
5/9/22

1

Locomotion &
Motion Models

Locomotion
Senses:
● Vestibular: sense of balance/movement
● Kinesthetic: sense of how a body part is oriented

General idea: try to make motion in game closest to what user physically does to
avoid sickness

Locomotion
Goal: find a mapping between physical motions/actions and virtual motions

Physical Motions (Walking)Physical Actions (Button Presses, etc.)

Important ideas to keep in mind

● VE & PE sizes don’t usually align (distance perception and/or actual sizes)
○ Audio, Locomotion, Depth, Etc.

○ Interrante 06: “Distance Perception in Immersive Virtual Environments, Revisited”

● There’s a lot of noise in motion
○ Saccades, micro-motions of head, decisional randomness (game theory), etc.

● We want to avoid distorting mental map too much

● General rule: the closer the physical/virtual motions match, the better

https://www-users.cs.umn.edu/~interran/papers/ieeevr06.pdf

Controller Movement
● Joysticks cause motion sickness

○ Mismatch between what vestibular sense tells us about movement and what we see

● Implementing tunnel vision (restrict FOV) can help
○ Columbia/Microsoft: https://engineering.columbia.edu/news/fighting-virtual-reality-sickness

Teleportation● One of the least sickening
● One of the least immersive
● Can still restrict FOV to avoid sickness. Should also black out display when

moving for light-sensitive people
● Great paper about this: Boletsis ‘2019 http://downloads.hindawi.com/journals/ahci/2019/7420781.pdf

● Cool implementation: Budget Cuts

https://www-users.cs.umn.edu/~interran/papers/ieeevr06.pdf
https://engineering.columbia.edu/news/fighting-virtual-reality-sickness
http://downloads.hindawi.com/journals/ahci/2019/7420781.pdf

5/9/22

2

Walking-In-Place (WIP)
● Map head motions to translational motion in restricted PE
● Usually requires calibration of head bob, arm motion, gait, etc.
● Also have WIP treadmills & rugs

Walk Cycle for WIP
Want to replicate how people actually walk to avoid sickness

Quick Example of Head/Controller Bob in WIP

From https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6165345/

Some more: Leg position state machine

From https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6165345/

Why is the state machine important?

● Ideas?

○ Mitigate drift & noise

○ Not every “head bob” maps to same 2D translation input

○ Different heights & body shapes = different stride (how far you move each step)

○ Feet are not usually tracked… so we need to infer based on state machines and head motion

● Issue in practice: people in WIP don’t move naturally

Arm Movement
Usually used in unison with WIP
E.g. if you want user to fly, should have them flap their arms to avoid sickness
Great free demo of WIP+arm movement: Freedom Locomotion VR on Steam

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6165345/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6165345/

5/9/22

3

Great comparison by Boletsis ‘19 1:1 Walking
● Physical & virtual spaces exactly aligned (or VE fits within PE)
● Doesn’t necessarily work well… any ideas why?

○ Distance compression: users feel like they are walking slower in VR than in real life

■ Walking 1 meter in the VE doesn’t “feel” the same as walking 1 meter in real life
○ VR “camera” doesn’t match user’s eyes… HMD/lens design matters (weight, IPD, etc.)
○ Inaccurate audio (affects distance compression)
○ Inaccurate rendering (effects like AO affect depth perception)

Real Walking & Distortion Methods
● General problem: we only have so much PE tracking space….but want to

navigate big VEs
● Also want to use real walking b/c it’s most natural while mitigating distance

compression

VE (game
world)

PE
(tracking
space)

Translational Gain
Addresses distance compression. Makes you walk virtually much faster than in real life. People generally
feel like they walk much slower in VR (mostly b/c they do! VR space is very small)

Practice exercise: How to implement translation gain?
● Things to remember:

○ Cannot mutate Camera or controller positions….but we can always get them
○ Can move entire VR space around (e.g. VRRoot)

● How do we know how much user WANTS to move?
○ Save prev frame head position. On current frame, deltaPos=Camera.transform.postion-prevPos

● How do we move them MORE?
○ Add that vector to their Pawn/PlayerController location….shift entire space by their deltaHeadLoc
○ VRRoot.transform.position=OVRPlayerController.transform.position+deltaHeadLoc

● How much gain is this?
○ 100%.... It doubles their movement

● How to reduce gain?
○ Multiple the deltaHeadPos by a threshold (e.g. 0.5f)

● Final equation
○ VRRoot.transform.position=VRRoot.transform.position+thres*deltaHeadLoc

○ VRRoot.transform.position=VRRoot.transform.position+thres*(Camera.transform.position-prevPos)

Translational Gain Perception
● Partially depends on size of environment, display, etc. 50-100% gain usually

good enough
● Too slow: Feels like walking in VR is really slow
● Too fast: Feels like walking on ice
● In terms of physics/calc, what IS deltaHeadLoc?

○ Velocity!
○ Much like fixing the momentum problem in Unity physics, we can average velocity over a few

frames as well to get acceleration, which is even better

5/9/22

4

Motion Compression
Use mapping from VE to PE to fit VE inside PE
Limitations: can distort environment & might not work in open scenes…. Also
usually requires precomputation (knowledge of VE beforehand)

Mechanical methods
● Have machine automatically

move you
● Treadmills
● Moving stairs

Reorientation (Explicit)
● User hits/holds button to rotate world themselves
● E.g. Fine China demo

Redirected Walking (Implicit)
● Idea: rotate the world more virtually than physically to distort trajectory (usually as

a function of eye rotation/saccades, head rotation, etc.)
● Why? People are not as good at knowing their exact orientation as they think
● Developed at UNC in 2000-2001 by Sharif Razzaque
● Why is it implicit? User shouldn’t know it’s happening!

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.13

2.4818&rep=rep1&type=pdf

Can also do this with eye rotation (saccadic redirection)
Qi Sun SIGGRAPH 2018. Different rotational threshold

Redirected Walking (RDW) (Implicit)
● Does this idea sound similar to another (that we just learned!)?

○ Similar to translational gain…. But rotational gain!
○ Also in the same vein: function of how much user actually rotates (effectively function of rotational

velocity)

● Which rotational measurement is good for head velocity?
○ Yaw!
○ Why are others not appropriate?

■ Should always let user natural head motion handle pitch/roll

■ PE/Tracking Space effectively 2D square with rotational pivot as yaw axis
○ Global or local yaw (wrt head or world axes)?

■ World axes: everything gets projected to ground plane
○ Wrt PE or VE?

■ PE: how much user physically rotated
■ VE: how much they rotated in-game (including prev distortions)

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.132.4818&rep=rep1&type=pdf

5/9/22

5

Redirected Walking (RDW) (Implicit)

● Design technicalities:
○ Rotations towards/away from goal are different (gain vs. loss)
○ No rotational gain in center of PE

■ So RDW algorithm needs to be sensitive to distance from PE center
○ Free roam?

■ Dynamic reference for what the “goal” is

RDW: Rotational Velocity

● Can we not just add 360 degrees to yaw to get deltaYaw?
○ We can for just getting amount of head rotation & general left/right head direction…. But we’ll

see why we need to do cross-product way in a bit anyway

● How can we change the algorithm to be sensitive to which way the center of

the PE is?
○ Use cross product to figure out if user is rotating towards or away from PE center

● Basic idea: decelerate head rotation away from PE center (loss), accelerate

rotations towards it (gain)

Redirected Walking (Implicit)
● How to get deltaYaw (rotational velocity)?

○ CurrentYaw-PrevYaw? Problems?

○ What happens when trajectory switches from 360 to 0? Calculation results in very high or low velocity

○ Any other way of getting rotation between vectors?

■ Dot product!

● Which vectors to use?

○ Forward vector of camera!

● Problems with dot product?

○ Functions strangely on non-normalized vectors…. Fortunately, forward vector always normalized

○ Rotation always positive…. No direction

How to know direction of rotational velocity?
● Figure out where previous projected position was relative to new line
● How to get projected position?

○ Camera.transform.position+Camera.transform.forward

● To get direction, basically compute cross-product
● d=(x−x1)(y2−y1)−(y−y1)(x2−x1)

○ d<0 is one side (usually left), d>0 other side

● So left or right indicates deltaYaw * -1 or +1
● Resulting value can now be multiplied by threshold like in translational gain!
● Final process:

○ Use dot product on prev & current forward vector to get absolute value of rotational velocity
○ Use cross product to figure out left or right (multiply above value by + or -1)
○ Multiply resultant value by threshold
○ Add this to yaw of OVRPlayerController or VRPawn

Good explanation here: https://math.stackexchange.com/questions/274712/calculate-on-which-side-of-a-straight-line-is-a-given-point-
located

Quick vector subtraction tip
Destination-Source gives vector starting at source and ending at destination
(easier to remember IMO than A-B)

Steering Methods
● Point of RDW is to keep user in space…. Usually trying to keep them facing

the PE instead of looking out of bounds (e.g. at a wall)
● Thus, need to also include some vector keeping track of “target” PE location

(usually the center….where they have most walking space) to steer them to
center and keep them in bounds…. Called S2C

https://math.stackexchange.com/questions/274712/calculate-on-which-side-of-a-straight-line-is-a-given-point-located

5/9/22

6

S2C basic algorithm (Z-up)
● d(Vector3/Vector2 A,Vector3/Vector2 B,Vector3/Vector2 C)=(A.x−B.x)(C.y−B.y)−(A.y−B.y)(C.x−B.x)
● angleBetweenVectors(Vector2 A, Vector2 B)=arccos(dot(normalize(A),normalize(B)))
● Beginning of game (Start/BeginPlay)

○ prevForwardVector=Camera.forward
○ prevYawRelativeToCenter=angleBetweenVectors(Camera.forward,VRTrackingOrigin.position-Camera.position)

● Each frame (Tick/Update):
○ howMuchUserRotated=angleBetweenVectors(prevForwardVector,Camera.forward)
○ directionUserRotated=(d(Camera.position+prevForwardVector, Camera.position, Camera.position +

Camera.forward)<0)?1:-1
○ deltaYawRelativeToCenter=prevYawRelativeToCenter-

angleBetweenVectors(Camera.forward,VRTrackingOrigin.position-Camera.position)
○ distanceFromCenter= Camera.localPosition.magnitude OR (Camera.position-VRTrackingOrigin.position).magnitude
○ longestDimensionOfPE=[some value you define in m or cm]
○ howMuchToAccelerate=((deltaYawRelativeToCenter<0)? -decelerateThreshold [-13%]: accelerateThreshold[30%]) *

howMuchUserRotated * directionUserRotated * clamp(distanceFromCenter/longestDimensionOfPE/2,0,1)
○ VRTrackingOrigin.RotateAround(Camera.position,(0,1,0),howMuchToAccel)
○ prevForwardVector=Camera.forward
○ prevYawRelativeToCenter=angleBetweenVectors(Camera.forward,VRTrackingOrigin.position-Camera.position)

RDW threshold

● For systems with visuals, <30% max of head velocity
○ S2C: 13% max deceleration/loss, 30% max gain/acceleration

● For systems relying only on audio, <20% max of head velocity gain

● Again, we can average velocities over a few frames to get more accurate

measurements

● Anything higher will make the rotation noticeable or sickening

● Seems really small…. Means that you need at least 30mx30m space to rotate

user walking straight with only natural rotational drift
○ https://illusioneering.cs.umn.edu/papers/azmandian-icat2015.pdf

● So….what do we do? Remember RDW is function of rotational velocity
○ Give user a reason to rotate their heads!

○ Distractors!

Can also do steer-to-physical-object...
● Generally requires object to be cylindrical (why?)

○ Because RDW allows user to be redirected into any direction…. Physical object must be
shaped such that distortion rotation doesn’t matter

Good article: https://www.makinggames.biz/news/getting-forwards-locomotion-in-virtual-environments10143.html

“Combining passive haptics with redirected walking” Luv Kohli 2005

The “Stuck” problem

● If direction is ambiguous, S2C will fail and oscillate but never really shift back to
center

● Can sort of address with behavior graphs…. But still hard to deal with
○ My distractor work addresses it though….with some constraints!

● Demo through my example app

Original Distractors
First major study by Tabitha Peck 2008, “Evaluation of Reorientation Techniques and
Distractors for Walking in Large Virtual Environments”
● Distractors appeared and rotated around head until user looked back into center
● Distractors way better than forcing rotation when they’re too close to bounds
● Found that better-designed distractors lead to less notice of rotation. Distractor

moving too quickly causes sickness. Using audio helps a lot

https://illusioneering.cs.umn.edu/papers/azmandian-icat2015.pdf
https://www.makinggames.biz/news/getting-forwards-locomotion-in-virtual-environments10143.html

5/9/22

7

Video from my work demoing the concept Original Distractors
First major study by Tabitha Peck 2008, “Evaluation of Reorientation Techniques and
Distractors for Walking in Large Virtual Environments”
● Distractors appeared and rotated around head until user looked back into center
● Distractors way better than forcing rotation when they’re too close to bounds
● Found that better-designed distractors lead to less notice of rotation. Distractor

moving too quickly causes sickness. Using audio helps a lot

Gamified example from UNC Video from my work demoing the concept

Great talk comparing methods (SIGCHI 2019) Game-theory-esque prediction methods

5/9/22

8

(That’s an expansion of model predictive control) Some DL extension from VR 2019

Constraints on user motion
● (Our work) Haptic constraints
● Objects in environment constraints (e.g. deterrents… a fence around the

VE…. decreases immersion)
● Others….? Not very densely-explored area (yet)

(Our Work)
● Use distractor’s trajectory to choose a direction to redirect since that’s

consistent throughout the distraction

(Our application)
● Guide dogs in VR

Other cool applications

5/9/22

9

Taking advantage of maze-like VEs Nice video of the concept by Azmandian

(Another cool example of change blindness)
Redirected Walking Toolkit by USC

● Nice Unity project to play with params
● Not set up for VR by default and has way too many params to make A7 any

easier….but worth trying out!

http://projects.ict.usc.edu/mxr/rdwt/

HRI In Locomotion
● Haptic proxy: physical object/robot representing virtual haptic actor
● Co-location: physical and virtual agent are exactly aligned

HRI In XR

http://projects.ict.usc.edu/mxr/rdwt/

5/9/22

10

Redirected
Touching/Haptics

Luv Kohli 2010

Redirected Touching/Haptics

Neuroscience & Explainable AI
Same problem… hard to explain in detail workings of human or machine decision-
making. Requires a model to break down components

“A computational theory of executive
cognitive processes and multiple-task
performance” Meyer 1997

https://lawtomated.com/explainable-ai-all-you-need-to-know-the-what-how-why-of-explainable-ai/
Machine Human

Reinforcement Learning Approach
My attempt to treat the robot dog as an RL problem: link

Simulating VR Users Project: Pipeline Simulating VR Users Project: States
Motion parameters are different in different states…
so we need (1) a state machine for a simulated user
and (2) extracted motion params for each state

https://lawtomated.com/explainable-ai-all-you-need-to-know-the-what-how-why-of-explainable-ai/
https://docs.google.com/presentation/d/1LGuwqB1oQFLQLVIPouf3bNkWq4ThRoSD_dSsjEebuos/edit

5/9/22

11

Simulating VR Users Project: Motion Params Simulating VR Users Project: Motion Param
Individualization

Simulating VR Users Project: Param Updating Simulating VR Users Project: Motion Models
● Velocity-based:

○ We only sample velocities each time user makes decision

● Acceleration-based
○ We sample acceleration each time user makes decision, and clamp velocity values

● Behavior-based
○ Acceleration-based model with 2 behaviors accounted for:

■ Users tend to drift back to PE center during distraction
■ Users’ heads oscillate around a view target

Simulating VR
Users Project:
Results

Velocity model too accurate &
unnatural

Acceleration model pretty good in
general

Behavioral model works well for vision
users but not for audio users (b/c the 2
behaviors applied mainly to users with
vision)... basically, it overfits on the
user population that actually does
those behaviors (might be desirable).
Drift behavior causes jagged paths

