
CMSC 420 Dave Mount

CMSC 420: Lecture X01
Quake Heaps

Priority Queues and Heaps: A priority queue is an abstract data structure storing key-value
pairs. The basic operations involve inserting a new key-value pair (where the key represents
the priority) and extracting the entry with the smallest priority value. These operations are
called insert and extract-min, respectively. Priority queues are often implemented by a tree
data structure called a heap, where keys decrease monotonically along any path to the root.

In addition to insert and extract-min, there are a number of operations that we may like to
perform on priority queues, and heaps are often augmented with different capabilities (such as
the capability to merge two heaps). As with many data structures, the objective is to perform
these operations in time O(log n), where n is the number of keys in the data structure.

Decrease-Key Operation: One fundamental operation, called decrease key, involves decreasing
the key value of a given entry in the heap by a given amount. The decrease-key operation arises
when heaps are used in algorithms such as Dijkstra’s algorithm for shortest paths in graphs
and Prim’s algorithm for computing minimum-cost spanning trees. In such algorithms, the
decrease-key operation is performed more frequently than the extract-min operation, and so it
is critical that it be performed efficiently. (In Dijkstra’s algorithm, decrease-key is performed
once for every edge of the graph whereas extract-min is performed once for every vertex.
A graph with n vertices may have O(n2) edges, so there may be many more decrease-key
operations compared to extract-mins.)

It is not hard to implement the operations insert, extract-min, and decrease-key using a
standard binary heap (the same data structure used in heapsort) so that they all run in
O(log n) time each. The question that an implementer of Dijkstra’s algorithm would like to
know is whether it is possible to implement decrease-key more efficiently, ideally to run in
just O(1) time. It is not known how to do this in the worst case, but it is possible to perform
decrease-key operations in O(1) amortized time, which is sufficient when the data structure
is used within an algorithm.

The most famous heap structure supporting decrease-key in O(1) amortized time is the Fi-
bonacci heap, which was discovered by Michael Fredman and Robert Tarjan in 1984. Unfor-
tunately, Fibonacci heaps are rather complicated structures to describe and analyze. People
have studied simpler alternatives. In this lecture, we will present such a structure called a
quake heap. It was discovered by Timothy Chan around 2013. Our description of the data
structure is a bit different and more detailed that Chan’s original description (which is only
5 pages long!), but the ideas are essentially the same.

But not “increase-key”? Take note that heaps are asymmetric with respect to key orders. While
decrease-key can be implemented to run in O(1) amortized time (assuming a min-heap), there
is no min-heap (of which I am aware) that supports the complementary operation of increase-
key is O(1) amortized time.

Quake-Heap Specifications: Before listing the Quake Heap operations, we should first discuss
how to specify the element on which decrease-key and delete are to be applied. Unlike
dictionaries, heaps do not support fast searching. Thus, if we insert a key x, there is no
efficient way to later find out where it is in the heap. For this reason, the insert function
returns a reference to the node containing x, called a locator. When we later want to refer to
a key, we do so through its locator.

Lecture X01 1 Spring 2022



CMSC 420 Dave Mount

Locator r = insert(Key x): Insert the key x into the heap, and return a reference indi-
cating its location in the heap.

Key x = extract-min(): Remove the item with the minimum key x from the heap, return-
ing its key value.

void decrease-key(Locator r, Key y): Decrease the key of the item referenced by r to
y. (If y is larger than the current key an exception is thrown.)

These are the most basic operations. Note that, unlike a binary search tree, duplicate keys are
allowed, and the extract-min operation may select among ties arbitrarily. We shall see that
the quake heap implements insert and decrease-key in O(1) worst-case time and extract-min
is O(log n) amortized time. Extract-min can take O(n) time in the worst case.

Why is it called “quake heap”? The reason is that the data structure allows itself to slowly
go out of balance. When it determines that it is very badly out of balanced, it massively
reorganizes itself by “flattening” the entire structure, like a city hit by an earthquake.

Quake Heap Structure: The quake heap is represented as a collection of binary trees, where
each node stores a key value. The nodes of these trees are organized into levels. All the leaves
reside on level 0, and each key in the heap is stored in one leaf of some tree (the shaded blue
square nodes in Fig. 1). Each internal node has a left child and an optional right child. Its
key value is that of its left child. If the right child exists, its key value is greater than or equal
to the left child. Thus, the root of each tree holds the smallest key value in the tree, which
is that of the leftmost leaf.

1432041

1 4 3

1 3

1

5 10

3

2

4

1

0

nodeCt

1 6 4 9 20 3 16 1410 115 821

roots

2

3

1

7

13

Fig. 1: An example of a quake heap consisting of four trees, storing a total of 13 keys. (As usual,
values are omitted.) On the left we show arrays of node counts and roots lists.

Each node stores its key, child pointers, parent pointer, and its level. We maintain two
additional arrays organized by level. First, roots is an array of linked lists storing the roots
of each level. (In Fig. 1 these are shown as singly linked lists in blue, but it would be better
to use a doubly linked list for fast insertion and deletion). Second, nodeCt is an array of
integers storing the total node count (not to be confused with the root count) at each level.

Linking and Cutting: Here are a few useful utility operations, which are applied to manipulate
quake heaps. After each operation, the root lists and node counts need to be updated. See
the following code fragments for details.

void make-root(Node u): Converts node u into a root by setting its parent link to null

and adding it to the list of roots.

Node trivial-tree(Key x): Creates a trivial single-node tree storing the key x.

Lecture X01 2 Spring 2022



CMSC 420 Dave Mount

Node w = link(Node u, Node v): Link two root nodes u and v at the same level by joining
them under a common root one level higher. The root with the smaller key goes on the
left side of the new parent (see Fig. 2).

45
vu

w
4w = link(u,v) cut(w)

4 5

4
w

124105 12 4 10 5

5

105

4

124

v

Fig. 2: The operations (a) link and (b) cut.

void cut(Node w): If w’s right child is null, then do nothing. Otherwise, cut the link
between w and right child, causing this child to become the root of a new tree one level
lower. Node w now has just a single left child (see Fig. 2).

Trivial Tree and Link Utilities
void make-root(Node u) { // make u a root node

u.parent = null // null out parent link

add u to roots[u.level] // add it to the list of roots

}

Node trivial-tree(Key x) { // create a trivial single-node tree

Node u = new leaf node with key=x at level=0

nodeCt[0] += 1 // increment node count

make-root(u) // make it a root

return u

}

Node link(Node u, Node v) { // link u and v into new tree

int lev = u.level + 1 // new node’s level

if (u.key <= v.key) // u’s key is smaller?

Node w = new Node(u.key, lev, u, v) // new root with u’s key

else

Node w = new Node(v.key, lev, v, u) // new root with v’s key

nodeCt[lev] += 1 // increment node count

u.parent = v.parent = w // w is the new parent

return w

}

void cut(Node w) { // cut off w’s right child

Node v = w.right;

if (v != null) {

w.right = null; // cut off v

makeRoot(v); // ... and make it a root

}

}

Observe that if properly implemented, all three operations can be performed in O(1) time

Quake Heap Updates: Using the above utilities, we will show how to perform the various quake-
heap operations. The overall design philosophy is to be as “lazy” as possible with all the
operations except for extract-min, which is responsible for maintaining proper structure.

Lecture X01 3 Spring 2022



CMSC 420 Dave Mount

Locator r = insert(Key x): Create a new single-node tree x and return a reference to it.
(In general, there should both a key and value, but we omit values here.)

void decrease-key(Locator r, Key newKey): Let oldKey denote the key value at the
node indicated by leaf node r. Starting at this leaf node, walk up the path of nodes
containing oldKey, updating their key values as we go (see Fig. 3). We stop when we
first encounter a node having a different key value. Generally, we may be out of heap
order with respect to this node, and so we apply cut at this point (see Fig. 3, right)).

As described this operation takes time proportional to the height of the tree, but with
some cleverness, it is possible to implement it in O(1) time. We will discuss this below.

14204 5

54

4 7

4

4 6 5 9 20 7 16 14

r

7

7

cut(u)

decrease-key(r, 2)

204 5

54

4

4

4 6 5 9 20

14

2

2 16 14

r

2

2

u u

Fig. 3: The operation decrease-key(r,2), which decreases key 7 to 2.

Insert and Decrease-Key
Locator insert(Key x) { // insert key x in heap

Node u = trivial-tree(x) // create a one-node tree storing x

return new Locator(u) // (the locator stores a link to u)

}

void decrease-key(Locator r, Key newKey) { // decrease key to newKey

Node u = r.get() // leaf node to be changed

Node uChild = null // u’s child on path

do {

u.key = newKey // update key value

uChild = u; u = u.parent // move up a level

} while (u != null && uChild == u.left) // until end of left path

if (u != null) cut(u) // cut us off from parent

}

Key x = extract-min(): This operation is the most complex because it is responsible keep-
ing the data structure in good balance. It involves the following steps:

Find minimum root: First, we visit all the roots of all the trees (traversing the roots
lists) and find the one with the smallest key. (Among 8, 4, and 7 in Fig. 4(a), this
is 4.) Let this root node be u and let x be the associated (minimum) key.

Delete left path: Next, the function delete-left-path(u) traverse the path from u

down to its leftmost leaf, which contains x, and we remove all the nodes along this
path (see Fig. 4(b)). As a result, we may obtain a number of new trees. (In Fig. 4(c),
we have new trees rooted at 5, 20, and 9.)

Lecture X01 4 Spring 2022



CMSC 420 Dave Mount

Merge trees: We do not want to have too many trees, so we next apply a tree-merging
step. The function merge-trees() works bottom-up. Whenever we see two trees of
the same level, we link them, thus creating a tree at the next higher level. We repeat
this until each level has either zero or one trees. (In Fig. 4(d) we have redrawn the
trees for clarity. We merge 8 and 20 on level 1, which produces a node 8 on level 2.
We merge 5 with 8 on level 2, resulting in node 5 on level 3 (see Fig. 4(e)).

(f)

9

nodeCt[2] = 4 > 3
4 · nodeCt[1] = 3.75!!

quake()

14204 5

54

4

4

4 659 20 7 16 14

7

7

7

(a)

8

118

7

14

u(b) x = 4

1420 5

5

659 20 7 16 14

7

7

7

8

118

7

14

4

4

4

4

4

(c)

1420 5

5

659 20 7 16 14

7

7

7

8

7

14

8 11

delete-left-path(u)

(d)

1420

5

659 20 7 16 14

7

7

7

8

7

14

(Redrawn)

118

(e)

5

1420

5

659 20 7 16 14

7

7

7

8

7

14

118

5

merge-trees()

5

8

65

5 8

118

20

20 7 16

7

14

14

0

1

2

3

4

Fig. 4: The operation extract-min().

Quake: When deleting nodes or performing cuts, we tend to produce more and more
nodes that have just a single child. To remedy this, we the quake() function searches
for the smallest level (if any) such that nodeCt[lev+1] > 3

4 · nodeCt[lev]. If we
find such a level, we remove all nodes at levels lev + 1 and higher.1 (In Fig. 4(e)
we see that nodeCt[2] = 4 > 3

4 · nodeCt[1] = 3
4 · 5 = 3.75 and in Fig. 4(f) we show

the result removing all nodes at level 2 and higher. This generates 5 new trees, one
for each node on level 1.)

Result: Finally, return the key from the first step as the final result.

The entire extract-min process is illustrated in the code block below. The member
variable nLevels stores the number of levels in the data structure. Ideally, the number

1By the way, there is nothing magic about the number 3
4
. The analysis works for any constant α, where 1

2
< α < 1.

Lecture X01 5 Spring 2022



CMSC 420 Dave Mount

of levels will expand as more items are added to the heap (e.g., through the use of a
Java ArrayList), but here we just assume it is fixed.

Extract-Min and Utilities
Key extract-min() { // extract the minimum key

Node u = find-root-with-smallest-key() // find the min root (exercise)

Key result = u.key // final return result

delete-left-path(u) // delete entire left path

remove u from roots[u.level] // remove u as a root

merge-trees() // merge tree pairs

quake() // perform the quake operation

return result

}

void delete-left-path(Node u) { // delete left path to leaf

while (u != null) { // repeat all the way down

cut(u) // cut off u’s right child

nodeCt[u.level] -= 1 // one less node on this level

u = u.left // go to the left child

}

}

void merge-trees() { // merge trees bottom-up in pairs

for (int lev = 0; lev < nLevels-1; lev++) { // process levels bottom-up

while (roots[lev] size is >= 2) { // at least two trees?

Node u = remove any from roots[lev] // remove any two

Node v = remove any from roots[lev]

Node w = link(u, v) // ... and merge them

make-root(w) // ... and make this a root

}

}

}

void quake() { // flatten if needed

for (lev = 0; lev < nLevels-1; lev++) { // process levels bottom-up

if (nodeCt[lev+1] > 0.75 * nodeCt[lev]) // too many?

clear-all-above-level(lev) // clear all nodes above level lev

}

}

There are two additional utilities. The first is called find-root-with-smallest-key().
It searches all the roots for the one with smallest key. The second is called clear-all-

above-level(lev). It removes all nodes strictly above level lev, and makes all the
nodes of this level into roots. This can be done by visiting all the roots at levels lev+1

and higher, traversing the tree to visit all the nodes on level lev and then applying
make-root to each of them. (We have left the details as an exercise.)

This is everything that you need to know to implement the data structure (but if you want
the best performance, see the next section on how to implement decrease-key in O(1) time).

Faster decrease-key: (Optional) As we described it, decrease-key requires time proportional
to the highest level of the node whose key is being decreased. We will show below that each
tree is of height O(log n), so this is already not bad. But the main reason for presenting

Lecture X01 6 Spring 2022



CMSC 420 Dave Mount

the Quake Heap was to show that decrease-key can be performed in O(1) time! So can we
speed it up? Yes, this can be achieved with two simple modifications to our implementation:

Left-leaf pointers: Since each key appears in multiple nodes, it takes time to update these
values. Instead, we store the key only once, in the associated leaf node. Every internal
node along the chain of left-child links that leads to this leaf would normally store this
key. Instead, each stores a pointer to the leaf (see Fig. 5(a)). As a result, we need only
change the one occurrence of the key in the leaf node. This way, when we wish to change
the key, we need only change it in the leaf node in O(1) time.

6 9 7 162054 14 6 9 7 162054 14

(a) (b)

Fig. 5: Enhancements for faster decrease-key().

Highest left-side ancestor: To avoid searching level-by-level from a leaf node up to the
highest ancestor along the left-child chain, each leaf node stores a link to the highest
node containing this key (see Fig. 5(b)).

It is an easy exercise to modify the link function to implement these changes in O(1) time.
(Note that cut does not need to be changed, since it only cuts right child links.) With these
two modifications, we can implement decrease-key in O(1) time as follows. First, given the
leaf node whose key is to be changed, we first change the key in the leaf in O(1) time. Next,
we access the leaf’s thread, to find its highest ancestor in O(1) time, and we then apply cut()

on its parent (assuming it has one), which takes O(1) time.

Amortized Analysis: (Optional) For the remainder of the lecture, let’s analyze the data struc-
ture’s running time. On looking at Fig. 4(f) you might protest that this data structure cannot
possibly be efficient. The quake function could potentially flatten the entire structure all the
way down to the leaf level (hence the name “Quake Heap”). We will prove this high degree
of flattening is extremely rare, and the cost of extract-min, when amortized over a sequence
of operations, is only O(log n).

To make this formal, consider any sequence of m operations (insert, extract-min, decrease-
key) starting from an empty heap, and let n ≤ m denote the total number of items inserted
into the heap over all these operations. For 1 ≤ i ≤ m, let Ti, denote actual time needed to
perform the ith operation. We will ignore constant factors and write 1 for O(1) and log n for
O(log n).

For any sequence of m operations, the total time is T (m) =
∑m

i=1 Ti. The amortized time is
defined to be the average time over the entire sequence, that is, A(m) = 1

mT (m). Here is our
main result:

Lecture X01 7 Spring 2022



CMSC 420 Dave Mount

Theorem: Given any sequence of m operations on a Quake Heap involving at most n entries, each
insert and decrease-key operation takes O(1) time in the worst-case and extract-min takes
O(log n) amortized time.

How high? Before getting into the proof, we should first derive a bound on how high the trees of
the heap might grow.

Lemma: Consider any binary tree, where there are n leaves all at level 0, and for each level
i ≥ 0, the number of nodes at this level, denoted ni, satisfies the property that ni+1 ≤
αni, for some constant α < 1. Then the tree has height at most log1/α n = O(log n).

We will leave the proof as an easy exercise, but the key idea is that if the number of nodes
decreases by a constant factor at each level, we can’t keep this up for more than a logarithmic
number of levels.

The subtrees that remain after any quake operation satisfy the above lemma for α = 3
4 , and

therefore the maximum tree height is log4/3 n = (lg n)/ lg(4/3) ≈ 2.4 lg n. It is easy to verify
that the other operations do not increase tree heights, so this bound applies to the entire
structure.

Review of Potential-Based Analyses: Our proof employs a potential-based analysis. Each in-
stance of the data structure will be associated with a nonnegative function Ψ, called its
potential. Intuitively, low potential means the structure is well balanced and high values
mean it is poorly structured. (We’ll present the precise definition below.) For 1 ≤ i ≤ m,
let Ψi denote the value of the potential for the data structure after the ith operation, and
let Ψ0 denote the initial potential. Define the change in potential ∆i = Ψi − Ψi−1. The
amortized time of the ith operation, denoted Ai, is the sum of the actual cost and the change
in potential, that is Ai = Ti + ∆i.

Why are we doing this? Intuitively, some operations (insert and decrease-key) are cheap in
the sense that the actual time Ti is small, but they can make the data structure less balanced,
resulting in an increase to the potential. On the other hand, some operations (extract-min
in particular) may take much more time, so Ti can be very large. However, these operations
improve the data structure’s balance, meaning that potential decreases by quite a bit. Thus,
there is a trade-off between operations that are cheap (but sloppy) and operations that are
expensive (but beneficial).

What do the individual amortized times Ai have to do with the overall amortized time A(m)?.
To see this, let’s write out the sum of the amortized time:

m∑
i=1

Ai =

m∑
i=1

(Ti + ∆i) =

m∑
i=1

(Ti + (Ψi − Ψi−1)) =

m∑
i=1

Ti +

m∑
i=1

(Ψi − Ψi−1)

=

m∑
i=1

Ti + (−Ψ0 + /Ψ1 − /Ψ1 + /Ψ2 − /Ψ2 + · · · − /Ψm−1 + Ψm)

=

m∑
i=1

Ti + (Ψm − Ψ0) = T (m) + (Ψm − Ψ0).

Therefore, the sum of amortized times is equal to the total time plus the overall increase in
potential. We will see that the potential of an empty structure is zero, so Ψ0 = 0. Since Ψ is

Lecture X01 8 Spring 2022



CMSC 420 Dave Mount

nonnegative, we conclude that Ψm − Ψ0 ≥ 0, and therefore

A(m) =
1

m
T (m) ≤ 1

m

(
T (m) + (Ψm − Ψ0)

)
=

1

m

m∑
i=1

Ai.

So in summary, in order to bound the total amortized cost A(m), it suffices to bound the
individual amortized costs Ai. The above holds for any data structure. Next, we will show
that for the Quake Heap, insert and decrease-key operations, Ai = O(1), and for extract-min
Ai = O(log n).

Quake-Heap Amortized Analysis: In order to bound the amortized cost of an operation, we
need to define our potential function. Ideally, our tree would consist of just a single tree (a
single root node), and all internal nodes have two children. We say that an internal is bad
if it has only one child. Consider the tree at any given moment. Let N denote the current
number of nodes, R the current number of root nodes, and B the current number of bad
nodes. We want to penalize heaps that have multiple roots and lots of bad nodes. Define our
potential to be Ψ = N + 2R + 4B. (Our definition is a bit different from Chan’s, but the
analysis is essentially the same.)

Now, let’s consider what happens when we perform an operation. Let Ψ′ = N ′ + 2R′ + 4B′

denote the new values just after completing this operation. We are interested in the actual
work T and the change in the potential. Define the change in the number of nodes to be
∆N = N ′ −N , and define ∆R, ∆B, and ∆Ψ analogously.

insert: Insert takes T = O(1) actual time (just create a node and add it to the leaf-level
roots list). We get one new node and one new root, so ∆N = ∆R = 1, and ∆B = 0.
Thus, (ignoring constants) the amortized cost is A = T + ∆Ψ = 1 + (1 + 2 ·1 + 4 ·0) = 4,
which is O(1).

decrease-key: Assuming fast decrease-key, this operation can be implemented in T = O(1)
actual time. The number of roots and number of bad nodes each increase by at most
1. The number of nodes does not change. Therefore, amortized cost is A = T + ∆Ψ ≤
1 + (0 + 2 · 1 + 4 · 1) = 8 = O(1).

extract-min: As might be expected, this is the most complex to analyze. Recall that the
maximum level number is O(log n). Let’s ignore the constant factor, and just call this
“lg n”.

To complete this part of the analysis, we will show that each of its basic elements has
an amortized cost of at most O(log n).

Find-min-root and delete-left-path: We will show that the amortized cost of these op-
erations combined is R + O(log n). First, observe that finding the minimum key takes
actual time proportional to the number of roots R. The delete-left-path operation takes
actual time proportional to the maximum tree height, which we have shown to be lgn
(ignoring constant factors). Thus, the total actual time is T ≤ R+O(log n).

How does the potential change? In the process of performing cuts for delete-left-path,
we have only decreased the number of nodes and number of bad nodes (both of which
are beneficial, but we’ll ignore them). We have also converted up to lg n nodes into new
roots. Thus, the increase in potential is at most

∆Ψ = ∆N + 2∆R+ 4∆B ≤ 0 + 2 lg n+ 0 = O(log n).

Therefore, the total amortized cost is T + ∆Ψ = R+O(log n).

Lecture X01 9 Spring 2022



CMSC 420 Dave Mount

Merge-trees: The R term in the above amortized cost can be very large, but merge-trees
comes to our rescue. After running it, we have at most one root at each of the lg n
levels, that is, R′ ≤ lg n. Thus, just considering the root portion of the potential, the
change is at most ∆R = R′ − R ≤ (lg n) − R. (When R is very large, this represents a
large decrease.) Let’s apply this potential drop to pay for extra R term in find-min and
delete-left-path. We have a total amortized cost of

A = T + ∆Ψ ≤ (R+ lg n) + (lg n) −R = 2 lg n = O(log n).

Of course, we also need to account for the time to perform merge-trees, but we claim
that its amortized time is zero. To see why, observe that each time we merge a pair of
trees (which takes O(1) time), we create one new node (which is also a root node), but
we have also eliminated two root nodes. We never create single-child nodes. So, the
contribution to the change in potential is

∆Ψ = ∆N + 2∆R+ 4∆B = 1 + 2(1 − 2) + 4 · 0 = − 1.

The amortized time for merge-trees is T + ∆Ψ = +1 − 1 = 0.

Quake: We claim that the amortized time for this operation is also zero. Suppose that a
quake occurs at level j, causing us to remove all the nodes at levels j + 1 and higher.
Let nj denote the number of nodes at level j (assuming that delete-left-path and merge-
trees have already taken place). Let’s define n>j to be the total number of nodes strictly
above level j. The actual work is proportional to the number of nodes removed, that
is, T ≤ n>j . Since these nodes all are gone, the change in the number of nodes is
∆N = −n>j . Therefore, we have T + ∆N = n>j − n>j = 0.

Each node at level j becomes a new root, so the increase in the number of roots is at
most nj . (We have certainly lost roots at higher levels, but we can ignore these since
they only make our potential change better.)

Most importantly, we have eliminated a lot of bad nodes. Let bj denote the number
of bad nodes at level j. Every node at level j + 1 could have potentially two children
at level j, but each bad node has one less child, so we have nj ≥ 2nj+1 − bj+1. (The
number could be higher, because we may have roots at level nj .) Equivalently, we have
bj+1 ≥ 2nj+1 − nj . In order for quake to be triggered, we know that nj+1 >

3
4nj , and

therefore bj+1 > 2
(
3
4nj
)
− nj = 1

2nj . All of these bad nodes are now gone, so we have
∆B ≤ −bj+1 < −1

2nj . Recalling that R increased by at most nj , it follows that the net
change in 2∆R+ 4∆B is at most 2nj − 4

(
1
2nj
)

= 0.

The amortized cost is T + ∆Ψ = (T + ∆N) + (2∆R + 4∆B), but we have just shown
that both of these values are at most zero. Therefore, the amortized cost of Quake is at
most zero, completing the amortized analysis. Whew!

Lecture X01 10 Spring 2022


