

Locomotion

- Senses:
- Vestibular: sense of balance/movement
- Kinesthetic: sense of how a body part is oriented

General idea: try to make motion in game closest to what user physically does to avoid sickness

Locomotion

Goal: find a mapping between physical motions/actions and virtual motions

Physical Actions (Button Presses, etc.)

Physical Motions (Walking)

Important ideas to keep in mind

- VE & PE sizes don't usually align (distance perception and/or actual sizes) Audio, Locomotion, Depth, Etc. Interrante 06: "Distance Perception in Immersive Virtual Environments, Revisited"
- There's a lot of noise in motion
- Saccades, micro-motions of head, decisional randomness (game theory), etc.
 We want to avoid distorting mental map too much
- General rule: the closer the physical/virtual motions match, the better •

Controller Movement

- Joysticks cause motion sickness
- Mismatch between what vestibular sense tells us about movement and what we see Implementing tunnel vision (restrict FOV) can help

One of the least sickening •

Teleportation

- One of the least immersive ٠
- Can still restrict FOV to avoid sickness. Should also black out display when ٠ moving for light-sensitive people
- Great paper about this: Boletsis '2019 ht • Cool implementation: Budget Cuts

Walking-In-Place (WIP)

- Map head motions to translational motion in restricted PE
- Usually requires calibration of head bob, arm motion, gait, etc.
- Also have WIP treadmills & rugs

Arm Movement

Usually used in unison with WIP

E.g. if you want user to fly, should have them flap their arms to avoid sickness Great free demo of WIP+arm movement: Freedom Locomotion VR on Steam

1:1 Walking

- Physical & virtual spaces exactly aligned (or VE fits within PE) • .
 - Doesn't necessarily work well... any ideas why? Distance compression: users feel like they are walking slower in VR than in real life
 - Walking 1 meter in the VE doesn't 'feel" the same as walking 1 meter in real life
 VR "camera" doesn't match user's eyes... HMD/lens design matters (weight, IPD, etc.)
 Inaccurate audio (affects distance compression)

 - Inaccurate rendering (effects like AO affect depth perception)

Real Walking & Distortion Methods General problem: we only have so much PE tracking space....but want to navigate big VEs Also want to use real walking b/c it's most natural while mitigating distance compression VE (game PE world) (tracking space)

Translational Gain

Addresses distance compression. Makes you walk virtually much faster than in real life. People generally feel like they walk much slower in VR (mostly b/c they do! VR space is very small)

Practice exercise: How to implement translation gain?

• Things to remember:

- Cannot mutate Camera or controller positions....but we can always get them
- Can move entire VR space around (e.g. VRRoot)
 How do we know how much user WANTS to move?
- Save prev frame head position. On current frame, deltaPos=Camera.transform.postion-prevPos
 How do we move them MORE?
- Add that vector to their Pawn/PlayerController location....shift entire space by their deltaHeadLoc VRRoot.transform.position=OVRPlayerController.transform.position+deltaHeadLoc
- How much gain is this?
- 100%.... It doubles their movemen
- How to reduce gain?
 Multiple the deltaHeadPos by a threshold (e.g. 0.5f)
- Final equation
- VRRoot.transform.position=VRRoot.transform.position+thres*deltaHeadLoc
- VRRoot.transform.position=VRRoot.transform.position+thres*(Camera.transform.position-prevPos)

Translational Gain Perception

- Partially depends on size of environment, display, etc. 50-100% gain usually good enough
- Too slow: Feels like walking in VR is really slow •
- Too fast: Feels like walking on ice
- In terms of physics/calc, what IS deltaHeadLoc?
 - Velocity! Much like fixing the momentum problem in Unity physics, we can average velocity over a few frames as well to get acceleration, which is even better

Reorientation (Explicit)

User hits/holds button to rotate world themselves

Redirected Walking (Implicit)

Redirected Walking (RDW) (Implicit)

- Design technicalities:

 - Kotations towards/away from goal are different (gain vs. loss)
 No rotational gain in center of PE
 So RDW algorithm needs to be sensitive to distance from PE center
 - Free roam?
 - Dynamic reference for what the "goal" is

RDW: Rotational Velocity

- Can we not just add 360 degrees to yaw to get deltaYaw? We can for just getting amount of head rotation & general left/right head direction.... But we'll see why we need to do cross-product way in a bit anyway
- How can we change the algorithm to be sensitive to which way the center of the PE is?
- Use cross product to figure out if user is rotating towards or away from PE center • Basic idea: decelerate head rotation away from PE center (loss), accelerate rotations towards it (gain)

Quick vector subtraction tip

Destination-Source gives vector starting at source and ending at destination (easier to remember IMO than A-B)

Steering Methods

- Point of RDW is to keep user in space.... Usually trying to keep them facing . the PE instead of looking out of bounds (e.g. at a wall)
- Thus, need to also include some vector keeping track of "target" PE location • (usually the center....where they have most walking space) to steer them to center and keep them in bounds.... Called S2C

S2C basic algorithm (Z-up)

- d(Vector3/Vector2 A,Vector3/Vector2 B,Vector3/Vector2 C)=(A.x-B.x)(C.y-B.y)-(A.y-B.y)(C.x-B.x) angleBetweenVectors(Vector2 A, Vector2 B)=arccos(dot(normalize(A),normalize(B)))
- Beginning of game (Start/BeginFay)
 Beginning of game (Start/BeginFay)
 PervForwardVector=Camera.forward
 pervForwardVector=Camera.forward
 pervForwardVector=Camera.forward
 Fame (Tick/Update):
 Each frame (Tick/Update):
- howMuchUserRotated=angleBetweenVectors(prevForwardVector,Camera.forward) directionUserRotated=(d(Camera.position+prevForwardVector, Camera.position, Camera.position + Camera.forward)<0)?1:-1
- Canada Sunada (vg) (1.5.4 delta avaRadiatro Coenter-prevYavRelativeToCenter-angleBetweenVectors(Canarer_forward) vRTrackingOrigin position-Canarera.position) distanceFormCentere Canarea (LocaBestion-magnitude OR (Canarea.position-VRTrackingOrigin.position).magnitude longestDimensionOPE=[some value you deline in m or cm]
- howMuchToAccelerate=((deltaYawRelativeToCenter<0)? -decelerateThreshold [-13%]: accelerateThreshold[30%]) *
- howMuchUserRotated * directionUserRotated * clamp(distanceFromCenter/longestDimensionOfPE/2,0,1) VRTrackingOrigin.RotateAround(Camera.position,(0,1,0),howMuchToAccel)
- prevForwardVector=Camera.forward prevYawRelativeToCenter=angleBetweenVectors(Camera.forward,VRTrackingOrigin.position-Camera.position)

RDW threshold

- For systems with visuals, <30% max of head velocity
- S2C: 13% max deceleration/loss, 30% max gain/acceleration For systems relying only on audio, <20% max of head velocity gain
- Again, we can average velocities over a few frames to get more accurate measurements
- Anything higher will make the rotation noticeable or sickening
 - Seems really small.... Means that you need at least 30mx30m space to rotate user walking straight with only natural rotational drift
 - So....what do we do? Remember RDW is function of rotational velocity Give user a reason to rotate their heads
 - Distractors!

"Combining passive haptics with redirected walking" Luv Kohli 2005

Fig. 1. A view of the virtual environment with the five right is a view of the view of

Fig. 2. A user touches the one cylindrical object intende to provide haptic feedback. The Styrofoam walls mar the limits of the tracked space.

The "Stuck" problem

- If direction is ambiguous, S2C will fail and oscillate but never really shift back to center
- Can sort of address with behavior graphs.... But still hard to deal with My distractor work addresses it though....with some constraints
- Demo through my example app

Original Distractors

First major study by Tabitha Peck 2008, "Evaluation of Reorientation Techniques and Distractors for Walking in Large Virtual Environments"

- · Distractors appeared and rotated around head until user looked back into center
- Distractors way better than forcing rotation when they're too close to bounds
- Found that better-designed distractors lead to less notice of rotation. Distractor moving too quickly causes sickness. Using audio helps a lot

Original Distractors

First major study by Tabitha Peck 2008, "Evaluation of Reorientation Techniques and Distractors for Walking in Large Virtual Environments"

- Distractors appeared and rotated around head until user looked back into center
- Distractors way better than forcing rotation when they're too close to bounds
 Found that better-designed distractors lead to less notice of rotation. Distractor

Constraints on user motion

- (Our work) Haptic constraints
- Objects in environment constraints (e.g. deterrents... a fence around the VE... decreases immersion)
- Others....? Not very densely-explored area (yet)

(Our Work)

Use distractor's trajectory to choose a direction to redirect since that's consistent throughout the distraction

Redirected Walking Toolkit by USC

- Nice Unity project to play with params
 Not set up for VR by default and has way too many params to make A7 any easier....but worth trying out!

HRI In Locomotion

- Haptic proxy: physical object/robot representing virtual haptic actor
 Co-location: physical and virtual agent are exactly aligned

My attempt to treat the robot dog as an RL problem: link_

			Estimated Simula	tion Parameters			
Description			Symbol	Source	Distribution $(\forall p \in P)$		Units
Stimulus response time, or length of a decision			R	[16] U(0.03, 0.5)		(3, 0.5)	8
Probability of glancing to secondary target			П	[5]	U(22, 30)		%
Angle of "looking at" cone			Θ	[24]	U(10, 50)		0
Motion	Туре	Task State $(Q(s t))$			p=Audio (A)	p=Vision (V)	
Translation	speed	Sdistract	$E_p(x' s_{distract})$	Extracted from real users in	N(0.15, 0.88)	N(0.12, 0.032)	m/s m/s^2
	(x')	Swaypoint	$E_p(x' s_{waypoint})$		N(0.24, 0.082)	N(0.36, 0.14)	
	acc	Sdistract	$E_p(x^+ s_{distract})$		N(0.42, 0.26)	N(0.39, 0.63)	
	(x ⁺)	Swaypoint	$E_p(x^+ s_{waypoint})$		N(1.0, 1.1)	N(0.66, 1.0)	
	dec	Sdistract	$E_p(x^- s_{distract})$		N(0.38, 0.24)	N(0.37, 0.53)	
	(x ⁻)	Swaypoint .	$E_p(x^- s_{waypoint})$		N(1.1, 1.2)	N(0.66, 1.2)	
Rotation	speed	Sdistract	$E_p(r' s_{distract})$	[48]	N(39, 14)	N(26, 3.5)	°/s
	(r')	Swaypoint	$E_p(r' s_{waypoint})$		N(21, 6.5)	N(17, 8.7)	
	acc	Sdistract	$E_p(r^+ s_{distract})$		N(138, 75)	N(65, 22)	°/s ²
	(r ⁺)	Swaypoint	$E_p(r^+ s_{waypoint})$		N(85, 47)	N(90, 49)	
	dec	Sdistract	$E_p(r^- s_{distract})$		N(125, 66)	N(64, 20)	
	(r ⁻)	Swavpoint	$E_p(r^- s_{waypoint})$		N(85, 43)	N(83, 44)	

Simulating VR Users Project: Motion Models

- Velocity-based:
 We only sample velocities each time user makes decision
 Acceleration-based
- We sample acceleration each time user makes decision, and clamp velocity values
- Behavior-based
 - Acceleration-based model with 2 behaviors accounted for:
 Users tend to drift back to PE center during distraction
 Users' heads oscillate around a view target

Simulating VR Users Project: Results			Man Nan D
Velocity model too accurate & unnatural		12: Firedrill Scenario	
general	M CM	L3: Traffic Crossing	Marine Marine
Behavioral model works well for vision users but not for audio users (b/c the 2 behaviors applied mainly to users with vision) basically, it overfits on the user opolutation that actually does those behaviors (might be desirable). Drift behavior causes jagged paths	Tig. A1: An overhead visualization of 5 random tr decisions, bit due to sampling walded velocities due documents, bit due to sampling walded velocities due monitories of the lowana paths, bit the "width rates of monitories of the lowana paths, bit the "width rates of the lowana paths, bit width are to see it is the "like"	Dear Dear Dear Dear Dear Dear Dear Dear	The second secon