Interactive Sound Rendering

Ming C. Lin

Department of Computer Science lin<u>@cs.umd.edu</u> http://www.cs.umd.edu/~lin http://gamma.cs.umd.edu/

Themes

- Exploiting analytical solutions using Modal Analysis to accelerate numerical simulation and reducing runtime computation
- Capture only perceptually important auditory cues to perform real-time sound synthesis and acoustic propagation on complex 3D scenes

Physical Simulation Elastic deformable model Typical simulation time-steps must be ~10⁻⁵ s Direct simulation infeasible Efficient method: Modal Analysis

6


```
DG^{-1}d + (\gamma G^{-1}M + \eta DG^{-1})\dot{d} + G^{-1}M\ddot{d} = G^{-1}f
```

- Substitute $z = G^{-1}d$ the modes) Now, solve this ODE instead
 - $Dz + (\gamma M + \eta D) \dot{z} + M \ddot{z} = G^{-1} f$

Handling Lasting Contacts

- The interaction simulation has to be stepped at the audio sampling rate: 44100 Hz
- The update rate of a typical real-time physics simulator: on the order of 100's Hz
- Not enough simulation is provided by the physics engine
- An customized interaction model for sound synthesis

Mode Compression: Principle

- Humans can't distinguish two frequencies arbitrarily close to each other [Sek et. al., 1995*]
- Accuracy in discriminating frequencies depends on the frequency in question
- Different frequencies were played in succession to find if the subject could distinguish between them

*Sek, A., and Moore, B. C. 1995. Frequency discrimination as a function of frequency, measured in several ways. J. Acoust. Soc. Am. 97, 4 (April), 2479–2486.

Overview

- Generate sound from existing fluid simulation Model sound generated by bubbles
- Apply model to two types of fluid simulators

Particle-Grid-based

Extract bubbles Process spherical and non-spherical bubbles Generate sound

Shallow Water Equations

Processes surface Curvature and velocity Select bubble from distribution Generate sound

Address the set of th

Performance Comparison				
Scene Name	Volume (m ³)	Time: FDTD (CPU)	Time: My Technique (GPU)	Speedup
Corridor House*	375 1.275	365 min 3.5 davs	4 min 24 min	~ 90x ~ 200x
Cathedral	13,650	1 week (estimated)	29 min	~ 300 x
 Quad-core : * This simulation 	2.8GHz Intel	Xeon CPU with 8GB -limited to 2 kHz, ir	RAM, NVIDIA GeF	orce GTX 280
				56

Future Work: Sound Propagation

- Acoustics for Games and Virtual Worlds
- Accurate numerical predictions in auditorium design
- Efficient numerical solvers for high-performance computing applications
- Combine Sound Synthesis and Acoustics for a completely physically-based auralization system

82

Auralization, 2009.

