Intro to Game Development (Part 2)

& unity @

UNREAL

ENGINE

RECAP

Example Application for the Class

e Treasure Hunt

o Seems to be a good example with connection to relevant areas of XR

o Audio, locomotion, logic, haptics, IK, animation, etc.

o First-person character, XR or non-XR...call them TreasureHunter
m Can walk around and turn head
m Can bump into objects in the environment but not go through them
m Can grab collectible treasure with hands
m Can hear

o Treasure
m 3D mesh that you hide in the VE to be found
m Has some point value corresponding to how hard it is to find
m Finding some amount of points wins the game

o Main menu *
= Game start 8
m Settings ﬂ
m High score

o Win/Lose Screen

A1 Questions

e Notes:
o We're looking for ways to streamline the XCode process (e.g. not needing to manually change
signing team every time)
m (the “automatic signing team” in Unity isn’t your name, but a long hex code)
o Git repo should not include build, Library, or Logs folders (although this isn’t part of the grade)
o Don’t use UE4 on iOS until we figure out how to deal with weird Apple Dev problems
o If having VM trouble, let us know
o A2 will be much less stressful
o Only needs Blender (no platform-specific instructions)
o Will assign it Thursday & have until next Thursday

e If you don’t have headset, let us know and we’'ll get it outside class

(Most) (Modern) Game Engines

e Essentially realtime systems
o clock (in this case tied to framerate) handles continuous logic
o Synchronization between subsystems (physics, listeners, collision detectors, ray-tracing, etc.)
o Tries to be as synchronous as possible (e.g. each frame lasts the same amount of time)
o As opposed to solely reacting to input through callbacks, like in most mobile apps, text-based

games, etc. which have no continuous logic beyond an actual clock

e Game engines are mostly fully-featured APls containing many sub-APIs
o Physics, collision logic, rendering, materials, optimized data structures, Al, audio etc.

e Playground to experiment with abstract CS concepts like clocks, state

machines, data structures, black boxes, etc.

quarlz crystal

.., analog o digital
“conversion

“Object” in a Game Engine

Atomic “Object” with a 3D transform
o 3D equivalent of basic Java Object.... Everything in the VE can be simplified down to this
o 9s des|

= Hierarchy [
| Create = | [arAll

Unity: GameObiject (GO) -
o Most common term for this (and makes sense!)

o List of components described by “MonoBehaviors”...which are also EACH the GO’s type (multi-inheritance)
o Name is one of few ways Unity follows industry standard & Unreal doesn’'t
nine

Lieate Empty Add Component.

BY Gasiccreandopacior

© U BasicCPPAndBPAcior

UE4: Actor & ActorComponent
o Actor: UE4’s version of GameObject... should always have 3D root
o ActorComponent: Similar to Actor except always part of Actor...meaningless by itself.*

m E.g. Mesh gives info about physical structure but needs 3D transform to be in game... so a mesh by
itself is not too useful and is a COMPONENT of the Actor with transform
= Might have a relative transform... but could be purely logical like most Unity (Colliders are exception)
o Based on idea that everything in scene has some action...even if just a static obstacle

Quick Examples of Actor & ActorComponent

o (before we actual get into that part...just to have a high-level understanding)
Stat!cMeshActor el Dl enylronment) 'S. el il e Things without physical representation in VE (Transform has no meaning)
StaticMeshComponent (component defined by StaticMesh) o Settings, save files, state machines, textures, shaders, etc.

e DirectionalLight is Actor with DirectionalLightComponent o Except for Actor & ActorComponent
In Unity, can add DirectionalLightComponent to something, but it can’t implicitly
define the GO as a light (there can never be a DirectionalLight “object” as far as
Unity is concerned... just a GO with DirectionalLight behavior)

Non-GameObiject Objects

O Ab mpun Settings

Texture

Acmrcnmpl:men[
b Q) Alser
Q)

=& AnimationMadifier

|fis StaticMeshActor3({instance)

nent (inherited)

. DirectionalLight{instance)

<% Directi

:3: AnimationSharingSetup
O AnimationsharingStateProcessar
O AnimMetaData

l"O AnimNatify

v AnimMotifyState

€0

Unity vs Others

Structure of Unity’s GameObjects

Unity GameObject NO”‘U”itZ AFctor (C++) Similar to strategy pattern & core of why Unity’s so “easy’...but also cause of unscalability
++ File
[TanstormComponent | e — .
- Internal variables
v | Unity GameObject

Location [xy 2]
Rotation [pitch yaw roll]
Scale [xyz] Comp C++ File

F s Comp Variables
L Location [xy 2] TeroR
[Other Transform Math] e bl ek

omp Functions
(#include Math libraries)

Scrij

Exposed variables

C#
Variables

C# Scrij
Variables

Functions

Functions

8 Internal functions

ther component?” i
(other component*’s) (Unity doesn’t have

(other component"'s)

(simplest AND - exposed functions...
most complex (simplest AND more in a bit)
structure) most complex
Heu structure)

“Finding” Other Components What do you notice that's different from OO design?

Components can find other components by getting their

Unity GameObject GameObject and asking it to GetComponent<Type> or Unity GameObjoct e There is no dev-editable script linking the Components
A o Outer GameObject cannot be subclassed... not defined any more
GetComponents<Type> to return pointers

) . o specifically internally (can’t make components member variables)
e This GameObject can be casted to any individual component e Sois there any complete definition of “what” this GO is?
o So OVRCameraRig (just display name in scene or of prefab) IS-A GameObject,

) o No! Can create template through prefab but no way to autocomplete
e, QYR CETmERERE, QURNEREEER, OVI_?HeadsetEmuIator, Cémera, anything between scripts without the dev linking them manually (manually
PlestiFliwesssil i Olir C0 et o @eldies] wilh vzl 0. eemsoljas defining bunch of GetComponents AND checking for null/count.... Or
e But can’t be casted to a class that already knows ALL of the

linking through editor)
C# Script components (aka definition)...GetComponents returns Type([] e Positives?
Variables
o No subtype of GameObject that defines the Components ‘vfy

C# Script

o Might allow more flexibility

Functions o So you as the dev must know structure beforehand... Functions o Might allow GameObject to be more barebones...
o While Unity doesn't.... It figures it out at runtime m UE4 Actor contains a lot of data by default (multiplayer, rendering,
(6thér condonents) o GO s really just a collection of pointers to components (har coniaonentte) etc.).... Can use up RAM quickly
(simplest AND GameObject (simplest AND o Might be simpler to formalize than UE4... it's a tree where components
most complex most complex (nodes) can only access each other by going ALL the way back to root and
structure) Transform OVRCam OVRManag OVRHeadse Camera PostProce structure) then down to other component

eraRig er tEmulator ssLayer o Way simpler to understand. The structure never gets more complex

Basic Structure of Other Engine GameObjects & Actors

Object-oriented....not much different than other OO programs you're familiar with

Towards Blueprints & High-Level Programming...

e Works alongside C++. UE4 Actor allows vars/functions to be shared

I subclassed rp o C++ can subclass BP and vice versa!
T for simplicity & 4 i e
Non-Unity Actor (C++) ;’.,Z,'Z‘."cif’ i = (generally don't subflass Bf’ IN C i b/c defeats the purpose lofstractlng the C++)
C+ File example " Non-Unity Actor (C+#) | ©. BP has no syntax.... Only “syntax” is physical structure of the graph!
mmm cosFie
Lol i — >
e B >

Scalelxydl

UE4 Actor (Blueprint)

Comp C++ File
Comp Variables
Location [xy z] ™ANSFGRH
Rotation [pitch yaw rol]
Scale [xy z]

omp Functions
finciude Math lbraries)

LLLE

(EditAnywhere)
exposedTestvariable = 0.1f;

(EditAnywhers isplayName:
eshe nt* hComponen

testInternalFunction(

Functions !

(#include Math lbraries) ‘ tor: :testInternalFunction(

Internal functions
(Exposed functions won’t make sense
til we look at Blueprint)

No More of This! Towards Blueprints & High-Level Programming...

e Simplest BP abstracts ALL C++.... never need to touch Visual Studio!
Either not deal with CPP at all or streamline compilation o Simply adds BP Variables + Functions on same layer as C++. BP organized structurally

- (BP subclass Compare to
UE4 Actor (Blueprint) of same -
example) Non-Unity Actor (C++)
CreFie
Variabies
e
i yaw roll]
. -
(Hidden, Ux) Comp C++ File |
Comp BP Variables
Location [x y 2] TRARSEORH|
Rotaton oich yow]
Scwetey 1
(Comp 8P Functions
(e Nt rais)
Functions.
Dev controls what gets shared {finckice Malh braries)
Ux refers to
macros that are
used to expose
variables from
CaErincio C++ to BP, such
(nclude it oraries) CollERREERT
and UFUNCTION

pae Towards Blueprints & High-Level Programming Social XR: VRChat & Metaverse

(BP subclass e Mixing & matching ,CH & BP can create complex OO structures... strange at first e (things Unity is better at in addition to large-scale, procedural AR)
Zizra“fe but should be familiar once you get past the S‘mugiof‘:f;asrlffo‘?f 'aN:frl::Sifm = e Balance between optimization and runtime versatility
oot e VRChat/Second Life: user-created worlds linked by Hub, avatars, framework
e Metaverse: user-created or company-created worlds, linked by user “identity”
e \lery difficult to support user-generated content in traditional game engines;
ot e gl 5 q i requires mixing & matching components not known before runtime
Einaily-an example:of expod A ° Unit}/ GameObject more flexible; designed to add/remove components during
ep— functions! C++ functions - runtime
e > available for BP

—

cepohidactort” A

G+ Functons
(nclude Math Ibraries) <

Intro to Game Development:
Game Engine Editors, Events, &
Raycasting

UE4 Treasure Setup]
& unity @

UNREAL

ENGINE

In Editor Mode

=

Events

e Engine usually calls
things in certain
sequence

e Called “lifecycle” of GO

““-'” ; Important Events/Entry Points
=

-] e BeginPlay/Start: called when GO component first starts running in VE (usually
ﬂ_ﬂ when game starts playing) (Unity also has Awake for the entire GO)

=

=

Tick/Update: called beginning of every frame

OnCollision[Enter/Exit]/Hit: called when 2 physics objects collide

On[Trigger/Overlap][Enter/Exit]: called when 2 triggers overlap

Unlty (in UE4) EndPlay: called when level ends (Unity has similar OnDestroy.... But
no callback for level end specifically). Used to transfer data between levels (Unity

e | -_M = programmers usually use Singletons which is not ideal :/)

@00¢00 e (in UE4) Constructor: Used to pre-process stuff, pre-attach, etc.
! o Unity MonoBehaviors have a constructor that can be used to initialize components (e.g. if | have a

“ component that relies on RigidBody physics, then make sure a RigidBody is also attached to the
@ GO), but b/c of Unity’s engine passes, you're discouraged from doing anything that involves
UE4 &= OTHER GOs
=R

. e (in UE4, no Unity equivalent) Level Blueprints: Used to define how Actors relate
— to each other without modifying the Actor code (e.g. specify current camera)

In Blueprint Collisions and Triggers

Yo t ific t t without going into the API
¢ Youcansee events specilicto a component without going Into the e Collisions/Hits: physical, Newtonian (e.g. objects bump into each other,

stopping momentum)
e Triggers/Overlaps: some mesh zone that calls the function when some other
mesh enters it (e.g. trigger something when room is entered)

+
+
+
*
*
+
*
+
+
=
+
*
+
*
+
*

The Functions M| Important Difference between Trigger & Collision

My Comp

e Collisions have collision info (impact force, impact
location, impact normal, etc.)

e Trigger/Overlap events only have info about what they r
triggered i (-

e Common source of confusion: Collider vs Collision. Loy

e (I'll show BP nodes since black box make explaining easier)
e OnCollisionEnter/Event Hit: called when objects hit each other
e OnCollisionEXxit: called when they stop hitting each other
o UE4 doesn't distinguish between them b/c UE4 assumes, like in real physics, that
a real physics collision can’t cause them to overlap. Collision is single event
o For things resting on each other, this still doesn’t really make much sense (rarely o Collider in Unity lets you get ref to triggered GO by
describe “resting” position with single contact point....more on this in physics Collider.gameObject. Used for Triggers. “Collider” is just collision
chapter). box component
e OnTriggerEnter/[Actor/Component]BeginOverlap: called when Collision object contains Collider AND physics info (used for
. . collisions)
something enters a trigger zone

i . . o Also, Unity only handles collision per-component. UE4 can handle
e OnTriggerExit/[Actor/Component]EndOverlap: called when it Other Actor per-Actor or per-component
exits

" Event Hit

'& Event ActorEndOverlap

& Event ActorBeginOverlap
& Event ActorEndOverlap D

Other Actor

Other Actor

Collisions for Multiple Objects Ray-Casting: Key to Game Dev
e UE4: “GetOverlappingActors/Components” e Shoot a ray from a position in some direction and figure out what it hit
e Unity has Physics.OverlapSphere e Solves tons our problems. One of most common technique for understanding the VE
. We have raycasting, spherecasting, conecasting, etc.
Physics.Overl her: ¢
ysics.OverlapSphere e Like Collisions/Hits, raycasting gives some physics info (at which angle did ray hit?
Where did it hit? etc.)
Declaration 7 e Really useful for XR b/c it allows flexibility
public static Collider[] OverlapSphere(Vector3 position, float radius, int layerMask = AllLayers, QueryTrigges qeryTngger\n(emcnn:celyTHggE’mlera::vnn UseGlobal), ° A”OWS for s|mp|e proJchon between 3D and 2D
T e e UE4 calls it “line-tracing”
o Simplified, controlled ray-tracing
radius Radius of the sphere.
layerMask 1 mask defines which layers of colliders ta include in the query. K

queryTriggerinteraction Specifies whether this query should hit Triggers

The TraCIng FU nCt|0n UE4 & Unity differ slightly: Unity asks for ray length, UE4

asks for stop point. Return mostly same info

Quick Exercise
UE4

Unity ‘f'“’“““"’°'°“j"“) ey e With these functions in mind (collision/trigger, raycast), how can we grab

Parameters outit : - collectibles without hardcoding? There are multiple ways!

o e i ‘ femva e OnTriggerEnter between a collision box on collectible and attached to
controller (automatic pick-up or press button)

o If InTriggerZone && ButtonPressed, then collect

e When user clicks button, spherecast or raycast to where they’re pointing
o On ButtonPressed, raycast and collect thing that it hits if it's a collectible

direction

of the ray
maxDistance
layerMask

queryTriggerinteraction

Properties

Trace Color

Trace Hit

tacher 103 igidbory thentis .

© Draw Tim

Intro to Game Development:
Demo (Implementing

Collecting with
TreasureHunter) uni'l'y

UNREAL

ENGINE

XR Camera & &
e XR: special case of game dev with “camera’/head motion controlled ocuue s

by tracking
o Outside-in: Vive lighthouses, Oculus Sensor
o Inside-out: HMD-mounted cameras, visual odometry & sensor fusion to detect motion -
e l'hursday: Realtime
° Usually specify an “origin” for XR camera to control spawn point wrt VE "
VR: calibrated by VR system (usually center of tracking space on floor)

? AR: usually wherever the HMD is when the app starts P rog ra m m i n g With Oc u I u s

> Without GameObject for origin, camera would always be wrt VE origin... then entire VE

would need to shift to user to be in the right place Q u est

