Neural Networks II

CMSC 422 SOHEIL FEIZI <u>sfeizi@cs.umd.edu</u>

Today's topics

 Neural Networks for the regression problem

• Back Propagation: SGD+ Chain rule

Neural Unit

Popular Activation Functions

Multi-Layer Neural Network

Types of decision regions

Network with a single node

One-hidden layer network that realizes the convex region: each hidden node realizes one of the lines bounding the convex region

two-hidden layer network that realizes the union of three convex regions: each box represents a one hidden layer network realizing one convex region

Discussion

- 2-layer perceptron lets us
 - Discover more complex decision boundaries than perceptron
 - Learn combinations of features that are useful for classification
- Key design question: How many hidden units?
 More hidden units yield more complex functions
 - Fewer hidden units requires fewer examples to train

Classification using Neural Network

What is θ ?

Compute model parameters using cross-entropy loss opt: $\max_{\theta} \sum_{i=1}^{N} Y^{(i)} \log g(\phi_{\theta}(X^{(i)})) + (1 - Y^{(i)}) \log(1 - g(\phi_{\theta}(X^{(i)})))$

Regression Problem

 Learning a functional relationship about a real-valued number, i.e., when y is tomorrow's temperature.

- Training data: $\{(X^{(i)}, Y^{(i)})\}$
 - $Y^{(i)} \in \mathbb{R}$

Regression examples

Stock market

Weather prediction

Predict the temperature at any given location

Linear Regression

DATASET

inputs	outputs
$x_1 = 1$	$y_1 = 1$
$x_2 = 3$	$y_2 = 2.2$
$x_3 = 2$	$y_3 = 2$
$x_4 = 1.5$	$y_4 = 1.9$
$x_5 = 4$	$y_5 = 3.1$

Simplest case: $Out(x) = w^t x + b$ for some unknown *w,b*.

Given the data, we can estimate w,b.

Copyright © 2001, 2003, Andrew W. Moore

Linear regression

Y

- Given an input x we would like to compute an output y
- For example:
 - Predict height from age
 - Predict Google's price from Apple's price
 - Predict distance from wall from sensors
 - BMI based on height and weight
 - Papers published based on age

Х

Linear regression

Our goal is to estimate *w,b* from a training dataset

Optimization: minimize squared error (least squares)

Y

 $\min_{w,b} \sum_{i=1}^{N} (y^{(i)} - \hat{y}^{(i)})^2$ $\hat{y}^{(i)} = w^t X^{(i)} + b$

Х

Why quadratic?

Nonlinear Regression using Neural Network

What is θ ?

Compute model parameters using quadratic loss opt:

$$\min_{\theta} \sum_{i=1}^{N} (y^{(i)} - \phi_{\theta}(X^{(i)}))^2$$

Loss functions

Classification Problem Regression Problem

✤ Hinge loss

Quadratic loss

Cross entropy loss

How to find optimal model parameters?

Stochastic Gradient Descent

If the objective of optimization is **convex**

Stochastic Gradient Descent

If the objective of optimization is non-convex

In practice, SGD still performs well. Why?

Stochastic Gradient Descent

What do we need to be able to use SGD in deep learning?

Computation of the gradient of the loss function with respect to model parameters

Training a Neural Network

The Backpropagation Algorithm

Gradient descent + Chain rule

Review of Chain Rule

X,Y,Z in R Y=g(X) Z=f(Y)

$$\frac{dZ}{dX} = \frac{dZ}{dY}\frac{dY}{dX}$$

Practice: Y=X² and Z=2Y+1

compute

$$\frac{dZ}{dX} = ?$$

Review of Chain Rule

Graph representation:

This is NOT a neural network

Review of Chain Rule $X \in \mathbb{R}^n, Y \in \mathbb{R}^m, Z \in \mathbb{R}$ Y=g(X), Z=f(Y)

Practice: Y₁=X₁+X₂², Y₂=X₂+X₃², Z=Y₁²+Y₂²

Compute $\nabla_X Z$

Graph Representation

Training: Backpropogation Algorithm

- Searches for weight values that minimize the total error of the network over the set of training examples.
- **Repeated** procedures of the following two passes:
 - Forward pass: Compute the outputs of all units in the network, and the error of the output layers.
 - Backward pass: The network error is used for updating the weights.
 - Starting at the output layer, **the error is propagated backwards through the network, layer by layer**. This is done by recursively computing the local gradient of each neuron.

The Backpropogation Algorithm

Back-propagation training algorithm, illustrated:

Backprop adjusts the weights of the NN in order to minimize the network total mean squared error.

Example: two layer NN

Gradient of objective w.r.t. output layer weights v

Multi-Label Classification

Q: how to extend our method for multi-label classification?

Recall: Multi-Label Classification, Logistic Regression

