Tries: History
- de la Briandais (1959)
- Fredkin: "trie from "retrieval"
- Pronounced like "try"

Node: Multiway of order k

Example: $\sum = \{ a=0, b=1, c=2 \}$

Keys: \{aab, aba, abc, caa, cab, cbc\}

Digital Search:
- Keys are strings over some alphabet Σ
- E.g., $\Sigma = \{a, b, c, \ldots\}$
- $\sum = \{0, 1\}$ Let $k=|\Sigma|$.
- Assume chars coded as ints: $a=0$, $b=1$, $c=k-1$

Analysis:
- Space: Smaller by factor k
- Search Time: Larger by factor k

Example:
\{aab, aba, abc, caa, cab, cbc\}

Tries and Digital Search Trees I

Search: ~ length of query string [O(1) time per node]

Space:
- No. of nodes ~ total no. of chars in all strings
- Space ~ $k \cdot$ (no. of nodes)

Same structure/Alt. Drawing

How to save space?
de la Briandais trees:
- Store 1 char. per node

This diagram illustrates the structure of tries and digital search trees, showing how keys are stored and how searches are conducted. The nodes are multiway of order k, and the keys are strings over some alphabet Σ. The analysis shows that the space is smaller by a factor of k compared to traditional search trees, but the search time increases by the same factor. The example provided demonstrates the structure and functionality of these data structures.
Patricia Tries:
- Improves trie by compressing degenerate paths
- PATRICIA = Practical Alg. to Retrieve Info. Coded in Alpha...
- Late 1960's: Morrison & Guchinberger
- Each node has index field, indicates which char to check next (Increase with depth)

Dealing with long Paths:
- To get both good space+ query time efficiency, need to avoid long, degenerate paths.
- Path compression

Example:
- ID
 - $S_0: ajam...$
 - $S_1: a$
 - $S_2: apaj...$
 - $S_3: mapaj...$
 - $S_4: amapaj...$
 - $S_5: amapa...$

Tries and Digital Search Trees II

Example: $S = pamapajama$
- Def: Substring identifier for S_i is shortest prefix of S_i unique to this string
- $S_i: amap$. Eq. ID(S_i) = "amap" ID(S_i) = "ama$

Suffix Trees:
- Given single large text S
- Substring queries: "How many occurrences of "tree" in CMSC 420 notes"
- Notation $S = a_0a_1a_2...a_{n-1}$
- Suffix $S_i = a_{i}a_{i+1}a_{i+2}...a_{n-1}$

- Q: What is minimum substring needed to identify suffix S_i?
Example: \(S = \text{pamapajama} \)

Suffix Trees (cont.)
- \(S \) - text string \(|S| = n\)
- \(S_i = i^{th} \) suffix
- Substring ID = min substring needed to identify \(S_i \)
- A suffix tree is a Patricia trie of the \(n+1 \) substring identifiers

Substrings Queries:
- How many occurrences of \(t \) in text?
 - Search for target string \(t \) in trie
 - if we end in \(\) internal node \(\) (or midway on edge) - return no. of extern. nodes in this subtree
 - else (fall out at extern. node)
 - compare target with string
 - if matches - found 1 occurrence
 - else - no occurrences

Example:
- Search("ama") → End at intern node
- Report: 2 occ.
- Search("amapaj") → End at extern node
- Go to \(S_i \), verify

Tries and Digital Search Trees III

Geometric Applications:
- PR k-d tree: Can be used for answering same queries as point kd-tree (orth. range, near. neigh)
- PR k-d Tree: kd-tree based on midpoint subdivision
 - Assume points lie in unit square
 - Example: Geometric Applications:

Analysis:
- Space: \(O(n) \) nodes
 - \(O(n \cdot k) \) total space \((k = |S| = O(1)) \)
- Search time: \(n \) total length of target string
- Construction time:
 - \(O(n \cdot k) \) [nontrivial]

Claim: This is a trie!
1. PA2 due Thu, 11:59pm

2. PA3 almost ready
 - Combine:
 - Heap \rightarrow QuakeHeap
 - kd-Tree \rightarrow HB-kdTree
 - Hash Map \rightarrow Set
 - add nearestNeighbor
 - Euclidean MST

3. You can drop lowest PA.
 - score: PA $0 + 1a + 1b = 100$ pts
 - Get EC: PA $2 = 100$ pts
 - Exam: PA $3 = 100$ pts

4. Midterm grades