume lll, Revision 0.95 81

6.31 ErrCtl Register (CPO Register 26, Select 0)

Compliance Level:Optional.

TheErrCtl register provides an implementation dependent diagnostic interface with the error detection mechanisms
implemented by the processor. This register has been used in previous implementations to read and write parity or ECC
information to and from the primary or secondary cache data arrays in conjunction with specific encodings of the Cache
instruction or other implementation-dependent method. The exact format of the ErrCtl register is implementation
dependent and not specified by the architecture. Refer to the processor specification for the format of this register and a

description of the fields.

MIPS32™ Architecture For Programmers Volume Ill, Revision 0.95 82

6.32 CacheErr Register (CPO Register 27, Select 0)
Compliance Level:Optional.
The CacheErr register provides an interface with the cache error detection logic that may be implemented by a processor.

The exact format of th€acheErrregister is implementation dependent and not specified by the architecture. Refer to
the processor specification for the format of this register and a description of the fields.

MIPS32™ Architecture For Programmers Volume Ill, Revision 0.95 83

6.33 TagLo Register (CPO Register 28, Select 0, 2)
Compliance Level:Requiredif a cache is implemente@®ptional otherwise

The TagLoandTagHiregisters are read/write registers that act as the interface to the cache tag array. The Index Store
Tag and Index Load Tag operations of the CACHE instruction useatiieandTagHiregisters as the source or sink
of tag information, respectively.

The exact format of th€agLoandTagHiregisters is implementation dependent. Refer to the processor specification for
the format of this register and a description of the fields.

However, software must be able to write zeros intofagLoandTagHiregisters and then use the Index Store Tag cache
operation to initialize the cache tags to a valid state at powerup.

It is implementation dependent whether there is a sifagieoregister that acts as the interface to all caches, or a
dedicatedraglLoregister for each cache. If multipleagLoregisters are implemented, they occupy the even select values

for this register encoding, with select 0 addressing the instruction cache and select 2 addressing the data cache. Whether
individual TagLoregisters are implemented or not for each cache, processors must accept a write of zero to select 0 and
select 2 offagLoas part of the software process of initializing the cache tags at powerup.

MIPS32™ Architecture For Programmers Volume Ill, Revision 0.95 84

6.34 Datalo Register (CPO Register 28, Select 1, 3)

Compliance Level:Optional.

TheDatalLoandDataHiregisters are read-only registers that act as the interface to the cache data array and are intended
for diagnostic operation only. The Index Load Tag operation of the CACHE instruction reads the corresponding data
values into théatal. oandDataHi registers.

The exact format and operation of tBatalLoandDataHiregisters is implementation dependent. Refer to the processor
specification for the format of this register and a description of the fields.

It is implementation dependent whether there is a siDgtaLoregister that acts as the interface to all caches, or a

dedicatedDatalLoregister for each cache. If multifbataloregisters are implemented, they occupy the odd select
values for this register encoding, with select 1 addressing the instruction cache and select 3 addressing the data cache.

MIPS32™ Architecture For Programmers Volume Ill, Revision 0.95 85

6.35 TagHi Register (CPO Register 29, Select 0, 2)

Compliance Level:Requiredif a cache is implemente@®ptional otherwise

The TagLoandTagHiregisters are read/write registers that act as the interface to the cache tag array. The Index Store
Tag and Index Load Tag operations of the CACHE instruction useatiieandTagHiregisters as the source or sink
of tag information, respectively.

The exact format of th€agLoandTagHiregisters is implementation dependent. Refer to the processor specification for
the format of this register and a description of the fields. However, software must be able to write zero$adgtmthe
andTagHiregisters and the use the Index Store Tag cache operation to initialize the cache tags to a valid state at powerup.

It is implementation dependent whether there is a sifagéli register that acts as the interface to all caches, or a
dedicatedragHiregister for each cache. If multiplagHiregisters are implemented, they occupy the even select values

for this register encoding, with select 0 addressing the instruction cache and select 2 addressing the data cache. Whether
individual TagHiregisters are implemented or not for each cache, processors must accept a write of zero to select 0 and
select 2 offagHi as part of the software process of initializing the cache tags at powerup.

MIPS32™ Architecture For Programmers Volume Ill, Revision 0.95 86

6.36 DataHi Register (CP0O Register 29, Select 1, 3)

Compliance Level:Optional.

TheDatalLoandDataHiregisters are read-only registers that act as the interface to the cache data array and are intended
for diagnostic operation only. The Index Load Tag operation of the CACHE instruction reads the corresponding data

values into théatal. oandDataHi registers.

The exact format and operation of tBatalLoandDataHiregisters is implementation dependent. Refer to the processor
specification for the format of this register and a description of the fields.

MIPS32™ Architecture For Programmers Volume Ill, Revision 0.95 87

6.37 ErrorEPC (CPO Register 30, Select 0)
Compliance Level:Required.

TheErrorEPC register is a read-write register, similar to BfeC register, except th&rrorEPC is used on error
exceptions. All bits of th&rrorEPC register are significant and must be writable. It is also used to store the program
counter on Reset, Soft Reset, Nonmaskable Interrupt (NMI), and Cache Error exceptions.

TheErrorEPC register contains the virtual address at which instruction processing can resume after servicing an error.

ErrorEPC contains either:

« the virtual address of the instruction that was the direct cause of the exception, or

« the virtual address of the immediately preceding branch or jump instruction when the error causing instruction is in a
branch delay slot.

Unlike theEPCregister, there is no corresponding branch delay slot indication farthe&EPC register.

Figure 6-25shows the format of therrorEPC register;Table 6-30describes th&rrorEPC register fields.

Figure 6-25 ErrorEPC Register Format
31 0
ErrorEPC

Table 6-30 ErrorEPC Register Field Descriptions

Fields Description Read/ | Reset State| Compliance
- Write
Name Bits
ErrorEPC 31..0 Error Exception Program Counter R/W Undefined Required

6.37.1 Special Handling of the ErrorEPC Register in Processors That Implement the MIPS16 ASE

In processors that implement the MIPS16 ASE, a read oEtherEPCregister (via MFCO) returns the following value
in the destination GPR:

GPR[rt] ~ RestartPC 37 ; || ISAMode
That is, the upper 31 bits of the restart PC are combined witB£h®odebit and written to the GPR.

Similarly, a write to thé&errorEPC register (via MTCO) takes the value from the GPR and distributes that value to the
restart PC and th&A Modebit, as follows

RestartPC =~ —~ GPR[rt] 311 [|O
ISAMode ~ GPR[rt] ¢

That is, the upper 31 bits of the GPR are written to the upper 31 bits of the restart PC, and the lower bit of the restart PC
is cleared. ThéSA Modebit is loaded from the lower bit of the GPR.

MIPS32™ Architecture For Programmers Volume Ill, Revision 0.95 88

6.38 DESAVE Register (CPO Register 31)

Compliance Level:Optional.

TheDESAVHegister is part of the EJTAG specification. Refer to that specification for the format and description of this
register.

MIPS32™ Architecture For Programmers Volume Ill, Revision 0.95 89

90

MIPS32™ Architecture For Programmers Volume Ill, Revision 0.95

Chapter 7

CPO Hazards

7.1 Introduction

Because resources controlled via Coprocessor 0 affect the operation of various pipeline stages of a MIPS32 processor,
manipulation of these resources may produce results that are not detectable by subsequent instructions for some number
of execution cycles. When no hardware interlock exists between one instruction that causes an effect that is visible to a
second instruction, @P0 hazarcexists. Some MIPS implementations have placed the entire burden on the kernel
programmer to pad the instruction stream in such a way that the second instruction is spaced far enough from the first
that the effects of the first are seen by the second. Other MIPS implementations have added full hardware interlocks such
that the kernel programmer need not pad. The trade-off is between kernel software changes for each new processor vs.
more complex hardware interlocks required in the processor.

The MIPS32 Architecture does not dictate the solution that is required for a compatible implementation. The choice of
implementation ranges from full hardware interlocks to full dependence on software padding, to some combination of
the two. For an implementation choice that relies on software pad@iaine 7-1lists the “typical” spacing required to

allow the consumer to eliminate the hazard. The “typical” values shown in this table represent spacing that is in common
use by operating systems today. An implementation which requires less spacing to clear the hazard (including one which
has full hardware interlocking) should operate correctly with and operating system which uses this hazard table. An
implementation which requires more spacing to clear the hazard incurs the burden of validating kernel code against the
new hazard requirements.

Note that, for superscalar MIPS implementations, the number of instructions issued per cycle may be greater than one,

and thus that the duration of the hazard in instructions may be greater than the duration in cycles. It is for this reason
that MIPS32 defines the SSNOP instruction to convert instruction issues to cycles in a superscalar design.

Table 7-1 “Typical” CPO Hazard Spacing

Hazard Typlc_a :
Producer — Consumer on Spacing
(Cycles)
TLBP, TLBR TLB entry 3
TLBWR, TLBWI R Load/store using new TLB entry TLB entry 3
Instruction fetch using new TLB TLB entry 5
entry
MTCO Status[CU] . ggtprocessor instruction needs CU Status[CU] 4
MTCO Status — ERET Status 3
MTCO Status[IE] — Interrupted Instruction Status[IE] 3
MFCO EntryHi EntryHi,
TLBR - MFCO PageMask PageMask 3
MTCO EntryLoO TLBP EntryLoO
MTCO EntryLol TLBR EntryLol
MTCO Entry Hi - TLBWI EntryHi 2
MTCO PageMask TLBWR PageMask
MTCO Index Index

MIPS32™ Architecture For Programmers Volume Ill, Revision 0.95 91

Chapter 7 CP0O Hazards

Hazard Typlcgl
Producer — Consumer Spacing
On
(Cycles)
TLBP — MFCO Index Index 2
MTCO EPC — ERET EPC 2

92 MIPS32™ Architecture For Programmers Volume Ill, Revision 0.95

Appendix A
Alternative MMU Organizations

The main body of this specification describes the TLB-based MMU organization. This appendix describes other
potential MMU organizations.

A.1 Fixed Mapping MMU

As an alternative to the full TLB-based MMU, the MIPS32 Architecture supports a lightweight memory management
mechanism with fixed virtual-to-physical address translation, and no memory protection beyond what is provided by the
address error checks required of all MMUs. This may be useful for those applications which do not require the
capabilities of a full TLB-based MMU.

A.1.1 Fixed Address Translation

Address translation using the Fixed Mapping MMU is done as follows:

* Kseg0 and Ksegl addresses are translated in an identical manner to the TLB-based MMU: they both map to the low
512MB of physical memory.

» Useg/Suseg/Kuseg addresses are mapped by adding 1GB to the virtual address when the ERL bit is zero in the Status
register, and are mapped using an identity mapping when the ERL bit is one in the Status register.

» Sseg/Ksseg/Kseg2/Kseg3 addresses are mapped using an identity mapping.
Table 7-2lists all mappings from virtual to physical addresses. Note that address error checking is still done before the

translation process. Therefore, an attempt to reference kseg0 from User Mode still results in an address error exception,
just as it does with a TLB-based MMU.

Table 7-2 Physical Address Generation from Virtual Addresses

Segment Virtual Address Generates Physical Address
Name
StatUSERL =0 StatU%RL =1
useg 16#0000 0000 16#4000 0000 16#0000 0000
suseg through through through
kuseg 16#7FFF FFFF 16#BFFF FFFF 16#7FFF FFFF
16#8000 0000 16#0000 0000
kseg0 through through
16#9FFF FFFF 16#1FFF FFFF
16#A000 0000 16#0000 0000
through through
ksegl
16#BFFF FFFF 16#16#1FFF FFFF
sseg 16#C000 0000 16#C000 0000
ksseg through through
kseg2 16#DFFF FFFF 16#DFFF FFFF

MIPS32™ Architecture For Programmers Volume Ill, Revision 0.95 93

Appendix A Alternative MMU Organizations

Table 7-2 Physical Address Generation from Virtual Addresses

Segment Virtual Address Generates Physical Address
Name
StatU%RL =0 StatU%RL =1
16#E000 0000 16#E000 0000
kseg3 through through
16#FFFF FFFF 16#FFFF FFFF

Note that this mapping means that physical addresߐ 0000 throughl6#3FFF FFFF are inaccessible when
the ERL bit is off in theStatusregister, and physical addres&é#8000 0000 throughl6#BFFF FFFF are
inaccessible when the ERL bit is on in Bm&tusregister.

Figure 7-1shows the memory mapping when the ERL bit inStedusregister is zerdrigure 7-2shows the memory
mapping when the ERL bit is one.

94 MIPS32™ Architecture For Programmers Volume Ill, Revision 0.95

A.1 Fixed Mapping MMU

Figure 7-1 Memory Mapping when ERL = 0

16#FFFF FFFF

16#E000 0000

16#DFFF FFFH

16#C000 0000

16#BFFF FFFH

16#A000 0000

16#9FFF FFFF

16#8000 0000

16#7FFF FFFF

16#0000 0000

kseg3 kseg3 Mapped

kseg2 kseg2

ksseg ksseg

sseg sseg Mapped

ksegl

ksegO kuseg
suseg
useg
Mapped

kuseg

suseg

useg Unmapped
ksegO
ksegl
Mapped

16#FFFF FFFF

16#E000 0000
16#DFFF FFFF

16#C000 0000
16#BFFF FFFF

16#4000 0000
16#3FFF FFFF

16#2000 0000
16#1FFF FFFF

16#0000 0000

MIPS32™ Architecture For Programmers Volume Ill, Revision 0.95

95

Appendix A Alternative MMU Organizations

96

Figure 7-2 Memory Mapping when ERL =1

16#FFFF FFFF 16#FFFF FFFF
kseg3
kseg3 q
164E000 0000 Mappe 16#E000 0000
16#DFFF FFFH kseg2 16#DFFF FFFF
kseg2
ksseg
ksseg
sseg
16#C000 0000 sseg 16#C000 0000
- Mapped
16#BFFF FFFH 16#BFFF FFFF
ksegl
16#A000 0000
Unmapped
16#9FFF FFFF
kseg0
16#8000 0000 16#8000 0000
16#7FFF FFFF 16#7FFF FFFF
kuseg
kuseg
suseg
suseg
useg
useg
Mapped
ksegO
ksegl
16#0000 0000 Mapped 16#0000 0000

A.1.2 Cacheability Attributes

Because the TLB provided the cacheability attributes for the kuseg, kseg2, and kseg3 segments, some mechanism is
required to replace this capability when the fixed mapping MMU is used. Two additional fields are adde@aafige

register whose encoding is identical to that of the KO field. These additions are the K23 and KU fields which control the
cacheability of the kseg2/kseg3 and the kuseg segments, respectively. Note that when the ERL bit is on in the Status
register, kuseg references are always treated as uncacheable references, independent of the value of the KU field.

The cacheability attributes for kseg0 and ksegl are provided in the same manner as for a TLB-based MMU: the
cacheability attribute for kseg0 comes from the KO fielGaififig and references to ksegl are always uncached.

Figure 7-3shows the format of the additions to tbenfigregister;Table 7-3describes the ne@onfigregister fields.

MIPS32™ Architecture For Programmers Volume Ill, Revision 0.95

A.2 Block Address Translation

Figure 7-3 Config Register Additions
31 30 28 27 25 24 16 15 14 13 12 10 9 7 6 3 2 0
M| K23 | Kku | 0 |BE| AT| AR | MT | 0 | ko |

Table 7-3 Config Register Field Descriptions

Fields Description Read/ | Reset State| Compliance
- Write
Name Bits
. Kseg2/Kseg3 coherency algorithm. Sedle 6-6 on " :
K23 30:28 page 44or the encoding of this field. RIW Undefined Optional
. Kuseg coherency algorithm when Staigisis zero.] :
KU 27:25 SeeTable 6-6 on page 4#r the encoding of this field RIW Undefined Optional

A.1.3 Changes to the CPO Register Interface
Relative to the TLB-based address translation mechanism, the following changes are necessary to the CPO register
interface:

» The Index, Random, EntryLoO, EntryLol, Context, PageMask, Wired, and EntryHi registers are no longer required
and may be removed.

» The TLBWR, TLBWI, TLBP, and TLBR instructions are no longer required and should cause a Reserved Instruction
Exception.

A.2 Block Address Translation

This section describes the architecture for a block address translation (BAT) mechanism that reuses much of the
hardware and software interface that exists for a TLB-Based virtual address translation mechanism. This mechanism has
the following features:

* It preserves as much as possible of the TLB-Based interface, both in hardware and software.
* It provides independent base-and-bounds checking and relocation for instruction references and data references.

* It provides optional support for base-and-bounds relocation of kseg2 and kseg3 virtual address regions.

A.2.1 BAT Organization

The BAT is an indexed structure which is used to translate virtual addresses. It contains pairs of instruction/data entries
which provide the base-and-bounds checking and relocation for instruction references and data references, respectively.
Each entry contains a page-aligned bounds virtual page number, a base page frame number (whose width is
implementation dependent), a cache coherence field (C), a dirty (D) bit, and a valid (Mybite 7-4shows the logical
arrangement of a BAT entry.

MIPS32™ Architecture For Programmers Volume lll, Revision 0.95 97

Appendix A Alternative MMU Organizations

Figure 7-4 Contents of a BAT Entry

BoundsVPN

BasePFN C D VM

The BAT is indexed by the reference type and the address region to be checked as $hblervid

Table 7-4 BAT Entry Assignments

Entry Index Reference Address Region

Type

0 Instruction
useg/kuseg
1 Data
2 Instruction kseg2
3 Data (or kseg2 and kseg3)
4 Instruction
kseg3

5 Data

Entries 0 and 1 are required. Entries 2, 3, 4 and 5 are optional and may be implemented as necessary to address the needs
of the particular implementation. If entries for kseg2 and kseg3 are not implemented, it is implementation-dependent
how, if at all, these address regions are translated. One alternative is to combine the mapping for kseg2 and kseg3 into a
single pair of instruction/data entries. Software may determine how many BAT entries are implemented by looking at
the MMU Size field of th&€onfiglregister.

A.2.2 Address Translation

When a virtual address translation is requested, the BAT entry that is appropriate to the reference type and address region
isread. If the virtual address is greater than the selected bounds address, or if the valid bit is off in the entry, a TLB Invalid
exception of the appropriate reference type is initiated. If the reference is a store and the D bit is off in the entry, a TLB
Modified exception is initiated. Otherwise, the base PFN from the selected entry, shifted to align with bit 12, is added to
the virtual address to form the physical address. The BAT process can be described as follows:

98 MIPS32™ Architecture For Programmers Volume Ill, Revision 0.95

A.2 Block Address Translation

i~ Selectindex (reftype, va)
bounds « BAT[i] poundsven Il 1

pfn < BAT[]] gaseprEN

12

c < BAT[] ¢
d < BAT[l o
v < BAT[] v

if (va > bounds) or (v = 0) then
InitiateTLBInvalidException(reftype)

endif

if (d = 0) and (reftype = store) then
InitiateTLBModifiedException()

endif

pa —va+(pfn||0 12y

Making all addresses out-of-bounds can only be done by clearing the valid bit in the BAT entry. Setting the bounds value

to zero leaves the first virtual page mapped.

A.2.3 Changes to the CPO Register Interface
Relative to the TLB-based address translation mechanism, the following changes are necessary to the CPO register
interface:
» Thelndexregister is used to index the BAT entry to be read or written by the TLBWI and TLBR instructions.
» TheEntryHi register is the interface to the BoundsVPN field in the BAT entry.

» TheEntryLoOregister is the interface to the BasePFN and C, D, and V fields of the BAT entry. The register has the
same format as for a TLB-based MMU.

» TheRandomEntryLol, Contexf PageMaskandWiredregisters are eliminated. The effects of a read or write to
these registers IINDEFINED.

e The TLBP and TLBWR instructions are unnecessary. The TLBWI and TLBR instructions reference the BAT entry
whose index is contained in thedexregister. The effects of executing a TLBP or TLBWRGWNDEFINED, but
processors should prefer a Reserved Instruction Exception.

MIPS32™ Architecture For Programmers Volume lll, Revision 0.95 99

Appendix A Alternative MMU Organizations

100 MIPS32™ Architecture For Programmers Volume Ill, Revision 0.95

Appendix B

Revision History

Revision Date Description
0.92 January 20, 2001 Internal review copy of reorganized and updated architecture documentation.
0.95 March 12, 2001 Clean up document for external review release

MIPS32™ Architecture For Programmers Volume Ill, Revision 0.95 101

	MIPS32™ Architecture For Programmers Volume�III: The MIPS32™ Privileged Resource Architecture
	Table of Contents
	List of Figures
	List of Tables
	About This Book
	1.1� Typographical Conventions
	1.1.1� Italic Text
	1.1.2� Bold Text
	1.1.3� Courier Text

	1.2� UNPREDICTABLE and UNDEFINED
	1.2.1� UNPREDICTABLE
	1.2.2� UNDEFINED

	1.3� Special Symbols in Pseudocode Notation
	1.4� For More Information

	The MIPS32 Privileged Resource Architecture
	2.1� Introduction
	2.2� The MIPS Coprocessor Model
	2.2.1� CP0 - The System Coprocessor
	2.2.2� CP0 Registers

	MIPS32 Operating Modes
	3.1� Debug Mode
	3.2� Kernel Mode
	3.3� Supervisor Mode
	3.4� User Mode

	Virtual Memory
	4.1� Terminology
	4.1.1� Address Space
	4.1.2� Segment and Segment Size
	4.1.3� Physical Address Size (PABITS)

	4.2� Virtual Address Spaces
	4.3� Compliance
	4.4� Access Control as a Function of Address and Operating Mode
	4.5� Address Translation and Cache Coherency Attributes for the kseg0 and kseg1 Segments
	4.6� Address Translation for the kuseg Segment when StatusERL = 1
	4.7� Special Behavior for the kseg3 Segment when DebugDM = 1
	4.8� TLB-Based Virtual Address Translation
	4.8.1� Address Space Identifiers (ASID)
	4.8.2� TLB Organization
	4.8.3� Address Translation

	Interrupts and Exceptions
	5.1� Interrupts
	5.2� Exceptions
	5.2.1� Exception Vector Locations
	5.2.2� General Exception Processing
	5.2.3� EJTAG Debug Exception
	5.2.4� Reset Exception
	5.2.5� Soft Reset Exception
	5.2.6� Non Maskable Interrupt (NMI) Exception
	5.2.7� Machine Check Exception
	5.2.8� Address Error Exception
	5.2.9� TLB Refill Exception
	5.2.10� TLB Invalid Exception
	5.2.11� TLB Modified Exception
	5.2.12� Cache Error Exception
	5.2.13� Bus Error Exception
	5.2.14� Integer Overflow Exception
	5.2.15� Trap Exception
	5.2.16� System Call Exception
	5.2.17� Breakpoint Exception
	5.2.18� Reserved Instruction Exception
	5.2.19� Coprocessor Unusable Exception
	5.2.20� Floating Point Exception
	5.2.21� Coprocessor 2 Exception
	5.2.22� Watch Exception
	5.2.23� Interrupt Exception

	Coprocessor 0 Registers
	6.1� Coprocessor 0 Register Summary
	6.2� Notation
	6.3� Index Register (CP0 Register 0, Select 0)
	6.4� Random Register (CP0 Register 1, Select 0)
	6.5� EntryLo0, EntryLo1 (CP0 Registers 2 and 3, Select 0)
	6.6� Context Register (CP0 Register 4, Select 0)
	6.7� PageMask Register (CP0 Register 5, Select 0)
	6.8� Wired Register (CP0 Register 6, Select 0)
	6.9� BadVAddr Register (CP0 Register 8, Select 0)
	6.10� Count Register (CP0 Register 9, Select 0)
	6.11� Reserved for Implementations (CP0 Register 9, Selects 6 and 7)
	6.12� EntryHi Register (CP0 Register 10, Select 0)
	6.13� Compare Register (CP0 Register 11, Select 0)
	6.14� Reserved for Implementations (CP0 Register 11, Selects 6 and 7)
	6.15� Status Register (CP Register 12, Select 0)
	6.16� Cause Register (CP0 Register 13, Select 0)
	6.17� Exception Program Counter (CP0 Register 14, Select 0)
	6.17.1� Special Handling of the EPC Register in Processors That Implement the MIPS16 ASE

	6.18� Processor Identification (CP0 Register 15, Select 0)
	6.19� Configuration Register (CP0 Register 16, Select 0)
	6.20� Configuration Register 1 (CP0 Register 16, Select 1)
	6.21� Configuration Register 2 (CP0 Register 16, Select 2)
	6.22� Configuration Register 3 (CP0 Register 16, Select 3)
	6.23� Reserved for Implementations (CP0 Register 16, Selects 6 and 7)
	6.24� Load Linked Address (CP0 Register 17, Select 0)
	6.25� WatchLo Register (CP0 Register 18)
	6.26� WatchHi Register (CP0 Register 19)
	6.27� Reserved for Implementations (CP0 Register 22, all Select values)
	6.28� Debug Register (CP0 Register 23)
	6.29� DEPC Register (CP0 Register 24)
	6.29.1� Special Handling of the DEPC Register in Processors That Implement the MIPS16 ASE

	6.30� Performance Counter Register (CP0 Register 25)
	6.31� ErrCtl Register (CP0 Register 26, Select 0)
	6.32� CacheErr Register (CP0 Register 27, Select 0)
	6.33� TagLo Register (CP0 Register 28, Select 0, 2)
	6.34� DataLo Register (CP0 Register 28, Select 1, 3)
	6.35� TagHi Register (CP0 Register 29, Select 0, 2)
	6.36� DataHi Register (CP0 Register 29, Select 1, 3)
	6.37� ErrorEPC (CP0 Register 30, Select 0)
	6.37.1� Special Handling of the ErrorEPC Register in Processors That Implement the MIPS16 ASE

	6.38� DESAVE Register (CP0 Register 31)

	CP0 Hazards
	7.1� Introduction

	Alternative MMU Organizations
	A.1� Fixed Mapping MMU
	A.1.1� Fixed Address Translation
	A.1.2� Cacheability Attributes
	A.1.3� Changes to the CP0 Register Interface

	A.2� Block Address Translation
	A.2.1� BAT Organization
	A.2.2� Address Translation
	A.2.3� Changes to the CP0 Register Interface

	Revision History

