Intro to Game Development:
GameObijects, Actors, & Game
Languages

unity @

UNREAL

ENGINE

Game Development Outline

Fundamental data structures (GameObjects/Actors)

Logic differences between engines w/ realtime examples

Editors

Event handling

Raycasting & collision detection

Realtime programming demo of game engine logic

How XR is handled in the engine

Realtime VR programming demo with the Oculus Quest (grabbing objects,
teleporting, etc.)

(Most) (Modern) Game Engines

e Essentially realtime systems
o clock (in this case tied to framerate) handles continuous logic
o Synchronization between subsystems (physics, listeners, collision detectors, ray-tracing, etc.)
o Tries to be as synchronous as possible (e.g. each frame lasts the same amount of time)
o As opposed to solely reacting to input through callbacks, like in most mobile apps, text-based
games, etc. which have no continuous logic beyond an actual clock
e Game engines are mostly fully-featured APls containing many sub-APIs
o Physics, collision logic, rendering, materials, optimized data structures, Al, audio etc.
e Playground to experiment with abstract CS concepts like clocks, state

machines, data structures, black boxes, etc.

“quartz crystal

.. analog fo digital
“conversion

Information

e A1: come to 0110 Friday or Monday 12-4pm if running into problems
o Will simultaneously have Zoom room open, but it's hard to debug remotely
o Trouble-makers seem to be Windows/iOS and UE4/i0OS
e A2 will be 3D modelling & UV mapping your face
e Most of the graphics & game dev info will come through experience, don’t
worry if you don't “get it” right now

Today

Most concepts we look at in VR & game dev are similar between engines

Today, we look at where things diverge so when we look at general concepts, you
implicitly know implementation differences

We normally won’t distinguish between Unity & UE4 but it's important to

understand
o (engine design somewhat affects why Unity~AR, UE4~VR)
Look at Unity & Unreal through critical lens instead of roasting Unity

Example Application for the Class

e Treasure Hunt
o Seems to be a good example with connection to relevant areas of XR
o Audio, locomotion, logic, haptics, IK, animation, etc.
o First-person character, XR or non-XR...call them TreasureHunter
m Can walk around and turn head
m Can bump into objects in the environment but not go through them
m Can grab collectible treasure with hands
m Can hear
o Treasure
m 3D mesh that you hide in the VE to be found
m Has some point value corresponding to how hard it is to find
m Finding some amount of points wins the game
o Main menu
m Game start
m Settings
m High score
o Win/Lose Screen

“* H Lt H
Ob.J?Ct. Ir} a Game Engine Quick Examples of Actor & ActorComponent
e Atomic “Object” with a 3D transform
© 3D equivalent of basic Java Object..... Everything in the VE can be simplified down to this o (before we actual get into that part...just to have a high-level understanding)
== e StaticMeshActor (mesh placeable in environment) is Actor with
StaticMeshComponent (component defined by StaticMesh)
e DirectionalLight is Actor with DirectionalLightComponent
e In Unity, can add DirectionalLightComponent to something, but it can’t implicitly
— define the GO as a light (there can never be a DirectionalLight “object” as far as
e I - Unity is concerned... just a GO with DirectionalLight behavior)

| Create =| (@A
e Unity: GameObject (GO) Create Empty
o Most common term for this (and makes sense!)
o List of components described by “MonoBehaviors”...which are also EACH the GO’s type (multi-inheritance)
o Name is one of few ways Unity follows industry standard & Unreal doesn’t

Add Companent

RGO o Edit Blueprint

4 Static Mesh

e UE4: Actor & ActorComponent
o Actor: UE4’s version of GameObject... should always have 3D root
o ActorComponent: Similar to Actor except always part of Actor...meaningless by itself.™
m E.g. Mesh gives info about physical structure but needs 3D transform to be in game... so a mesh by
itself is not too useful and is a COMPONENT of the Actor with transform
= Might have a relative transform... but could be purely logical like most Unity (Colliders are exception)
o Based on idea that everything in scene has some action...even if just a static obstacle

Fundamental Difference Between Unity & Others

Non_GameObJeCt ObJeCtS e Plugin structure and other differences are not “fundamental” differences... just
implementation differences (e.g. Unity plugin implementation causes strange
compiler errors and breaks b/w engine versions)

e Fundamental difference: How the GameObject is defined (or in Unity’s case,
NOT defined!)

o Unity: GameObject is composite of unlinked components describing behaviors
Texture B (non-3D...just scripts) ... but only identifiable by 1 component at once (overall GameObject

e Things without physical representation in VE (Transform has no meaning)
o Settings, save files, state machines, textures, shaders, etc.
o Except for Actor & ActorComponent

) AbcimpartSettings

1 # ActorComponent container has no subtype). GameObject is nothing more than List<Component>
Q) Alser o Non-Unity engines: Object-oriented. Actor is defined composite of variables (some
Q) Alse I pointers to ActorComponents & other Actors) & functions. Actor containing this info and more

=& AnimationMadifier is a subclass
\ My treasure

can't be typed
like this in Unity

) AnimationSharing
O AnimMetaData
=) AnimNotify
&) AnimMotifyState

Structure of Unity’s GameObjects
For people WhO already knOW Un|ty .. Similar to strategy pattern & core of why Unity’s so “easy”...but also cause of unscalability

Internal variables

e Prefabs don’t count! They aren’t types in C#. Just templates (like prototypes) GyiCameebicct

of something in the Editor or in the scene.

e They don't solve the problem of lack of real GameObject type.... But they can
help a little bit b/c prefab “variant” is kind of like a subclass (but in the JS
sense...)

e \We'll come back to prefabs

Exposed variables

C# Scrij
Variables

Functions

8l Internal functions
(Unity doesn’t have
exposed functions...
more in a bit)

(other cur;’pcnem"s)
(simplest AND
most complex

structure)

Add Component |

“Finding” Other Components

Unity GameObject

C# Script
Variables

Functions

(other component™s)

Components can find other components by getting their
GameObject and asking it to GetComponent<Type> or
GetComponents<Type> to return pointers

e This GameObject can be casted to any individual component

o So OVRCameraRig (just display name in scene or of prefab) IS-A GameObject,
Transform, OVRCameraRig, OVRManager, OVRHeadsetEmulator, Camera,
PostProcessLayer. Outer GO can be grabbed with typedGO.gameObject

e But can't be casted to a class that already knows ALL of the

components (aka definition)...GetComponents returns Typel[]
o No subtype of GameObject that defines the Components |& f"’f;
o So you as the dev must know structure beforehand...
o While Unity doesn't.... It figures it out at runtime
o GO s really just a collection of pointers to components

(simplest AND GameObject
most complex
structure) Transform OVRCam OVRManag OVRHeadse Camera PostProce
eraRig er tEmulator ssLayer [sdacomponem |

Thinking about Treasure Hunter..

o How do we get a full definition of the GameObject
o Make a TreasureHunter script
i. Manually assign pointers using public keyword
(exposes var to editor)
ii. GetComponent over and over
iii. GetComponents and iterate through all possible
classes to figure out what casts correctly (HIGH 1Q)

I

Basic Structure of Other Engine GameObjects & Actors

Object-oriented..

..not much different than other OO programs you're familiar with

Isubclassed

Non-Unity Actor (C++)

Ci+ File

Comp C++ File

Comp Variabics

oy 2], TSR
Roiaion e yawrol]
Scale [xyz]

‘omp Functions
finclude Math lbraries)

for simplicity &
general C++
example

Exposed Variables
(Ed1tAnywh)
exposedTestva able = 0.1f;
(EditAnywhere, l)l\p\dy”am(ﬂ’ X

internalTestvar

Internal variables

mponent ;

Internal functions
(Exposed functions won’t make sense
til we look at Blueprint)

What do you notice that’s different from OO design?

e There is no dev-editable script linking the Components

o Outer GameObject cannot be subclassed... not defined any more

specifically internally (can’t make components member variables)
e So is there any complete definition of “what” this GO is?

o No! Can create template through prefab but no way to autocomplete
anything between scripts without the dev linking them manually (manually
defining bunch of GetComponents AND checking for null/count.... Or
linking through editor)

e Positives?

o Might allow more flexibility

o Might allow GameObject to be more barebones...

m UE4 Actor contains a lot of data by default (multiplayer, rendering,

Unity GameObject

Ci#
Variables

Functions

(other component"'s) etc.).... Can use up RAM quickly
(simplest AND o Might be simpler to formalize than UE4... it's a tree where components
most complex (nodes) can only access each other by going ALL the way back to root and
structure) then down to other component

o Way simpler to understand. The structure never gets more complex

Strange implications

e You can have multiple GOs with TreasureHunter script with completely
different structure (so all IS-A TreasureHunter).... Wouldn’t complain til
runtime when something breaks

e In code, you can technically make no difference between some other camera

in the scene and TreasureHunter b/c both IS-A camera
o Might be good in some rendering optimizations
o But normally just makes things confusing in code

Used to be able to do weird things

e E.g. mix 2D and 3D collisions and physics...
in & prevent this...

. They needed to specifically go
just made life harder for themselves

Can't add due to a conflicting component! B

<

Can't add component BoxColider 2D’ to GameObject
because it conficts with the existing Rigidbody’
derived component!

Which structure sits better with you?

Unity GameObject Non-Unity Actor (C++)
| TanstormComponent_| -
C# Script
Variables
Location [x y 2]
Rotation [pllch yaw roll]
Scale [xy z] Comp C++ File

Comp Variables
Location [xyz] TASFOR

Funcﬁons
D
Rotation [pitch yaw roll]
[Olher Transform Math] Scale [xy 2]

omp Functions
(#include Math ibraries)

Varlibles

Functions

(other component*s)
(simplest AND

most complex
structure)

Towards Blueprints & High-Level Programming...

e Works alongside C++. UE4 Actor allows vars/functions to be shared

Non-Unity Actor (C++)
corie

C++ can subclass BP and vice versa!
m (generally don’t subclass BP IN C++ b/c defeats the purpose of
BP has no syntax.... Only “syntax” is physical structure of the graph!

abstracting the C++)

‘Comp Variabies
Lecnion [y v
Folaion e o)
i)

Comp Functons
(Ansioe e o)

>
>

Towards Blueprints & High-Level Programming...

e Simplest BP abstracts ALL C++.... never need to touch Visual Studio!

UE4 Actor (Blueprint)

omp BP Variables.
omp BP Functions

nn

o Simply adds BP Variables + Functions on same layer as C++. BP organized structurally

(BP subclass Compare to
of same
example; Non-Unity Actor (C++)
CreFile
mh!ll =
-
= Scale [xyz

G ey Comp Variables.
Location [xy2) ™A
Roaton [pich yaw o]
Scale[xyz]

Comp Functions.
(enciuce Malh brris)

BP Functions.

Cé+ Functions
(#include Math libraries)

Functions
(#include Math libraries)

No More of This!

Either not deal with CPP at all or streamline compilation

UE4 Actor (Blueprin) . . .
Towards Blueprints & High-Level Programming
e Mixing & matching C++ & BP can create complex OO structures... strange at first
but should be familiar once you get past the simultaneous use of languages
Compare to

e

(BP subclass
of same

Non-Unity Actor (C++)
Geerie

e

it s i)

BPChidActort™ 4 . "

imp Functons

Finally an example of exposé‘:
functions! C++ functions - =
available for BP

Functons
(onc s

Ux refers to
macros that are
used to expose
variables from
Ci+ 10 BP, such
as UPROPERTY
and UFUNCTION

Example of Programming Differences

crpcniacort A

o Functions. 4
incuge Mt orares)

This is how we do it []

e Problem statement: | want to get info from the TreasureHunter.... | want to calc their score and save it in main TreasureHunter unity c#
class! Needs to be calculated in main class b/c this function needs to be used for other things (e.g. Ul display) ¢ Remember that inventory should only be

o lonly changed displayName for things in editors... no variable specifying name

Sl a=

O inipacia Zghics 4= o B

@ [Treasurshunter
Taq [sagpes
Prefab |_osen

Cistat =

.
ARG

B vressuretnier »

FRA Component's o Edil Blueprint - 2 Bl

sesrch componenns 0]
e omp—r——
et (nherted)

Use Fied Update
Disabl Eye Anchor |

e Bt
EEET— o

OIS S
]
O S S

- ¥OVR Manager (Script)

Element2

Add Component

revner (Portroces ©
reasureruner (tocomots) ©

G

Gao

TnteractahlT oolsSDKDI ver
¥\ OVRCameraRig
I\ TrackingSpace

¢ Hands +oe
b SceneSstup T
GameObject bt = 0 #a -
Directional Light AN © £ 5 -
s coin

¢ treasureChest
4@ pirateBooty

Note that both have an Inventory Component
that should only be used for storage

irateBooty
jgation

. ArenaGeametry

- Lighting

Actor3

used for storage of pointers
Lots of ways to do it

Update()

Unreal C++ Srpel Unreal BP

B cocurcuner
A Coriponent= o EditBlueprint =

easureHunterInventory;

TreasureHunterCPP.cpp

= treasureHunterInventory->inventoryItems

collectibleTrea

Anyone not convinced these are the same? Thoughts?
In Action

C# col . _game0 etComponant<Tre

Gt > collectibleTs treasureHunterTnventory->inventoryItems;

sre : collectibleTreasures) {

currentTotalScore
total!

BP

Main Purposes of BP

Main Purposes of C++

Nice things about BP

No syntax

Compiles crazy fast

Trivial to create pointers

APl importing handled automatically

e Helps you understand the visual structure of logic
o Even if you don't like UE4, BP is good for building logical understanding!

Abstracts the annoyances of syntax
e Compiles <1s
e Search what you think something is called, like in Blender

[For Each Loop

» o 0
b o Way faster at loops (BP has similar computational limitations to Python)

e e Can interface with APIs not specifically made for game dev

‘Treasure Hunter Inventory % - el
= Return N

»
® ouput

General Flow in UE4

e Use C++ to expose other APIs to UE4 Editor & BP
e Use C++ to handle slow operations (e.g. mesh iteration)
e Use BP for everything else (unless you prefer using ONLY C++)

Intro to Game Development:
Game Engine Editors, Events, &
Raycasting

& unity @

UNREAL

ENGINE

Relationship between BP & C++ JCiiciiblciiy
s Reasons not to use UE4 & other high-end engines
e You probably already understand this relationship! Same
as these relationships: e UE4 is PBR by default, meaning it kills the GPU

o XCode: relation between Swift & Obj-C conp BE)
o C++: relation between C++ & C (extern “C”) R
o ML work: relation between Python & C++ (numpy is mostly C++
exposed to python!)
o C: relation between C and x86 (_asm_ volatile (“[some ASM
commands]”))
e BPis an interesting case b/c it’s basically the most

high-level we can get (that is actually feasible!)
o It's also pretty weird, but probably have seen similar APls
o MIT Scratch, GameMaker Studio, RPG Maker, Blender Cycles, Maya
PBR, etc.

omp BP Functions
include Math lbraries)

Dev controls what gets shared
o

Cé+ Functions
(#include Math libraries)

e UE4 also uses pseudo-ray-tracing called “voxelized cone-tracing”.... Not as
slow as ray-tracing, but still slower than traditional method

e Uses a TON of RAM (lot of data propagates through subclasses)

e Overkill for many tasks (Cuphead would probably look no different but
perform poorly in UE4)

o UE4 treats ALL Actors as physics-based
Another resource-killer if not careful

Program : ey R R\ orld

Toolbar = . 9. - MOutliner/Hie

-Settings
-Windows
-Help
-Meta-stuff

-(in Unity)
Plugin config

-Info about
engine
version,
Project
name, etc

Project
(Assets)/
Content
Browser

-List of
folders &
assets
(classes,
materials,
levels, etc.)

-Also has
Plugin
content,
favorites,
etc. i engine about
. ompilation,
-(in UE4) = . states, etc.)
color-coded 15 « .
types

3D View of
Scene

SHORT RANT

-WHY can't you easily see the transform of gizmos that have orientation in Unity? The camera & lights looks the
same no matter which angle. They couldn’t add a simple vector like UE4??? How do | know where the camera is
facing without clicking it?

-Physical
layout of

GO
2aRa (GCs) The camera icon itself isn’'t even facing the right way
VW

Details/

| 1

Rapasier = Relative or global
-Info about st ansform

GO and

Components

handles this in component
Slparenting structure)

Play/Pause Game (in
gUnity, only in Editor) (in
UE4, Play in VR & other
options)

s (in UE4) Launch to device
nfo | -Source control

-Exposed ‘ - — — : - Navigation/Transform
variables r

-(in UE4) inematics, Build Lighting
metadata & Navigation,etc

(replication)

4-S) : M
Actors
Paint mode (vertex/
exture paint, weights for

imation, etc.)
-Landscape (shape of
ground) (Unity has Terrain
tool elsewhere)
-Foliage painting (add
plants, grass, etc.) (Unity
has a simpler variant)
Geometry (edit UE4
eshes/brushes) (Unity
ecently added ProBuilder)

