CMSC498F/838C &

ENEE759N: Advances in XR

TuThu 3:30-4:45

cs.umd.edu/class/spring2022/cmsc498F/

Instructional Team

Ming C. Lin http://www.cs.umd.edu/~lin/

- BS. MS. PhD in Electrical Engineering & Computer Science University of California at Berkeley
- B. Mersky & CapitalOne E-Nnovate Endowed Professor 2021-
- UMD Distinguished University Professor, 2019-
- Former Elizabeth Iribe Chair of Computer Science @ UMD, 2018-2020
- J.R. & L.S. Parker Distinguished Prof. Emeritus @ UNC Chapel Hill
- ACM, IEEE & Eurographics Fellow; ACM SIGGRAPH Academy
- Areas of Research: Virtual Reality, Robotics, Al/ML/Vision & Autonomy with focuses on physically-based modeling/simulation, multimodal interaction (haptics & audio technology), animation, and human-computer interaction; applications in autonomous driving, virtual try-on, healthcare, digital design, rapid prototyping, and personalized fabrication/cybermanufacturing

Nick Rewkowski (nickvr.me)

- PhD student working on multimodal XR applications
- Undergrad & MS at UNC Chapel Hill
- Taught HCI-focused VR class at UNC
- Research journey: Surgical reconstruction → 3D audio → Locomotion \rightarrow Haptics \rightarrow HRI \rightarrow AR surgical training \rightarrow simulating humans → metaverse/spatial documents Programming games for ~13 years (~8 years Unity & UE4)
- Adobe collab for the past year on our informational metaverse

vision (spatial documents)

My guinea pigs >

Niall Williams (niallw.github.io)

- PhD student working on VR locomotion.
- Undergrad from Davidson College.

Some of my research >

Research interests in XR, human perception, HCI, and robotics.

What is Extended Reality (XR)?

- Software & hardware that replaces or mixes real world stimuli with synthetic
- Different types of XR mostly differentiated by display and tracking methods

Sutherland 1965: The Ultimate Display

It (the Ultimate Display, referring to VR and AR) is a looking glass into a mathematical wonderland...... If the task of the display is to serve as a looking-glass into the mathematical wonderland constructed in computer memory, it should serve as many senses as possible.

- Ivan Sutherland, 1965

- A virtual world, through a HMD, appeared realistic thru augmented 3D sound & tactile feedback
- Computer hardware to create the virtual word and maintain it in real time
- The ability users to interact with objects in the virtual world in a realistic way

Sutherland 1968: First XR headset

- "A head-mounted three dimensional display" Ivan Sutherland 1968
- Concept first introduced by a concept paper to DARPA in 1965

Virtual Reality (VR)

- Main "illusions" needed for immersive experience (Mel Slater 2009):
 - Place illusion: feeling like you're in the virtual world and not the real world
 Plausibility illusion: feeling like what happens in the virtual world is really happening
- "Pure VR" only handles virtual world and assumes real stimuli completely replaced with synthetic stimuli (e.g. Oculus Rift, HTC Vive, Google Cardboard)
 - If the synthetic stimuli not handled correctly, people can get simulator sickness, lack of "presence" or immersion or worse (e.g. trauma)
- · Focus typically on games

Augmented Reality (AR)

- Overlays digital 'elements' onto real world, including graphics, images, video, sound, GIS data, text, animation, etc.
- Through head-mounted display, hologram, video-passthrough, etc.
- Focus on simple experiences or information easily available
- "Pure AR" only overlays information on real world but virtual world and real
 world do not interact/real world info is not needed (e.g. Google Glass, old Snap
 Spectacles, marker-based tracking-Nintendo 3DS, volumetric AR display, etc.)

Mixed Reality (MR)

- Merge of real world and virtual world, co-existing & interacting in real time
- Focus on practicality, productivity, integration with day-to-day life
- Tracking real world features & hands makes the Oculus Quest an MR headset
- Hololens handles real world & virtual 3D world simultaneously, so it's also MR
- The class HMD will be MR since exposed camera allows for inside-out tracking

XR Trends Over Time

XR Trends Over Time: Pre-1970s

- Fundamental tracking, rendering, & display technology (esp. For simulators)
- First VR headsets (stereo headsets in the 1800s!)

XR Trends Over Time: 1970s

• Fundamental 3D graphics technology (e.g. Phong shading)

XR Trends Over Time: 1980s

- Physically-Based Rendering (PBR)
- VR Simulators (esp. flight)
- Interactive Games
- Display adapters (old GPUs)
- Multimodal XR apps

- Clumsy but effective XR headsets
- Boom of XR psychological studies
- 3D Game Engines
- Interactive 3D graphics
- Collision detection & interactive physics
- Boom in areas like haptics & locomotion

XR Trends Over Time: Late 2000s

- Research on different modalities, audio, locomotion, rendering—all evolved close to what they are today
- Unity, Unreal 2/3, idEngine, Source Engine, Autodesk Maya, etc. established many interactive 3D graphics conventions

XR Trends Over Time: 2010s

- Good mobile technology
- Strong GPUs
- Decent commercial headsets
- Industry getting involved

XR Trends Over Time: Predicting Late 2020s

- Focus on application development
- Procedurally-generated content
- Better, large-scale HRI
- Virtual assistants
- Attempts at neural interfaces

Challenges in XR

Challenges in XR: HMD Design

- Weight
- Physical dimensions & portability
- Field of view (FOV)
- · Battery vs. computing power
- Pixel opacity
- Optics

- Interactive PBR & realistic materials
- Foveated rendering & optimization
- Physically-based interactions

Challenges in XR: Audio

- Procedural generation vs. sound synthesis (esp. on mobile)
- Sound propagation & 3D acoustics (esp. on mobile)
- Personalized 3D audio display

Challenges in XR: Virtual Humans

- Uncanny valley
- Al behavioral modelling
- Social cues
- Procedural animation & rigging
- GANs & ML-based creation

Challenges in XR: Content

- Procedural generation
 - Doesn't only apply to environments! Used to speed up getting good textures, models, animation, audio, etc.
- GANs & ML-based content
- User-generated vs. company-generated

Challenges in XR: Application Design & Utility

- How to keep people using it?
- How to reduce barrier of entry?
- How to integrate with people's lives?

Challenges in XR: Natural Locomotion in VE

- Getting people to walk around naturally with limited space
- Handling sickness & perception (knowledge of the "illusion" changes its effect!)

Challenges in XR: Tracking & Reconstruction

- Local tracking of headset more or less solved
- Global tracking still challenging
 - o How to register virtual environments to real ones?
 - How to link the virtual environments together?
 - How to overlay real and virtual worlds?
- Reconstructing people, real environments, etc. to make virtual world as convincing as real world
 - Photogrammetry is the state-of-the-art for high-fidelity asset creation but it's incredibly slow & tedious

Challenges in XR: SW/HW Compatibility

- Huge issue with Metaverse, NFTs, etc.
- How can assets trivially move between XR applications as if they are part of a unified metaverse?
- Walled garden vision of Facebook vs. mostly user-generated approach of VRChat/Second Life

Challenges in XR: Natural Interactions with Full-Body Tracking

- Eyes, hands, etc.
- Predict user intent
- HMD's FOV of hands
- Gesture recognition
- Accessibility

Current Research Directions

Research Directions: Natural Virtual Locomotion

- Use distortions to trick people into walking differently than they realize.
- Maximize real walkable space.
- Must support a range of users and environment shapes.

Research Directions: Intelligent Virtual Environments

- Future of work
- Context-aware interaction
- Integration with daily life

Research Directions: Emotive Virtual Humans

- Realistic virtual assistants w/ procedural animation
- Passing the uncanny valley

Research Directions: Human-Robot Interaction in XR

- Robot dogs to train the visually-impaired spatial mapping skills
- Robots in warehouses for collaborative XR

Research Directions: Metaverse

- (Seamlessly-Integrated Real & Virtual Environments)
- Human-centric mapping between spaces: pocket dimensions/ portals/ symbolic links, human-centric motion planning, context, behavior prediction
- "Internet of XR"/ "IoX": sensor/device fusion, connected HMDs, maximizing knowledge of real world

Research Directions: Intelligent, Responsive XR

- Immersive, XR Interfaces for autonomous systems
 - Driverless vehicles
 - o Autonomous drones
 - Intelligent sensor networks
- XR Systems for rapid design and personalized fabrication/manufacturing
- XR Systems for remote collaboration, tourisms, social events
- XR Systems for personalized healthcare and wellness
- XR Interface for virtual try-on
- XR Systems for social good
 - o Immersive scenario replay for Police Training, Bias Training, Al for Fairness, etc.
- Audio-Visual Reconstruction

Course Information

Course Goals

- Understand multimodal XR design
 - o Basic technology is not enough!
 - Basic principles of audio, haptic, and visual rendering
 - $\circ\ \$ How multiple modalities work together and interact with each other
 - o Challenges of Metaverse & future of XR
- Understand "realism", "illusion", and "presence"
 - o Roles of locomotion
 - o Sense of 'being there'
 - Avatar & object animation/simulation
 - Social interaction via virtual humans
- Application design & development
- Use the state-of-the-art APIs & XR tools

Course Components

- Lectures & Participation
- Homework Assignments [30%]
- Final Project [35%]
- Midterm & Final exams [35%]

Lectures

- Will be recorded, but with emerging tech, the discussion is very beneficial.
- Rough sequence:
 - Basic 3D graphics
 - Basic game development
 - o Immersion & presence
 - Virtual Locomotion
 - 3D Audio
 - o 3D Animation
 - Virtual agents & Al
 - o Tracking & Reconstruction
 - Displays, Optics, Lenses, etc.
 - o Advanced Topics (light fields, haptics, olfactory, GANs, holography, etc.)
- Invited speakers from industry & academia

Why Are We Learning Game Development?

- Game engines: powerful, realtime, interactive, multimodal 3D applications
- De facto standard for XR development and most interactive 3D consumer programs
 - Unity typically better for mobile XR or indie developers
 - o UE4 typically better for desktop VR or future jobs in game dev
- Both engines have libraries covering most XR topics!
- You can choose engine based on preference & future goals. Should not affect difficulty much. Unity is typically easier for new game devs.

Headset Logistics

- Possibilities:
 - o Class-provided headset
 - Requires building for your own phone
 - ARCore (Android) and ARKit (iOS) mostly the same
 - Oculus Quests (IRB 0110)
 - Personal devices
- Assignments will use the same HMDs except for variation of implementation modules & API difference
- Some assignments require class HMD
 - o (AR features provided by phone camera)
- Anyone using personal devices?

Assignments

- Address the major modalities & concepts of XR design
 - o Goal is breadth of experience; final project is opportunity to dive deep
- Build on each other to result in complete multimodal XR application
- Sequence
 - o A1: Setting up the XR development environment
 - A2: 3D modelling and virtual environment creation
 - A3: Game development for XR; gaze-interacting with virtual objects
 - o A4: Hand-tracking, hand interaction with your virtual environment, & AR markers
 - A5: Natural virtual locomotion
 - A6: Adding 3D sound to a virtual environment
 - A7: Animated virtual agents (adding autonomous virtual humans to the environment)
 - o A8(G): Basic inverse kinematics (allowing you to commandeer a virtual avatar)
- · May include non-technical readings
- Grad section will have slightly extra requirements & higher expectations
- Submission includes code/Git repo & video showing it works

Introducing Assignment 1

- Development Environment Setup
- Very different depending on combination of platforms, but more or less the same moving forward
 - o Try not to do it at the last minute! Almost Guaranteed to run into some kind of errors
- 2 fundamental readings:
 - "What's Real About VR?" Fred Brooks 1999
 - "Recent advances in augmented reality" Ron Azuma 2001
 - Will answer some short-answer questions about them

Final Project

- Will dive deeper into:
 - $\circ \quad$ one of the topics from the suggested list
 - something not covered in depth (e.g. later class topics like HRI, haptic displays, body/object/scene reconstruction)
- Previous final projects
 - Examples:
 - Inter-human behavioral tree for realistic interactions with virtual humans in VR
 - Realistic bouncing audio "probes" to help visually-impaired people go through a maze
 - Objectively measuring frustration with design & mechanics in a virtual world
 - Creating 3D minimap for navigation in VR
 - Simulate depth-of-field in gaze-based interactions with 3D objects
 - Study how acoustic materials affect performance in a treasure hunt
 - Sound propagation for realistic instrument playing in VR

Exams

- Midterm
- Final
- Relatively high-level design questions
 - E.g. How you would advise a client who wants specific XR app built? What are the important considerations?
 - E.g. Someone wants to make an XR app a certain way; what problems are they not addressing correctly?
 - E.g. Why do we need to do [a particular thing] for XR?
 - o E.g. How did [this paper] likely accomplish [this feature]?
- No programming, but will ask high-level questions about technical problems
 - o E.g. why are VR lenses designed the way they are
 - $\circ\quad$ E.g. what do waveguides and lightboxes do in near-eye AR displays?

Collaboration & General Policies

- Alone or pair for regular assignments
- 1-5 people in a group for final project
 - o Final report must describe what each team member does
 - o Each will be graded based on individual contributions specified
 - o Group efforts should show higher levels of complexity and components
- Recommendation: try to stay with the same OS & platform combination
- No collaboration on exams
 - o Planning to be in-class
- Lateness
 - o A total of 24 hours grace period for the entire semester
 - o 10% off per fraction of week late
 - Late assignments due to illness or unexpected events can be excused with doctor's notes or other forms of written indication

Office Hours (subject to change)

- Open Lab Hours: Monday 1pm-4pm for the first 3-5 weeks
 - @ AR/VR Lab (IRB 0110) on the ground level
- Office hours
 - o Ming: Tues/Thur after class or by appointment (email: lin@umd.edu)
 - o Nick: Friday 2-5pm (Zoom ID "nrewkowski2") or by request (email nick1@umd.edu)
 - Niall: Wednesday 1pm 3pm (Zoom ID "niallw") or by request (niallw@umd.edu)

Communication Method: Piazza, Slack, or Discord?

- Piazza:
 - o Pros: made for classes, everyone knows how to use it
 - Cons: hard to have ongoing conversation, not used outside of classes, no videoconferencing, slow response
- Slack:
 - \circ $\;\;$ Pros: good for professional stuff, most people know how to use it
 - $\circ \quad \text{Cons: resource intensive, buggy, not great videoconferencing, somewhat overkill in features} \\$
- Discord
 - Pros: most gamers already use it regularly, great videoconferencing & group calls for OH, lightweight, basically same as Slack otherwise, good for hybrid classes
 - o Cons: non-gamers probably don't use it, not really meant for classes
- VOTE! Survey at tinyurl.com/xrclasspoll

Background form

tinyurl.com/umdxrsurvey

Mask Policy

- Wear KN95 masks in classrooms
- Must have booster and follow UMD testing protocols
- Keep yourself and everyone else healthy and safe!

Questions?

(Course Website:	
	https://www.cs.umd.edu/class/spring2022/cmsc498F/index.html	