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Themes

� Exploiting analytical solutions using Modal Analysis to
accelerate numerical simulation and reducing
runtime computation

� Capture only perceptually important auditory cues to
perform real-time sound synthesis and acoustic
propagation on complex 3D scenes
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Overview
� Interactive Sound Synthesis

� Modal Analysis
� Perceptually-based acceleration techniques
� Hundreds of sounding objects
� Sound from image textures

� Efficient Numerical Acoustic Simulation

� Interactive Sound Propagation

� Conclusion and Future Work 4

Physically-based Sound Synthesis
� Aim: Take object geometry and 

material as input and produce sound 
� Current trend: Recorded sounds
� Problems with recorded sounds:

� Difficult, expensive or dangerous to 
record (eg. Explosions)

� Repetitiveness
� Complex interactions (impact/rolling)

* Image taken from: http://www.marblehead.net/foley/index.html

A typical foley studio*
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Physical Simulation
� Elastic deformable model

� Typical simulation time-steps must be ~10-5 s

� Direct simulation infeasible

� Efficient method: Modal Analysis
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Modal Analysis

� Each mode represents a resonant mode of vibration
� Frequency of a mode is fixed
� Applying impulse excites modes of vibration
� Position of impact determines relative amplitude of modes

1st Mode 2nd Mode

Frequency = f0

…Higher modes

Frequency = f1= 2*f0 Frequency = fk= k*f0

a0 a1 ak
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Overview of Technique
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Approach
� Simpler model: Spring-mass system

� Fast: Supports hundreds of sounding objects

� Runs in real-time, low CPU utilization (~10%), graceful 
degradation in quality with limited computation

� Exploit human auditory perception 
� Mode Compression
� Mode Truncation
� Quality Scaling
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Modal Analysis
� Deformation modeling

� Vibration of surface generates sound
� Sound sampling rate: 44100 Hz
� Impossible to calculate the displacement of the surface at 

sampling rate
� Represent the vibration pattern by a bank of damped 

oscillators (modes)
� Standard technique for real-time sound synthesis

Modal Analysis
� Discretization

� An input triangle mesh à a spring-mass system
� A spring-mass system à a set of decoupled modes

Modal Analysis
� The spring-mass system set-up

� Each vertex is considered as a mass particle
� Each edge is considered as a damped spring
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Modal Analysis
� Coupled spring-mass system to a set of decoupled modes

Modal Analysis
� A discretized physics system  

� We use spring-mass system

� Small displacement, so consider it linear

StiffnessDampingMass

StiffnessDamping Mass

Modal Analysis

� Rayleigh damping

And diagonalizing

§ Now, solve this ODE instead

§ Solve the Ordinary Differential Equation (ODE)

Modal Analysis

� Substitute                  (z are the modes)
Now, solve this ODE instead

§ Solve the ODE

Modal Analysis

� General solution

§ External excitation defines the initial conditions

Modal Analysis

� Assumptions
� In most graphics applications, only surface representations 

of geometries are given
� A surface representation is used in modal Analysis
� Synthesized sound appears to be “hallow”
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Modal Analysis Summary
� An input triangle mesh à

A spring-mass system à
A set of decoupled modes

State Detection

State Detection

� Distinguishing between lasting and transient contacts
� In contacts?

� In lasting contacts?

Interaction Handling

� Lasting contacts à a sequence of impulses
� Transient contacts à a single impulse

Impulse Response
� Dirac Delta function as impulse excitation

§ General solution

with initial condition given by the impulse,
we have:

Impulse Response
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Handling Lasting Contacts

� The interaction simulation has to be stepped at the audio 
sampling rate: 44100 Hz

� The update rate of a typical real-time physics simulator: 
on the order of 100’s Hz

� Not enough simulation is provided by the physics engine
� An customized interaction model for sound synthesis

Mode Compression: Principle

� Humans can’t distinguish two frequencies arbitrarily close 
to each other [Sek et. al., 1995*]

� Accuracy in discriminating frequencies depends on the 
frequency in question

� Different frequencies were played in succession to find if 
the subject could distinguish between them

*Sek, A., and Moore, B. C. 1995. Frequency discrimination as a function of 
frequency, measured in several ways. J. Acoust. Soc. Am. 97, 4 (April), 2479–
2486.
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Mode Compression: Auditory Perception

Frequency Discrimination at 2 KHz is about 4 Hz -- We can’t 
tell apart frequencies within the range 1998 - 2002 Hz
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Mode Truncation

� Impact Sounds: Attack + Decay
� Key Point: Critical to capture attack properly
� Stop mixing mode when its contribution falls below a 

prescribed threshold,      (typically -60 to -80 dB of initial level)t

tThreshold (  )

Time

Am
pl

itu
de

Culled

High Frequency

Low Frequency
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Quality Scaling
� A typical audio scene consists of foreground and 

background sounds

� Higher intensity sounds are considered to be foreground

� Idea: Give more importance to foreground sounds

� Provides a graceful way to adapt to variable time 
constraints
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Implementation Details
� System: 3.4 GHz Pentium 4 Laptop, 1 GB RAM
� Graphics: GeForce 6800 Go, 256 MB
� Sound: Creative Sound Blaster Audigy 2 ZS

� Physics: Pulsk (written by former student: Nico Galoppo), 
Rendering: G3D

� Also integrated with NVIDIA PhysX Engine recently

31
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System Demonstration

32

VIDEO

Sound from Image Textures
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VIDEO

Limitations
� Implementation:  Model only the surface (not an inherent 

limitation of the approach)

� More approximate than an FEM-based formulation
� Some tuning is required

� All sound synthesis techniques relying on Modal Analysis: 
Can only use linear damping models
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Sounding Liquids [Moss et al. 2009]

� Work in physics and engineering literature since 
1917
� Sound generated by resonating bubbles

� Physically-based Models for Liquid Sounds (van den Doel, 
2005)

� Spherical bubble model
� No fluid simulator coupling

� Hand tune bubble profile

Background (Fluid)
� Grid-based methods

� Accurate to grid resolution
� Bubbles can be smaller

� Slow
� Can be two-phase

Background (Fluid)
� Shallow Water Equations

� Simulate water surface
� No breaking waves

� Real time
� One phase 

� Explicit bubbles

https://www.youtube.com/watch?v=7xzKyIq9h3s&list=PLB1EF1E4D08A6C063&index=6
https://www.youtube.com/watch?v=JOwTrmgVK4k&list=PLB1EF1E4D08A6C063&index=7
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Overview
� Generate sound from existing fluid simulation

� Model sound generated by bubbles
� Apply model to two types of fluid simulators

§ Shallow Water Equations
– Processes surface

• Curvature and velocity
– Select bubble from 

distribution
– Generate sound

§ Particle-Grid-based
– Extract bubbles
– Process spherical and 

non-spherical bubbles
– Generate sound

� Spherical Bubbles

� Non-spherical bubbles
- Decompose into a spherical harmonics

�RR0

Mathematical Formulations

R0

Without
Spherical Harmonics

With
Spherical Harmonics System Overview

Summary
• Simple, automatic sound synthesis
• Applied to two fluid simulators

• Interactive, shallow water
• High-quality, grid based

Video Demonstration

VIDEO

https://www.youtube.com/watch?v=MHBViinfmKo&list=PLB1EF1E4D08A6C063&index=5
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Overview
� Interactive Sound Synthesis

� Efficient Numerical Acoustic Simulation

� Interactive Sound Propagation

� Conclusion and Future Work
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Overview
� Interactive Sound Synthesis

� Efficient Numerical Acoustic Simulation
� Novel technique based on 3D Adaptive Rectangular 

Decomposition
� Hundred times faster than Finite Difference Time Domain

� Interactive Sound Propagation

� Conclusion and Future Work
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Acoustics: Governing Equation
� Solve the Linear Wave Equation:

is the Laplacian operator in 3D
is the speed of sound in air
is the pressure field to solve

� The RHS is the forcing term, corresponding to volume 
sound sources in the scene

46

State of the art: Room Acoustics

� Geometric Techniques (e.g. Ray/Beam/Frustum Tracing) 
combined with explicit diffraction modeling 

� Auralization software (e.g. ODEON, CATT): Hybrid image-
source and ray-tracing along with (upcoming) explicit 
diffraction modeling

� Numerical acoustic simulation for complex 3D scenes has 
been explored only recently (2006)
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Acoustics for Interactive Applications
� Geometric Approaches

� Beam Tracing ( Funkhouser et. al. )
� Phonon Tracing ( Bertram and Deines et. al. )
� Frustum Tracing ( Chandak et. al. )

� Advantages: Efficient, easy to understand

� Difficulties: Diffraction / Scattering, high-order 
reflections
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Numerical Acoustics

� Discretize and solve Wave Equation on a grid 

� Explored for complex 3D scenes (eg. auditoria) only 
recently (2004 – 2006) by Sakamoto et. al.

� Disadvantage: Slow and memory-intensive

� Simulations are band-limited

� Advantages: Diffraction / Scattering, high-order 
reflections 49
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Acoustics in Games

Creative EAX: Pre-baked reverb filters assigned 
manually to different parts of a map
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Adaptive Rectangular Decomposition

� Numerical Simulation of the Wave Equation
� Rectangular Decomposition of a 3D scene
� Exploit analytical solutions on rectangular spaces
� 6th order Finite Difference for interface transmission 51

Interface Handling

Solution on a Rectangular Domain

� Rectangular space in 3D with size :                    , and 
perfectly reflective boundary

� Modal Analysis can be done analytically –
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Leveraging GPU for Acoustics
� Solution of Wave Equation within each rectangle can be 

done using a 3D Discrete Cosine Transform (DCT)

� DCTs can be computed using FFT

� Use efficient  FFT implementation on GPU 
� Govindaraju, N. K., Lloyd, B., Dotsenko, Y., Smith, B., and Manferdelli, J.  

High-Performance Discrete Fourier Transforms on Graphics 
Processors.  In the Proc. of 2008 ACM/IEEE Supercomputing
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� For a scene of size  L in 3D and simulation duration T –

Memory :                             

Time :

Computational Efficiency
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� Nyquist Limit: s ≥ 2
� FDTD:  s = 10.  My approach:  s = 2.6
� Speedup with my technique :                        > 100 ( )46.2/10
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Demo

55

Video

file://localhost/Users/dineshmanocha/Desktop/DATA/Movie/SOUND/Nikunj%20Propagation/Nikunj%20Cathedral.m4v
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Performance Comparison
Scene 
Name

Volume 
(m3)

Time: FDTD 
(CPU)

Time: My 
Technique 

(GPU)

Speedup

Corridor 375 365 min 4 min ~ 90x
House* 1,275 3.5 days 24 min ~ 200x

Cathedral 13,650 1 week 
(estimated)

29 min ~ 300 x

� Quad-core 2.8GHz Intel Xeon CPU with 8GB RAM, NVIDIA GeForce GTX 280
* This simulation was band-limited to 2 kHz, instead of 1 kHz

56

Summary
� Adaptive Rectangular Decomposition yields 100x 

improvement in performance over FDTD and 
consumes 10x less memory

� Source of Speedup: Modal Analysis of rectangular 
spaces as well as GPU-DCT

� Can feasibly simulate acoustics for large, complex 
scenes, such as a Cathedral
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Overview
� Interactive Sound Synthesis

� Efficient Numerical Acoustic Simulation

� Interactive Sound Propagation

� Conclusion and Future Work
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Overview
� Interactive Sound Synthesis

� Efficient Numerical Acoustic Simulation

� Interactive Sound Propagation
� Perceptual aspects of acoustics
� Novel perceptually-motivated techniques
� Interactive auralization system: moving sources and listener

� Conclusion and Future Work
60

Impulse Response (IR)

Time
Impulse  Response

Direct
Reflected

Frequency (Hz)
Frequency  Response

0

1
a

1+a
1-a

∆t 1/∆t
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Challenges
� Direct approach is costly

� Days of simulation (even 
with fast simulator)

� Terabytes of storage

62

Source locations
Listener locations
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Contributions
• Approach –

• Sample data at lower resolution in space (~1 m)
• Novel perceptually-based scheme: Store each Impulse 

Response compactly
• Spatially-interpolate Impulse Responses

• Audio engine that uses fast frequency-domain 
convolutions
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Auditory perception of acoustic spaces

• Direct  Sound: Sense of direction
• ER: Loudness, Timbre, “Envelopment”. Perceivable spatial 

variation.
• LR: Only statistical properties perceivable – Decay Time 

(RT60), Periodicities (Flutter echoes)

Time

Pr
es

su
re

Early Reflections (50 - 100 ms)

Late Reverberation

Reference: “Room Acoustics” by Heinrich Kuttruff

(~1 sec)
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IR Factoring (1)

TimePr
es

su
re

Probe Source

Listener

Record sound
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IR Factoring (2)

Peak Detection
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• Finds peak delays and amplitudes

IR Factoring (3)

Early Reflections (ER) Late Reverberation (LR)

ER - LR Decomposition

Store peaks as LRIR
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• Compute and store only one Late Reverberation filter 
per room

• Reduces pre-computation time and runtime memory 
usage by 10 times

Early Reflections (ER) Late Reverberation (LR)

FFT

Time

IR Factoring (4)

Frequency

68
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Early Reflections (ER) Late Reverberation (LR)

FFT

FFT

FrequencyTime

IR Factoring (5)
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Early Reflections (ER) Late Reverberation (LR)

FFT

FFT

DivideTime

Frequency trend

Extrapolated

IR Factoring (6)

Frequency
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Early Reflections (ER) Late Reverberation (LR)

FFT

FFT

DivideTime

Store ,[ ]
Peak times and amplitudes Frequency trend

Extrapolated

IR Factoring (7)

Frequency
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ERIR 
Interpolation

Auralization
Source Listener

.
+ IFFT

FFT

Output

Sparse FT

Pre-baked

Input

ERIR

LRIR

Frequency Trend
. +

Runtime Processing
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Pe
r E

ar

Performance

� Pre-processing times typically a few hours

� Can handle about 10 sound sources in real-time on a 
Quad-core Xeon system with 4 GB RAM

� Bottleneck: 1D FFT

� Auralization system maps well to parallel processors
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Walkthrough: Game Scene
� “Citadel” Scene from the game Half-Life 2

� Large Size: 3,500 m3

� Complex geometry (fin-like structures)

74
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System Demonstration
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Video

http://www.youtube.com/watch?v=MQt1jtDBNK4

Summary
� The first interactive sound propagation system that 

leverages numerical simulation 

� Can render important acoustic effects like Late 
Reverberation and Diffraction low-pass filtering in real-
time

� Can handle multiple moving sound sources and listener

� Works for large, complex 3D scenes
76

Overview
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� Efficient Numerical Acoustic Simulation

� Interactive Sound Propagation

� Conclusion and Future Work
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Summary
• Interactive Sound Synthesis

• Perceptually-motivated optimizations enabling hundreds of 
sounding objects in real-time

• Efficient Numerical Acoustics
• A simulator 100 times faster than Finite Difference Time 

Domain for constant wave speed simulations

• Interactive Sound Propagation
• Leverage fast numerical acoustics 
• Exploit auditory perception 
• Render wave-based acoustics for multiple moving sources 

and listener in real-time
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Conclusion

• Physically-based Sound: Complex underlying physical 
processes require a lot of computational power

• Combination  of  efficient algorithms, perceptually-
motivated optimizations and fast hardware
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Future Work: Sound Synthesis
• Ultimate goal: Virtual Worlds with physically-

based sounds for collisions, rolling, sliding, 
creaking, cloth, gunshots, water, automobiles, 
and so on

• Infer audio materials from video

• Virtual Musical Instruments using next generation 
user interfaces
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file://localhost/Users/dineshmanocha/Desktop/DATA/Movie/SOUND/SIG2010_Nikunj.avi
..%5C..%5C..%5CMovie%5CSOUND%5CSIG10.avi
http://www.youtube.com/watch?v=MQt1jtDBNK4
https://www.youtube.com/watch?v=RdoGlKOvzKk&list=PLB1EF1E4D08A6C063&index=11
https://www.youtube.com/watch?v=i7D_ao-LUBw&list=PLB1EF1E4D08A6C063&index=10
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Future Work: Sound Propagation
• Acoustics for Games and Virtual Worlds

• Accurate numerical predictions in auditorium design

• Efficient numerical solvers for high-performance 
computing applications

• Combine Sound Synthesis and Acoustics for a 
completely physically-based auralization system
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