
cl0

CARTOGRAPHIC ANALYSIS

Copyright © 2002 by Hanan Samet

cl1

MODES OR VARIATION OF SPATIAL DATA

• Three modes:

1. spatial—variation from place to place

2. temporal—variation from time to time

3. thematic—variation from characteristic to
characteristic

• Observing real world phenomena usually involves:

1. holding one mode “fixed”

2. varying a second mode in a “controlled” manner

3. measuring the third

Ex: measure population density in 1980 over the US by
using Census data

• time is fixed—i.e., 1980

• vary location in a controlled manner by scanning
over the entire US

• theme is population density

• Fixing time and varying spatial yields cross-sectional
data

• Fixing spatial and varying time yields longitudinal data

Copyright © 2002 by Hanan Samet

cl2

NATURE OF GEOGRAPHIC DATA

1. Geographic position
• location on the earth’s surface—i.e., where is it?
• actually need elevation but location on a plane or a

sphere are usually enough
• should use a common coordinate system—e.g., UTM

2. Attribute
• non-spatial—i.e., what is it?
• often qualitative and not very accurate—e.g., a pine

forest does not consist of just pine trees

3. Spatial relationship
• need to know more than just location

a. relationship to other features
b. e.g., how close is a paper mill to water, roads,

forests
• can’t store all possible proximity information—some

is derived

4. Time
• when did the condition or feature exist?
• historical information—e.g., prior uses

Copyright © 2002 by Hanan Samet

cl3

CHARACTERISTICS OF GEOGRAPHIC DATA

1. High volume

2. Dimensionality—points, lines, areas

3. Level of measurement
• nominal
• ordinal
• interval
• ratio

4. Continuity
• data such as contours for elevation data
• discontinuous data as in choropleth maps (i.e.,

areas of equal value separated by boundaries)

Ex: tax rate is different across a state border

Copyright © 2002 by Hanan Samet

cl4

PROPERTIES OF GEOGRAPHIC DATA

1. Size and its characterization in measurement
• point—measure location, adjacency, and elevation
• line—measure length, direction, connectivity, and

“wigglyness”
• polygon—measure topology (e.g., holes, outliers),

area, shape, boundary length, location, orientation
• volume—measure topology, continuity, surface

slope, surface aspect, surface trend, surface
structure, location, elevation

• some can be measured easily if the data is
geocoded

• others are very difficult to measure in the real world
and thus can only be analyzed using abstractions of
mapping

2. Distribution
• density is a measure of the distribution of a feature

across space
• usually computed by counting cartographic objects

or attributes

Copyright © 2002 by Hanan Samet

cl5

3. Pattern

• a characteristic of distributions and is a description of
their structure

• repetition of an attribute over space

• lack of randomness

4. Neighborhood property

• mathematical formulation of relationship between a
geographic property and distance

• small separation means similarity

• large separation means dissimilarity

• distance function
a. autocorrelation function
b. spatial interaction models
c. distance decay models (e.g., gravitation)
d. variogram

5. Contiguity

• property of being related by juxtaposition

• sharing a common boundary
a. four-adjacency (just edges)
b. eight-adjacency (includes corners)

• connectivity in a network

Copyright © 2002 by Hanan Samet

cl6

6. Shape

• hard to measure and quantify
• Ex: shape number yielding a comparison with a

circle

1 – (A ∩ B) / (A ∪ B)
a. make sure center of circle and center of mass of

object coincide
b. use circle as it has the minimum perimeter for a

given area

7. Scale
• ratio of distances on a map to the same distance on

the part of the world shown on the map
• scale dependence

a. objects become clearer at certain scales
b. objects disappear completely at certain scales

• scale independence
a. never change
b. can use fractal geometry

• lines have dimension between 1.0 and 2.0
• areas and surfaces have dimension between

2.0 and 3.0
• volumes have dimension ?

Copyright © 2002 by Hanan Samet

cl7

2. Possible errors:

1. Process of converting spatial information into computer-
readable form

1
b

GEOCODING

Copyright © 2002 by Hanan Samet

cl7

2. Possible errors:

1. Process of converting spatial information into computer-
readable form

1
b

GEOCODING

Copyright © 2002 by Hanan Samet

cl72
r

• spike error

Copyright © 2002 by Hanan Samet

cl7

2. Possible errors:

1. Process of converting spatial information into computer-
readable form

1
b

GEOCODING

Copyright © 2002 by Hanan Samet

cl72
r

• spike error

Copyright © 2002 by Hanan Samet

cl73
z

• unsnapped node

Copyright © 2002 by Hanan Samet

cl7

2. Possible errors:

1. Process of converting spatial information into computer-
readable form

1
b

GEOCODING

Copyright © 2002 by Hanan Samet

cl72
r

• spike error

Copyright © 2002 by Hanan Samet

cl73
z

• unsnapped node

Copyright © 2002 by Hanan Samet

cl74
g

• sliver

Copyright © 2002 by Hanan Samet

cl7

2. Possible errors:

1. Process of converting spatial information into computer-
readable form

1
b

GEOCODING

Copyright © 2002 by Hanan Samet

cl72
r

• spike error

Copyright © 2002 by Hanan Samet

cl73
z

• unsnapped node

Copyright © 2002 by Hanan Samet

cl74
g

• sliver

Copyright © 2002 by Hanan Samet

cl75
z

• duplicated line

Copyright © 2002 by Hanan Samet

cl7

2. Possible errors:

1. Process of converting spatial information into computer-
readable form

1
b

GEOCODING

Copyright © 2002 by Hanan Samet

cl72
r

• spike error

Copyright © 2002 by Hanan Samet

cl73
z

• unsnapped node

Copyright © 2002 by Hanan Samet

cl74
g

• sliver

Copyright © 2002 by Hanan Samet

cl75
z

• duplicated line

Copyright © 2002 by Hanan Samet

cl76
r

• missing link

Copyright © 2002 by Hanan Samet

cl7

2. Possible errors:

1. Process of converting spatial information into computer-
readable form

1
b

GEOCODING

Copyright © 2002 by Hanan Samet

cl72
r

• spike error

Copyright © 2002 by Hanan Samet

cl73
z

• unsnapped node

Copyright © 2002 by Hanan Samet

cl74
g

• sliver

Copyright © 2002 by Hanan Samet

cl75
z

• duplicated line

Copyright © 2002 by Hanan Samet

cl76
r

• missing link

Copyright © 2002 by Hanan Samet

cl7

• conflation—reconciles differences between position of
the same feature on different map layers so slivers will
be avoided

• edge matching—adjusts positions of features that extend
across map sheet boundaries

• line snapping—connects lines to a node if they end within
a specified distance

• line coordinate thinning—reduces volume of data by
purging some points

• visual inspection

7
v

3. Error correction processes:

Copyright © 2002 by Hanan Samet

cl8

COORDINATES

1. meridian—line connecting the north and south poles
through a point

2. latitude—angle formed by lines from center of the
earth to a point and the point at which its meridian
crosses the equator
• –90 south to 90 north

3. longitude—angle on the equatorial plane between the
point’s meridian and the Greenwich meridian
• –180 west to 180 east

4. meridian—a line of constant longitude

5. parallel—a line of constant latitude

6. great circle—imaginary circle on earth’s surface made
by a plane that passes through the center of the earth
• one nautical mile ≈ (miles/degree) on a great circle

divided by 60

Copyright © 2002 by Hanan Samet

cl9

TOPOLOGICAL DATA MODEL

1. Encodes spatial relationships
• usually based on arcs (i.e., edges)
• contrast with “spaghetti” model which represents all

data (e.g., arcs, polygons, etc.) as sequences of
points

2. Application to spatial data
• polygon table—lists constituent arcs for each

polygon
• node table—lists incident arcs for each node
• arc table

a. start and end nodes
b. adjacent polygons

• arc coordinate table
a. coordinate values for start and end points of each

arc
b. coordinate values of intermediate points

• assumes straight lines between points
• known as “shape points” in TIGER

3. Useful for performing spatial analysis
• avoids rederiving spatial relationships from

coordinate values
a. connectivity
b. contiguity

• requires updating

Copyright © 2002 by Hanan Samet

cl10

APPLICATIONS OF TOPOLOGICAL CODING

1. GBF/DIME files
• objects through which the data can be accessed

a. edges
b. faces and vertices must be searched for sequen-

tially in the edge table
• no easy way to access the topology given the

location of a point in space

2. TIGER files
• objects through which the data can be accessed

a. 0-cells: points (nodes)
b. 1-cells: lines (segments)
c. 2-cells: areas (blocks, census tracts,

enumeration districts)
• uses Peano keys to access the topology given the

location of a point in space

3. DLG

4. Unified PMR quadtree

Copyright © 2002 by Hanan Samet

cl11

GBF/DIME TOPOLOGICAL CODING

• Basic entity is a street segment which includes:

1. the endpoints

2. the block faces on its two sides

3. the range of addresses on its two sides

e27

e52

e30

e88 f65

e44

e40

v12

f70

v22 v36

v41

v56

v91
f89

ID
SRC

Edge Table

LDST R
Face IDsVertex IDs

e27

e30

e40

e44

e88

v22

v91

v12

v56

v22

v36

v12

v41

v12

v91

--

f65

--

f70

f65

f65

f70

f89

f89

--

ID Coordinate

Vertex Table

v12

v22

v36

v41

v91

x,y

x,y

x,y

x,y

x,y

Copyright © 2002 by Hanan Samet

cl12

TIGER TOPOLOGICAL CODING

• Objects

1. 0-cells: vertices or points (nodes)

2. 1-cells: edges or lines (segments)

3. 2-cells: faces or areas (blocks, census tracts,
enumeration districts)

• Method of access by directories

1. Vertex Directory: index by Peano key of a vertex

• points at a Vertex Table entry

2. Face Directory: index by Peano key of a point in a
face

• points at a Face Table entry

• Relationships

1. vertex relationships (Vertex Table and Edge Table)
enable accessing all edges that meet at a vertex

2. face relationships (Face Table and Edge Table)
enable accessing all edges that form a face

3. Edge Table is a common link between both
relationships

4. similar to winged-edge data structure of Baumgart

Copyright © 2002 by Hanan Samet

cl13

TIGER VERTEX RELATIONSHIPS

• Vertex Directory:
• access by looking up Peano key of coordinates of the

vertex

• Vertex Table: correspondence between a vertex and an
edge in a list of edges incident at it stored in Edge Table

• Edge Table: circular list in counter-clockwise order of
edges that meet at a vertex
1. one list for each of the 2 vertices comprising the edge
2. negative next edge link if the edge is directed away

from the vertex and positive otherwise
3. actual implementation in TIGER uses a linked list with

the edges in no particular order
• Ex: all edges meeting at vertex v12

Vertex
ID

First
Edge ID

Vertex Table

e52

-e27

-e52

-e30

v36

v22

v12

v91

Coords

x,y

x,y

x,y

x,y

Peano Key Vertex ID

Vertex Directory

15447

15733

16086

18631

v36

v22

v12

v91

Attributes

Edge
ID

Edge Table
Face ID Next Edge ID

L R L Face R Face

e44

e88

e27

e40

e52

e30

Vertex ID Next Edge ID

LF src RF dstsrc dst

v22

v56

v12

v91

v12

v22

v36

v12

v41

v12

v36

v91

-e13

e31

-e52

e88

e30

-e27

e52

-e40

-e62

e44

-e71

e14

e27

e52

e30

e88 f65

e44

e40

v12

f70

e22
e36

v41

v56

v91
f89

e14

e13
e71

f87

e57
e31

v22

e62

e12

f11

e41

f33

v36

Copyright © 2002 by Hanan Samet

cl14

TIGER FACE RELATIONSHIPS

• Face Directory: index by Peano key of a point in a face

• Face Table: correspondence between a face and the first
edge in list of edges that comprise it stored in Edge Table

• Edge Table: yields a circular list of consecutive edges in
counterclockwise order that make up a face by record-
ing the adjacent faces and the next edges along them
1. one linked list for each of the 2 faces adjacent to the edge
2. negative next edge link if the edge is directed away

from the destination vertex of the edge and positive
otherwise

Ex: all edges around face f65:

AAAAA
AAAAA
AAAAA
AAAAAe27

e30

e88 f65

e44

e40

v12

f70

e22
e36

v41

v56

v91
f89

e14

e13
e71

f87

e57
e31

v22

e62

e12

f11

e41

f33

v36

Peano Key Face ID

Face Directory

15447

15733

16086

18631

f65

f35

f24

f98

Face
ID

Attributes

Face Table

f70

f65

f34

f98

First
Edge ID

e27 --

e44 --

--

(x,y) area

--

-- --

Edge
ID

Edge Table
Face ID Next Edge ID

L R L Face R Face

f65

e44 e30f70 f89

f87

e88 f65 -e30 e22f11

e27 e36f33

e44

-e88

e40 f87

-e40e52 f65

f89

e27

-e57

e41e30 f65 f70 -e52

-e12

Vertex ID Next Edge ID

LF src RF dstsrc dst

v22

v56

v12

v91

v12

v22

v36

v12

v41

v12

v36

v91

-e13

e31

-e52

e88

e30

-e27

e52

-e40

-e62

e44

-e71

e14

e52

Copyright © 2002 by Hanan Samet

cl15

EXAMPLE OF A COMPLETE TIGER STRUCTURE

AAAAAA
AAAAAA
AAAAAA
AAAAAAe27

e30

e88 f65

e44

e40

v12

f70

e22
e36

v41

v56

v91
f89

e14

e13
e71

f87

e57
e31

v22

e62

e12

f11

e41

f33

v36

Peano Key Face ID

Face Directory

15447

15733

16086

18631

f65

f35

f24

f98

Face
ID

Attributes

Face Table

f70

f65

f34

f98

First
Edge ID

e27 --

e44 --

--

(x,y) area

--

-- --

Edge
ID

Edge Table
Face ID Next Edge ID

L R L Face R Face

f65

e44 e30f70 f89

f87

e88 f65 -e30 e22f11

e27 e36f33

e44

-e88

e40 f87

-e40e52 f65

f89

e27

-e57

e41e30 f65 f70 -e52

-e12

Vertex ID Next Edge ID

LF src RF dstsrc dst

Vertex
ID

First
Edge ID

Vertex Table

e52

-e27

-e52

-e30

v36

v22

v12

v91

Coords

x,y

x,y

x,y

x,y

Peano Key Vertex ID

Vertex Directory

15447

15733

16086

18631

v36

v22

v12

v91

Attributes

v22

v56

v12

v91

v12

v22

v36

v12

v41

v12

v36

v91

-e13

e31

-e52

e88

e30

-e27

e52

-e40

-e62

e44

-e71

e14

e52

• Edge Table has an index on Edge ID field

Copyright © 2002 by Hanan Samet

cl16

DIGITAL LINE GRAPH (DLG)

Face ID Interior Point

Face Table
Vertex ID Coordinate

Vertex Table

v12

v22

v36

v41

v91

x,y

x,y

x,y

x,y

x,y

x,y

x,y

x,y

f65

f70

f89

Edge
ID SRC

Edge Table

LDST R SRC DST

Face IDsVertex IDs Coords

x,y

x,y

x,y

x,y

x,y

x,y

x,y

x,y

x,y

x,y

e27

e30

e40

e44

e88

v22

v91

v12

v56

v22

v36

v12

v41

v12

v91

f33

f65

f87

f70

f65

f65

f70

f89

f89

f11

e27

e52

e30

e88 f65

e44

e40

v12

f70

e22
e36

v41

v56

v91
f89

e14

e13
e71

f87

e57
e31

v22

e62

e12

f11

e41

f33

v36

• Really just a file format (i.e., data repository)

• Vertex Table contains shape points as well

• Edge Table only contains vertices where real edges meet

• Somewhat cumbersome for performing operations

Copyright © 2002 by Hanan Samet

cl17

UNIFIED PMR QUADTREE

• Bucketing method for storing collections of line segments

• Facilitates finding nearest edge to a given point (i.e.,
spatial indexing)

• Subdivide a block once into four equal blocks
whenever it contains more than s (splitting threshold)
line segments

• If the total number of line segments in four brother
blocks is less than s, then merge as often as the
condition holds

• Edge Table indicates endpoints of line segments and
identity of the polygons to their left and right

• Given the identity of a face, get one edge via Face
Table and rest of edges by neighbor finding

Edge Table

SRC DST
Edge
Type L R

DBMS

Polygon IDsEndpoint CoordinatesEdge
ID

e27

e30

e40

e44

e52

e88

x,y

x,y

x,y

x,y

x,y

x,y

x,y

x,y

x,y

x,y

x,y

x,y

--

--

--

--

--

--

f33

f87

f87

--

f65

f70

f89

f89

f65

f70

f65

f65

Face Table
Seed Edge ID Edge TypeFace ID

f65

f70

f89

e88

e44

e40

--

--

--

e27

e52

e30

e88 f65

e44

e40

v12

f70

e22
e36

v41

v56

v91
f89

e14

e13
e71

f87

e57
e31

v22

e62

e12

f11

e41

f33

v36

Copyright © 2002 by Hanan Samet

cl18

SAMPLE IMPLEMENTATIONS

1. ARC/INFO (ESRI)
• topological model with layers

2. TIGRIS (INTERGRAPH)
• topological model with just one layer
• decriptions of objects that are part of different

attributes are shared
• primitives are directed edges

3. SYSTEM9 (Wild, Computervision, Prime, UNISYS)
• topological model with just one layer
• primitives are nodes, lines, and polygons

Copyright © 2002 by Hanan Samet

cl19

STANDARD DATA FORMATS

1. No real standard!

2. Defense Mapping Agency (DMA)
• Digital Feature Analysis Data (DFAD)

a. description of land surface in terms of
• culture
• geographic (e.g., forests, lakes, etc.)

b. stored as point, line, and area data
• lists of or single latitude, longitude pairs
• accompanied by tables of attribute information

c. e.g., water tower is stored as a point whose
attributes are feature high and structure type

• Digital Terrain Elevation Data (DTED)
a. elevation data in latitude, longitude, and elevation
b. at 3 arc second intervals
c. referenced to sea level
d. rounded to nearest meter

Copyright © 2002 by Hanan Samet

cl20

3. US Geological Survey (USGS)
• Digital Line Graph (DLG)

a. nodes (endpoints)
b. lines

• identifier
• endpoint nodes
• adjacent areas

c. areas
• identifier
• address in the area

• Digital Elevation Model (DEM)
• Land use and land cover data (GIRAS)

Copyright © 2002 by Hanan Samet

cl21

4. CIA World Data Bank
• just sequences of x and y coordinates
• no topological structure
• just coastlines?

5. National Ocean Service (NOS and NOAA)
• nautical charts depicting hydrography and bathymetry

(depths)
a. latitude
b. longitude
c. depth

• aeronautical charts depicting visual and instrument
flight charts

6. National Geophysical Center (NOS)
• surface elevations and ocean depths
• at 10 minute increments for latitude and longitude

Copyright © 2002 by Hanan Samet

cl22

DIGITAL ELEVATION DATA

1. Regular grid

• one elevation value for each of a set of
regularly spaced positions

• disadvantage is that the density of
elevations is uniform

• want high density in complex terrain and
sparseness in level areas

2. Triangulated Irregular Network (TIN)

• irregularly spaced elevation points

• topography represented by network of
triangular facets

• preferable when triangles are
equilateral in shape

3. Profiles

• show elevations at points along a series of parallel
lines

• vertical slices

4. Contours

• topographic surface is represented by series of
elevation points taken along
individual contour lines

• horizontal slices are overlaid and
do not cross since the 2.5-d is
single-valued

Copyright © 2002 by Hanan Samet

cl23

TRIANGULATED IRREGULAR NETWORK (TIN)

1. Map data collection usually tabulates data at points
• points have “high information content”

a. mountain peaks
b. bottoms of valleys and depressions
c. saddle points
d. break points in slopes

• interpolate between points
a. assume a plane between triplets of points
b. triplets of points form irregular triangles
c. connect irregular triangles to form a network

2. Advantages of TIN lie in variable size triangles (facets)
• extra information is encoded for areas of complex

relief
• simple relief is represented by

large triangles
• avoids cracks

3. Example applications
• modeling of hill slopes and

streams
• intervisibility problems—i.e., what

is visible from where

Copyright © 2002 by Hanan Samet

cl24

TRIANGLE TIN REPRESENTATION

• Primary entity is a triangle
• Vertex table

1. x and y coordinate values
2. elevation

• Triangle table
1. pointers to records of constituent vertices (3)
2. pointers to records of adjacent triangles (maximum 3)

• No particular order for entries in tables

• Good for display, hidden surface removal

Tri.
ID

Triangle Table

1 2 3

Connected Vert.

t1

Adjacent Triangles
1 2 3

t2

t3

t4

t5

t6

t7

t8

v21

v21

v22

v22

v23

v24

v25

v26

v27

v22

v27

v23

v24

v25

v26

v27

v28

v27

v29

v29

v29

v29

v29

v29

t2

t1

t2

t3

t4

t5

t6

t3

t18

t3

t4

t5

t6

t7

t8

t7

t19

t12

t8

t13

t14

t15

t16

t17

Vertex
ID X

Vertex Table

Y Elevation
Coordinate

v21

v22

v23

v24

v25

v26

v27

v28

v29

x

x

x

x

x

x

x

x

x

y

y

y

y

y

y

y

y

y

z

z

z

z

z

z

z

z

z

t1

t2

t3

t4

t5

t6

t7t8

t11 t12 t13

t14

t15

t16t17
t18

t19
v21

v22
v23

v24

v25

v26
v27

v28
v29

Copyright © 2002 by Hanan Samet

cl25

CONNECTED VERTEX TIN REPRESENTATION
• For each vertex, keep track of all vertices connected to it
• Vertex table

1. x and y coordinate values and elevation
2. pointer to 1st element in vertex list in connectivity table

• Connectivity table
1. consecutive pointers to records of adjacent vertices
2. each list is terminated by 0

• Takes about half the space of triangle TIN
representation

• Enables editing—e.g., addition and deletion of points
• Does not keep track of triangles explicitly

index

Connectivity Table
Vertex ID

1

2

3

4

5

6

7

8

v22

v23

v24

v25

v26

v27

0

v22

--

Vertex
ID X

Vertex Table

Y Elevation

Coordinate

v21

v22

v23

v24

v25

v26

v27

v28

v29

x

x

x

x

x

x

x

x

x

y

y

y

y

y

y

y

y

y

z

z

z

z

z

z

z

z

z

First
Vertex

1

8

--

--

--

--

--

--

--

t1

t2

t3

t4

t5

t6

t7t8

t11 t12 t13

t14

t15

t16t17
t18

t19
v21

v22
v23

v24

v25

v26
v27

v28
v29

Copyright © 2002 by Hanan Samet

cl26

HYBRID TIN REPRESENTATION
• Combine vertex method with a list of triangles
• Does not include the pointers to the adjacent triangles
• Comparable in size to other data structures
• Enables easy display and editing

1. move point: easy to detect which edges need
updating

2. add point: find enclosing triangle and connect point
to its vertices

3. delete point: remove it from the Vertex Table and
its Connectivity Table entry
• may need to retriangulate

4. can calculate volume
5. display using hidden surface removal by maintaining

the normal to each triangle and ignoring all triangles
which face away from viewer

Tri.
ID

Triangle Table

1 2 3

Connected Vert.

t1

t2

t3

t4

t5

t6

t7

t8

v21

v21

v22

v22

v23

v24

v25

v26

v27

v22

v27

v23

v24

v25

v26

v27

v28

v27

v29

v29

v29

v29

v29

v29

index

Connectivity Table

Vertex ID

1

2

3

4

5

6

7

8

v22

v23

v24

v25

v26

v27

0

v22

--

Vertex
ID X

Vertex Table

Y Elevation
Coordinate

v21

v22

v23

v24

v25

v26

v27

v28

v29

x

x

x

x

x

x

x

x

x

y

y

y

y

y

y

y

y

y

z

z

z

z

z

z

z

z

z

First
Vertex

--

--

8

--

--

--

--

--

1

t1

t2

t3

t4

t5

t6

t7t8

t11 t12 t13

t14

t15

t16t17
t18

t19
v21

v22
v23

v24

v25

v26
v27

v28

v29

Copyright © 2002 by Hanan Samet

cl27

SYMBOLS

• Renders visible the features and locations on a map

• Distinguishes between the relevant and the irrelevant

• Three geometric categories

1. points

2. lines

3. regions

• Six visual variables

1. size

2. shape

3. graytone values

4. texture (pattern)

5. orientation

6. hue (color)

Copyright © 2002 by Hanan Samet

cl28

USE OF VISUAL VARIABLES
• Often combine them to yield a particular effect
• Shape, texture, and hue highlight qualitative differences

- e.g., vegetation, religion, etc.
• Quantitative differences

1. size for count or capacity (e.g., road network)
2. graytone for rate or intensity

• light is associated with less
• dark is associated with more
• difficult to achieve with hue
• e.g., proportional voting

• Orientation symbols (e.g., arrows) are useful for
directional quantities
1. weather such as wind, gulfstream
2. population shifts such as migration patterns, troop

movements
3. traffic flow
4. direction of hatching in area symbolization by lines

• Hard to detect differences in graytone, and pattern for
point and line symbols while yes for area symbols

• Hue is not good for differentiating between point
symbols but yes for line symbols (e.g., type of road)

• Can combine two or more visual variables (e.g.,
elevation contours)
1. dense spacing (an element of texture) shows steep

slope while wide spacing shows gentle slope
2. perpendicular to contour line (an element of

orientation) shows downhill direction

Copyright © 2002 by Hanan Samet

cl29

PERCEPTUAL ERROR

• Caused by poor match between data and visual
variable

• Improper use of color to illustrate order

1. layman does not understand ordering implied by
wavelengths

2. use graytone!

3. many people are color blind

• Certain colors are associated with preconceived
notions

1. blue for water or cold

2. brown for barren land

3. green for lush vegetations or forests

4. red for warm

• Point symbols may be better at capturing size than
area symbols

1. especially true for non-spatial variables such as
population

2. don't fill an area with an area symbol such as hue,
texture, or graytone

• area symbols suggest intensity

• a small region with a large population is
represented in the same way as a large region
with a relatively small but equal population

3. vary size of point symbol

Copyright © 2002 by Hanan Samet

cl30

CLASSIFICATION OF CARTOGRAPHIC DATA TYPES

1. Dimension
• point - described by location and attribute
• line - string of connected line segments or a

mathematical function such as a spline
• area - predefined with a boundary, topology, and

attribute

2. Level of measurements - i.e., by its complexity
• nominal - e.g., place name
• ordinal

a. has a sequence or ranking
b. can use relations such as 'greater than', 'smaller'

etc.
• interval

a. measured numerical value
b. scale need not be absolute

• can be pegged to an arbitrary zero
• e.g., BC, AD
• ratio

a. measured on a scale with a meaningful zero so
mathematical operations can be performed on it

b. e.g., density, rate of change, percentage

Copyright © 2002 by Hanan Samet

cl31

• Robinson: a way of classifying cartographic symbols
and map types in common use

• Symbolization depends on

1. type of data (i.e., dimension)

2. level of attribute measurement

+
++

Wholesale and Retail
Establishments

Small Medium Large

Population Centers

Highway Connectivity

A

B

C

D

Roads by Degree of
Improvement

Land Ownership

A B C

Yield

L
M

H

EquivalenceNominal

Equivalence
Greater than

Equivalence
Greater than
Ratio of Intervals
Ratio of Scale Values

Equivalence
Greater than
Ratio of Intervals

Date of First SettlementLatitude/Longitude GridSpot Elevations

45

72 60
42

89

Darkness Proportional
to Population Density

1820

1845

1862

Population Density
Isopleths

Area Proportional to
Population

Ordinal

Interval

Ratio

Content
Scaling
Level

Defining
Relations POINT LINE AREA

FORM OF CARTOGRAPHIC SYMBOL

20 20
10

❊

❊
❊

Adapted from Figure 8.01 from Analytical and Computer
Cartography by Keith C. Clarke, Prentice-Hall,
Englewood Cliffs, NJ, 1990, p. 133.

Copyright © 2002 by Hanan Samet

cl32

• Unwin: added the distinction between map-data
transformations and map-type transformations
1. data attributes define data types
2. type of symbolization defines the map type
3. result is a data-type to map-type symbolization

transformation
4. analytical cartography is the study of the above

transformation
• The separation between data type and map types is

based on the distinction between cartographic entities
and their symbolization

DATA Point L ine Area Volume
TYPES

Nominal City Road Name of Precipitation
Unit or soil type

Ordinal Large Major Rich Heavy precip.
City Road County Good soil

Interval Total Traffic Per Capita Precip. in mm

Ratio Population Flow Income or Cation
Exchange

MAP Point L ine Area Volume
TYPES

Nominal Dot Map Network Map Colored Freely Colored
Area Map Map

Ordinal Symbol Map Ordered Ordered Ordered
Network Map Colored Map Chromatic Map

Interval Graduated Flow Map Choropleth Contour

Ratio Symbol Map Map Map

Adapted from Figure 8.03 from Analytical and Computer
Cartography by Keith C. Clarke, Prentice-Hall,
Englewood Cliffs, NJ, 1990, p. 138.

Copyright © 2002 by Hanan Samet

cl33

WHY TRANSFORM CARTOGRAPHIC DATA?

1. Cartographic generalization—i.e., changing scale

2. Conversion of the geometry of the map base
• in registration—i.e., common origin
• common statistical basis

3. Change the data structure
• e.g., contouring may require data to be on a grid
• converting from raster to vector or vice versa

because certain operations are more efficient with
them

• vector to raster transformation is not invertible which
is why we store with each block in a PM quadtree
the identity of the line passing through it

4. Change the level of measurement
• not necessarily a map transformation

Ex: make a map of the US where the states are
labeled with their ranking in terms of population
density
• result is a choropleth map since each location

in a region (i.e., state) has the same value
(i.e., population density)

• two transformations
a. ratio (population and state area) to ratio

(population density)
b. ratio (population density) to ordinal (ranking)

• ratio to ratio is invertible but ratio to ordinal is
not

Copyright © 2002 by Hanan Samet

cl34

SCALE TRANSFORMATIONS

• Large scale means a small area on the ground is
covered with much detail (small denominator)

• Generalization is transformation from large scale to
small scale

1. geometric generalization avoids or eliminates
overlapping symbols

2. content generalization filters out details irrelevant to
the map's theme

• selection suppresses some information

• classification recognizes similarity among a group
of features by using one type of symbol to
represent them

• Inverse of generalization is “enhancement” (also
known as cartographic license)

1. emphatic enhancement

• uniformly done over the entire map (though
artificial)

2. synthetic enhancement

• uses a model to generate the variation

• e.g., fractal enhancement of coastlines

Copyright © 2002 by Hanan Samet

cl35

• choose features to be retained and suppressed

EXAMPLES OF GENERALIZATION

1. Elimination or selection
• preserve average

feature density

2. Simplification
• type conversion

a. using a dot for a
city instead of an
area

b. using a line for a wide river instead of an area
• smoothing a line for a river or road

3. Combination or
aggregation
• joining features

—e.g., a river with
its tributaries

• area conversion
a. convert a group of dots to an area
b. especially useful when scale reduction is severe

(e.g., from 1 : 5,000 to 1 : 1,000,000) since it
diverts reader's attention from imperceptible
individual occurrences to regions of relative
concentration

• single line for a divided highway

Copyright © 2002 by Hanan Samet

cl36

4. Displacement
• avoid interference

due to:
a. changing symbol

and line widths
b. minimum feature separation requirements

• reveal structure

• make room for labels

5. Enhancement

• add details to give an appearance of realism

• Ex: use hairpin symbol for a winding road

• Ex: fractal coastlines

Copyright © 2002 by Hanan Samet

cl37

DIFFERENTIATING BETWEEN DIFFERENT
GENERALIZATION OPERATIONS

1. Filtering consists of elimination and simplification
• do not cause locational changes of the features
• local operations
• can be done sequentially
• primarily for data reduction

2. Generalized generalization includes combination and
displacement (also known as resymbolization)
• reorganize space
• best if done in parallel
• oriented towards graphical output

Copyright © 2002 by Hanan Samet

cl38

MAP-BASED TRANSFORMATIONS

1. Projections
• projections from a sphere to a plane
• actually earth is spheroid but difference is small
• geometry is different on sphere and plane (e.g.,

spherical triangles)

2. Affine transformations—shifting, rotation, scaling

3. Statistical transformations
• rubber sheeting—stretch map to fit on a surface

a. don’t know the transformation exactly
b. know the transformation of a few points

• cartograms—draw map so areas of constituent
entities are proportional to the quantity measured
while preserving the shape

4. Symbolization transformations
• viewing transformation—e.g., normalization to

workstation window
• symbols for different data types

Copyright © 2002 by Hanan Samet

cl39

GEOMETRIC TRANFORMATIONS

1. Equi-area
• preserves area of object

2. Similarity
• preserves shape but not necessarily area

Yes! No!

3. Affine
• permits angular distortion but preserves parallelism

of lines and collinearity
• scaling, rotation, translation

Yes!

4. Projective
• permits distortion of shape and angle
• e.g., number of vertices and edges is preserved

Yes! No! No!

5. Topological
• preserves neighborhood

Yes! No!

• Rubber sheeting: collective term describing the
combination of affine, projective, and topological
geometric transformations

• Conflation: matching of features on two maps which
differ due to distortions, slivers, superfluous points, etc.

Copyright © 2002 by Hanan Samet

cl40

AFFINE (LINEAR) TRANSFORMATIONS

• Transformations includes translation, rotation, and
scaling

• Assume two-dimensional space

• Combination is facilitated by use of matrix multiplication

C = A ⋅B where cij = aik ⋅ bkj
k =1

n

∑

• Use homogeneous coordinates so that matrix
multiplication can be used for translation instead of
addition

1. translation: ′x = x + a and ′y = y + b
1 0 a

0 1 b

0 0 1

2. scaling: ′x = s ⋅ x and ′y = s ⋅ y
s 0 0

0 s 0

0 0 1

3. rotation:
′x = x ⋅ cosθ − s ⋅ sinθ
′y = x ⋅ sinθ + y ⋅ cosθ

cosθ sinθ 0

−sinθ cosθ 0

0 0 1

• Can specify operations in sequence

Ex: rotation(90);
translation(5,2);
scaling(2);
rotation(–45);
...

Copyright © 2002 by Hanan Samet

cl41

RESAMPLING TRANSFORMATIONS

1. Change scale
• symbolize cartographic objects at a different scale

than the one at which geocoding took place
• for ease of symbolization

2. Point-to-Point
• one point represents many points—e.g., centroid,

Voronoi diagram

3. Line-to-line
• reduce number of elements for representing the line
• purpose: convey character of line to map reader

4. Area-to-area
• goal: merge multiple data sets into a set of regions

so the merged data facilitates a comparison
between maps

• compute a set of greatest common geographic
units—i.e., they do not need further partitioning
a. convert to a grid
b. polygon overlay

• find intersection points between lines
• split chains
• form new polygons

5. Volume-to-volume: rare as hard to symbolize in 3-d

Copyright © 2002 by Hanan Samet

cl42

VOLUME-TO-VOLUME TRANSFORMATIONS

1. Change in grid spacing
• requires interpolation
• use four neighbors and average

2. Change in TIN surface representation
• rare for set of points that represent the surface to

change as the points are real observations
• can create a grid from a TIN by using interpolation
• can determine which triangle contains a particular

point by using a point-in-polygon test

Copyright © 2002 by Hanan Samet

cl431
b

LINE-TO-LINE TRANSFORMATIONS

• Question: Can we guarantee absence of slivers?

• Local methods

Adapted from Figure 10.01 from Analytical and

ComputerCartography by Keith C. Clarke, Prentice-Hall,

EnglewoodCliffs, NJ, 1990, p. 181.

• Algorithm

• Bottom-up line generalization

• Purpose: data reduction

Copyright © 2002 by Hanan Samet

cl431
b

LINE-TO-LINE TRANSFORMATIONS

• Question: Can we guarantee absence of slivers?

• Local methods

Adapted from Figure 10.01 from Analytical and

ComputerCartography by Keith C. Clarke, Prentice-Hall,

EnglewoodCliffs, NJ, 1990, p. 181.

• Algorithm

• Bottom-up line generalization

• Purpose: data reduction

Copyright © 2002 by Hanan Samet

cl432
b

Copyright © 2002 by Hanan Samet

cl431
b

LINE-TO-LINE TRANSFORMATIONS

• Question: Can we guarantee absence of slivers?

• Local methods

Adapted from Figure 10.01 from Analytical and

ComputerCartography by Keith C. Clarke, Prentice-Hall,

EnglewoodCliffs, NJ, 1990, p. 181.

• Algorithm

• Bottom-up line generalization

• Purpose: data reduction

Copyright © 2002 by Hanan Samet

cl432
b

Copyright © 2002 by Hanan Samet

cl433
r

1. N th point elimination

Copyright © 2002 by Hanan Samet

cl431
b

LINE-TO-LINE TRANSFORMATIONS

• Question: Can we guarantee absence of slivers?

• Local methods

Adapted from Figure 10.01 from Analytical and

ComputerCartography by Keith C. Clarke, Prentice-Hall,

EnglewoodCliffs, NJ, 1990, p. 181.

• Algorithm

• Bottom-up line generalization

• Purpose: data reduction

Copyright © 2002 by Hanan Samet

cl432
b

Copyright © 2002 by Hanan Samet

cl433
r

1. N th point elimination

Copyright © 2002 by Hanan Samet

cl434
z

2. all points equidistant from each other in terms of
Euclidean distance

Copyright © 2002 by Hanan Samet

cl431
b

LINE-TO-LINE TRANSFORMATIONS

• Question: Can we guarantee absence of slivers?

• Local methods

Adapted from Figure 10.01 from Analytical and

ComputerCartography by Keith C. Clarke, Prentice-Hall,

EnglewoodCliffs, NJ, 1990, p. 181.

• Algorithm

• Bottom-up line generalization

• Purpose: data reduction

Copyright © 2002 by Hanan Samet

cl432
b

Copyright © 2002 by Hanan Samet

cl433
r

1. N th point elimination

Copyright © 2002 by Hanan Samet

cl434
z

2. all points equidistant from each other in terms of
Euclidean distance

Copyright © 2002 by Hanan Samet

cl435
g

3. retain a point for every x distance units along the line

Copyright © 2002 by Hanan Samet

cl441
b

DOUGLAS-PEUCKER ALGORITHM

• Global method of data reduction

Adapted from Figure 10.02 from Analytical and
ComputerCartography by Keith C. Clarke, Prentice-Hall,
EnglewoodCliffs, NJ, 1990, p. 184.

• Top-down line generalization

• Algorithm

Copyright © 2002 by Hanan Samet

cl441
b

DOUGLAS-PEUCKER ALGORITHM

• Global method of data reduction

Adapted from Figure 10.02 from Analytical and
ComputerCartography by Keith C. Clarke, Prentice-Hall,
EnglewoodCliffs, NJ, 1990, p. 184.

• Top-down line generalization

• Algorithm

Copyright © 2002 by Hanan Samet

cl442
b

Copyright © 2002 by Hanan Samet

cl441
b

DOUGLAS-PEUCKER ALGORITHM

• Global method of data reduction

Adapted from Figure 10.02 from Analytical and
ComputerCartography by Keith C. Clarke, Prentice-Hall,
EnglewoodCliffs, NJ, 1990, p. 184.

• Top-down line generalization

• Algorithm

Copyright © 2002 by Hanan Samet

cl442
b

Copyright © 2002 by Hanan Samet

cl443
r

1. Join extreme endpoints

Copyright © 2002 by Hanan Samet

cl441
b

DOUGLAS-PEUCKER ALGORITHM

• Global method of data reduction

Adapted from Figure 10.02 from Analytical and
ComputerCartography by Keith C. Clarke, Prentice-Hall,
EnglewoodCliffs, NJ, 1990, p. 184.

• Top-down line generalization

• Algorithm

Copyright © 2002 by Hanan Samet

cl442
b

Copyright © 2002 by Hanan Samet

cl443
r

1. Join extreme endpoints

Copyright © 2002 by Hanan Samet

cl444
z

2. Select point on line with largest orthogonal distance to
line approximation and break line at this point

Copyright © 2002 by Hanan Samet

cl441
b

DOUGLAS-PEUCKER ALGORITHM

• Global method of data reduction

Adapted from Figure 10.02 from Analytical and
ComputerCartography by Keith C. Clarke, Prentice-Hall,
EnglewoodCliffs, NJ, 1990, p. 184.

• Top-down line generalization

• Algorithm

Copyright © 2002 by Hanan Samet

cl442
b

Copyright © 2002 by Hanan Samet

cl443
r

1. Join extreme endpoints

Copyright © 2002 by Hanan Samet

cl444
z

2. Select point on line with largest orthogonal distance to
line approximation and break line at this point

Copyright © 2002 by Hanan Samet

cl445
g

3. Apply recursively until

• a minimum number of points remain, OR

Copyright © 2002 by Hanan Samet

cl441
b

DOUGLAS-PEUCKER ALGORITHM

• Global method of data reduction

Adapted from Figure 10.02 from Analytical and
ComputerCartography by Keith C. Clarke, Prentice-Hall,
EnglewoodCliffs, NJ, 1990, p. 184.

• Top-down line generalization

• Algorithm

Copyright © 2002 by Hanan Samet

cl442
b

Copyright © 2002 by Hanan Samet

cl443
r

1. Join extreme endpoints

Copyright © 2002 by Hanan Samet

cl444
z

2. Select point on line with largest orthogonal distance to
line approximation and break line at this point

Copyright © 2002 by Hanan Samet

cl445
g

3. Apply recursively until

• a minimum number of points remain, OR

Copyright © 2002 by Hanan Samet

cl446
v

• reach a specified tolerance level such as a fraction of the
initial orthogonal distance, OR

Copyright © 2002 by Hanan Samet

cl441
b

DOUGLAS-PEUCKER ALGORITHM

• Global method of data reduction

Adapted from Figure 10.02 from Analytical and
ComputerCartography by Keith C. Clarke, Prentice-Hall,
EnglewoodCliffs, NJ, 1990, p. 184.

• Top-down line generalization

• Algorithm

Copyright © 2002 by Hanan Samet

cl442
b

Copyright © 2002 by Hanan Samet

cl443
r

1. Join extreme endpoints

Copyright © 2002 by Hanan Samet

cl444
z

2. Select point on line with largest orthogonal distance to
line approximation and break line at this point

Copyright © 2002 by Hanan Samet

cl445
g

3. Apply recursively until

• a minimum number of points remain, OR

Copyright © 2002 by Hanan Samet

cl446
v

• reach a specified tolerance level such as a fraction of the
initial orthogonal distance, OR

Copyright © 2002 by Hanan Samet

cl447
r

• preservation of the fractal dimension of the line

Copyright © 2002 by Hanan Samet

cl45

VECTOR TO RASTER CONVERSION
(RASTERIZATION)

1. Read the data
• map projections
• resampling transformations

2. Apply necessary scaling and map transformations

3. Determine nonzero pixels
• if distance between two points is less than half the

grid spacing, then ignore the second point
• use Bresenham's algorithm—only requires integers
• any pixel that is partially touched by a line is nonzero

a. could cause spurious holes
b. avoid holes by checking if a pixel is necessary to

preserve connectivity

4. Store the array in an appropriate manner
• bit map
• runlength encoding
• quadtree

5. If need to symbolize, then can use line thickening
• change to black any pixel that borders one of the line

pixels
• in order to avoid “jaggies”, use anti-aliasing which

assigns lower intensities to neighboring pixels

Copyright © 2002 by Hanan Samet

cl46

BRESENHAM’S ALGORITHM

1. Skeletonization or line thinning

• necessary because vector lines have zero width
from a theoretical standpoint, yet are one pixel wide
in raster mode

• line consists merely of connected pixels (8-
connected)

2. Line extraction

• determine where the lines start and end in the
thinned image

3. Topological reconstruction

• generate topological connectivity of lines to build a
topological definition of the lines and polygons

Ex:

(x 0 , y 0)

(x 1, y1)

• start plotting at (x0,y0)

• each time the model line moves to a new row (v
keeps track of it), then start plotting there

• as column is incremented by one, the row is
incremented by the fractional slope of the line,
(y1–y0) / (x 1–x 0)

Copyright © 2002 by Hanan Samet

cl471
b

MECHANICS OF BRESENHAM'S ALGORITHM

• Ex: A=3, B=13

A ← y1 – y0;
B ← x1 – x0;
x ← x0;
y ← y0;
v ← 0.0;
while x < x1 do
begin
 plot(x, y);
 x ← x + 1;
 v ← v + A/B;
 if v ≥ 1.0 then
 begin
 y ← y + 1;
 v ← v – 1.0;
 end;
end;

(x0,y0)

(x1,y1)

• Horizontal ball accumulates changes in v
• When v ≥ B, it is reset to 0

Copyright © 2002 by Hanan Samet

cl471
b

MECHANICS OF BRESENHAM'S ALGORITHM

• Ex: A=3, B=13

A ← y1 – y0;
B ← x1 – x0;
x ← x0;
y ← y0;
v ← 0.0;
while x < x1 do
begin
 plot(x, y);
 x ← x + 1;
 v ← v + A/B;
 if v ≥ 1.0 then
 begin
 y ← y + 1;
 v ← v – 1.0;
 end;
end;

(x0,y0)

(x1,y1)

• Horizontal ball accumulates changes in v
• When v ≥ B, it is reset to 0

Copyright © 2002 by Hanan Samet

cl472
r

• prefer integer calculations
• rewrite as:

(Bv) ← (Bv) + A

if (Bv) ≥ B then

 (Bv) ← (Bv) – B;

Copyright © 2002 by Hanan Samet

cl471
b

MECHANICS OF BRESENHAM'S ALGORITHM

• Ex: A=3, B=13

A ← y1 – y0;
B ← x1 – x0;
x ← x0;
y ← y0;
v ← 0.0;
while x < x1 do
begin
 plot(x, y);
 x ← x + 1;
 v ← v + A/B;
 if v ≥ 1.0 then
 begin
 y ← y + 1;
 v ← v – 1.0;
 end;
end;

(x0,y0)

(x1,y1)

• Horizontal ball accumulates changes in v
• When v ≥ B, it is reset to 0

Copyright © 2002 by Hanan Samet

cl472
r

• prefer integer calculations
• rewrite as:

(Bv) ← (Bv) + A

if (Bv) ≥ B then

 (Bv) ← (Bv) – B;

Copyright © 2002 by Hanan Samet

cl473
z

A ← y1 – y0;
B ← x1 – x0;
x ← x0;
y ← y0;
V ← 0;
while x < x1 do
begin
 plot(x, y);
 x ← x + 1;
 V ← V + A;
 if V ≥ B then
 begin
 y ← y + 1;
 V ← V – B;
 end;
end;

• Substituting V for (Bv)

Copyright © 2002 by Hanan Samet

cl471
b

MECHANICS OF BRESENHAM'S ALGORITHM

• Ex: A=3, B=13

A ← y1 – y0;
B ← x1 – x0;
x ← x0;
y ← y0;
v ← 0.0;
while x < x1 do
begin
 plot(x, y);
 x ← x + 1;
 v ← v + A/B;
 if v ≥ 1.0 then
 begin
 y ← y + 1;
 v ← v – 1.0;
 end;
end;

(x0,y0)

(x1,y1)

• Horizontal ball accumulates changes in v
• When v ≥ B, it is reset to 0

Copyright © 2002 by Hanan Samet

cl472
r

• prefer integer calculations
• rewrite as:

(Bv) ← (Bv) + A

if (Bv) ≥ B then

 (Bv) ← (Bv) – B;

Copyright © 2002 by Hanan Samet

cl473
z

A ← y1 – y0;
B ← x1 – x0;
x ← x0;
y ← y0;
V ← 0;
while x < x1 do
begin
 plot(x, y);
 x ← x + 1;
 V ← V + A;
 if V ≥ B then
 begin
 y ← y + 1;
 V ← V – B;
 end;
end;

• Substituting V for (Bv)

Copyright © 2002 by Hanan Samet

cl474
b

Copyright © 2002 by Hanan Samet

cl471
b

MECHANICS OF BRESENHAM'S ALGORITHM

• Ex: A=3, B=13

A ← y1 – y0;
B ← x1 – x0;
x ← x0;
y ← y0;
v ← 0.0;
while x < x1 do
begin
 plot(x, y);
 x ← x + 1;
 v ← v + A/B;
 if v ≥ 1.0 then
 begin
 y ← y + 1;
 v ← v – 1.0;
 end;
end;

(x0,y0)

(x1,y1)

• Horizontal ball accumulates changes in v
• When v ≥ B, it is reset to 0

Copyright © 2002 by Hanan Samet

cl472
r

• prefer integer calculations
• rewrite as:

(Bv) ← (Bv) + A

if (Bv) ≥ B then

 (Bv) ← (Bv) – B;

Copyright © 2002 by Hanan Samet

cl473
z

A ← y1 – y0;
B ← x1 – x0;
x ← x0;
y ← y0;
V ← 0;
while x < x1 do
begin
 plot(x, y);
 x ← x + 1;
 V ← V + A;
 if V ≥ B then
 begin
 y ← y + 1;
 V ← V – B;
 end;
end;

• Substituting V for (Bv)

Copyright © 2002 by Hanan Samet

cl474
b

Copyright © 2002 by Hanan Samet

cl475
r

Copyright © 2002 by Hanan Samet

cl471
b

MECHANICS OF BRESENHAM'S ALGORITHM

• Ex: A=3, B=13

A ← y1 – y0;
B ← x1 – x0;
x ← x0;
y ← y0;
v ← 0.0;
while x < x1 do
begin
 plot(x, y);
 x ← x + 1;
 v ← v + A/B;
 if v ≥ 1.0 then
 begin
 y ← y + 1;
 v ← v – 1.0;
 end;
end;

(x0,y0)

(x1,y1)

• Horizontal ball accumulates changes in v
• When v ≥ B, it is reset to 0

Copyright © 2002 by Hanan Samet

cl472
r

• prefer integer calculations
• rewrite as:

(Bv) ← (Bv) + A

if (Bv) ≥ B then

 (Bv) ← (Bv) – B;

Copyright © 2002 by Hanan Samet

cl473
z

A ← y1 – y0;
B ← x1 – x0;
x ← x0;
y ← y0;
V ← 0;
while x < x1 do
begin
 plot(x, y);
 x ← x + 1;
 V ← V + A;
 if V ≥ B then
 begin
 y ← y + 1;
 V ← V – B;
 end;
end;

• Substituting V for (Bv)

Copyright © 2002 by Hanan Samet

cl474
b

Copyright © 2002 by Hanan Samet

cl475
r

Copyright © 2002 by Hanan Samet

cl476
z

Copyright © 2002 by Hanan Samet

cl471
b

MECHANICS OF BRESENHAM'S ALGORITHM

• Ex: A=3, B=13

A ← y1 – y0;
B ← x1 – x0;
x ← x0;
y ← y0;
v ← 0.0;
while x < x1 do
begin
 plot(x, y);
 x ← x + 1;
 v ← v + A/B;
 if v ≥ 1.0 then
 begin
 y ← y + 1;
 v ← v – 1.0;
 end;
end;

(x0,y0)

(x1,y1)

• Horizontal ball accumulates changes in v
• When v ≥ B, it is reset to 0

Copyright © 2002 by Hanan Samet

cl472
r

• prefer integer calculations
• rewrite as:

(Bv) ← (Bv) + A

if (Bv) ≥ B then

 (Bv) ← (Bv) – B;

Copyright © 2002 by Hanan Samet

cl473
z

A ← y1 – y0;
B ← x1 – x0;
x ← x0;
y ← y0;
V ← 0;
while x < x1 do
begin
 plot(x, y);
 x ← x + 1;
 V ← V + A;
 if V ≥ B then
 begin
 y ← y + 1;
 V ← V – B;
 end;
end;

• Substituting V for (Bv)

Copyright © 2002 by Hanan Samet

cl474
b

Copyright © 2002 by Hanan Samet

cl475
r

Copyright © 2002 by Hanan Samet

cl476
z

Copyright © 2002 by Hanan Samet

cl477
g

Copyright © 2002 by Hanan Samet

cl471
b

MECHANICS OF BRESENHAM'S ALGORITHM

• Ex: A=3, B=13

A ← y1 – y0;
B ← x1 – x0;
x ← x0;
y ← y0;
v ← 0.0;
while x < x1 do
begin
 plot(x, y);
 x ← x + 1;
 v ← v + A/B;
 if v ≥ 1.0 then
 begin
 y ← y + 1;
 v ← v – 1.0;
 end;
end;

(x0,y0)

(x1,y1)

• Horizontal ball accumulates changes in v
• When v ≥ B, it is reset to 0

Copyright © 2002 by Hanan Samet

cl472
r

• prefer integer calculations
• rewrite as:

(Bv) ← (Bv) + A

if (Bv) ≥ B then

 (Bv) ← (Bv) – B;

Copyright © 2002 by Hanan Samet

cl473
z

A ← y1 – y0;
B ← x1 – x0;
x ← x0;
y ← y0;
V ← 0;
while x < x1 do
begin
 plot(x, y);
 x ← x + 1;
 V ← V + A;
 if V ≥ B then
 begin
 y ← y + 1;
 V ← V – B;
 end;
end;

• Substituting V for (Bv)

Copyright © 2002 by Hanan Samet

cl474
b

Copyright © 2002 by Hanan Samet

cl475
r

Copyright © 2002 by Hanan Samet

cl476
z

Copyright © 2002 by Hanan Samet

cl477
g

Copyright © 2002 by Hanan Samet

cl478
v

Copyright © 2002 by Hanan Samet

cl471
b

MECHANICS OF BRESENHAM'S ALGORITHM

• Ex: A=3, B=13

A ← y1 – y0;
B ← x1 – x0;
x ← x0;
y ← y0;
v ← 0.0;
while x < x1 do
begin
 plot(x, y);
 x ← x + 1;
 v ← v + A/B;
 if v ≥ 1.0 then
 begin
 y ← y + 1;
 v ← v – 1.0;
 end;
end;

(x0,y0)

(x1,y1)

• Horizontal ball accumulates changes in v
• When v ≥ B, it is reset to 0

Copyright © 2002 by Hanan Samet

cl472
r

• prefer integer calculations
• rewrite as:

(Bv) ← (Bv) + A

if (Bv) ≥ B then

 (Bv) ← (Bv) – B;

Copyright © 2002 by Hanan Samet

cl473
z

A ← y1 – y0;
B ← x1 – x0;
x ← x0;
y ← y0;
V ← 0;
while x < x1 do
begin
 plot(x, y);
 x ← x + 1;
 V ← V + A;
 if V ≥ B then
 begin
 y ← y + 1;
 V ← V – B;
 end;
end;

• Substituting V for (Bv)

Copyright © 2002 by Hanan Samet

cl474
b

Copyright © 2002 by Hanan Samet

cl475
r

Copyright © 2002 by Hanan Samet

cl476
z

Copyright © 2002 by Hanan Samet

cl477
g

Copyright © 2002 by Hanan Samet

cl478
v

Copyright © 2002 by Hanan Samet

cl479
b

Copyright © 2002 by Hanan Samet

cl471
b

MECHANICS OF BRESENHAM'S ALGORITHM

• Ex: A=3, B=13

A ← y1 – y0;
B ← x1 – x0;
x ← x0;
y ← y0;
v ← 0.0;
while x < x1 do
begin
 plot(x, y);
 x ← x + 1;
 v ← v + A/B;
 if v ≥ 1.0 then
 begin
 y ← y + 1;
 v ← v – 1.0;
 end;
end;

(x0,y0)

(x1,y1)

• Horizontal ball accumulates changes in v
• When v ≥ B, it is reset to 0

Copyright © 2002 by Hanan Samet

cl472
r

• prefer integer calculations
• rewrite as:

(Bv) ← (Bv) + A

if (Bv) ≥ B then

 (Bv) ← (Bv) – B;

Copyright © 2002 by Hanan Samet

cl473
z

A ← y1 – y0;
B ← x1 – x0;
x ← x0;
y ← y0;
V ← 0;
while x < x1 do
begin
 plot(x, y);
 x ← x + 1;
 V ← V + A;
 if V ≥ B then
 begin
 y ← y + 1;
 V ← V – B;
 end;
end;

• Substituting V for (Bv)

Copyright © 2002 by Hanan Samet

cl474
b

Copyright © 2002 by Hanan Samet

cl475
r

Copyright © 2002 by Hanan Samet

cl476
z

Copyright © 2002 by Hanan Samet

cl477
g

Copyright © 2002 by Hanan Samet

cl478
v

Copyright © 2002 by Hanan Samet

cl479
b

Copyright © 2002 by Hanan Samet

cl4710
b

Copyright © 2002 by Hanan Samet

cl471
b

MECHANICS OF BRESENHAM'S ALGORITHM

• Ex: A=3, B=13

A ← y1 – y0;
B ← x1 – x0;
x ← x0;
y ← y0;
v ← 0.0;
while x < x1 do
begin
 plot(x, y);
 x ← x + 1;
 v ← v + A/B;
 if v ≥ 1.0 then
 begin
 y ← y + 1;
 v ← v – 1.0;
 end;
end;

(x0,y0)

(x1,y1)

• Horizontal ball accumulates changes in v
• When v ≥ B, it is reset to 0

Copyright © 2002 by Hanan Samet

cl472
r

• prefer integer calculations
• rewrite as:

(Bv) ← (Bv) + A

if (Bv) ≥ B then

 (Bv) ← (Bv) – B;

Copyright © 2002 by Hanan Samet

cl473
z

A ← y1 – y0;
B ← x1 – x0;
x ← x0;
y ← y0;
V ← 0;
while x < x1 do
begin
 plot(x, y);
 x ← x + 1;
 V ← V + A;
 if V ≥ B then
 begin
 y ← y + 1;
 V ← V – B;
 end;
end;

• Substituting V for (Bv)

Copyright © 2002 by Hanan Samet

cl474
b

Copyright © 2002 by Hanan Samet

cl475
r

Copyright © 2002 by Hanan Samet

cl476
z

Copyright © 2002 by Hanan Samet

cl477
g

Copyright © 2002 by Hanan Samet

cl478
v

Copyright © 2002 by Hanan Samet

cl479
b

Copyright © 2002 by Hanan Samet

cl4710
b

Copyright © 2002 by Hanan Samet

cl4711
r

Copyright © 2002 by Hanan Samet

cl471
b

MECHANICS OF BRESENHAM'S ALGORITHM

• Ex: A=3, B=13

A ← y1 – y0;
B ← x1 – x0;
x ← x0;
y ← y0;
v ← 0.0;
while x < x1 do
begin
 plot(x, y);
 x ← x + 1;
 v ← v + A/B;
 if v ≥ 1.0 then
 begin
 y ← y + 1;
 v ← v – 1.0;
 end;
end;

(x0,y0)

(x1,y1)

• Horizontal ball accumulates changes in v
• When v ≥ B, it is reset to 0

Copyright © 2002 by Hanan Samet

cl472
r

• prefer integer calculations
• rewrite as:

(Bv) ← (Bv) + A

if (Bv) ≥ B then

 (Bv) ← (Bv) – B;

Copyright © 2002 by Hanan Samet

cl473
z

A ← y1 – y0;
B ← x1 – x0;
x ← x0;
y ← y0;
V ← 0;
while x < x1 do
begin
 plot(x, y);
 x ← x + 1;
 V ← V + A;
 if V ≥ B then
 begin
 y ← y + 1;
 V ← V – B;
 end;
end;

• Substituting V for (Bv)

Copyright © 2002 by Hanan Samet

cl474
b

Copyright © 2002 by Hanan Samet

cl475
r

Copyright © 2002 by Hanan Samet

cl476
z

Copyright © 2002 by Hanan Samet

cl477
g

Copyright © 2002 by Hanan Samet

cl478
v

Copyright © 2002 by Hanan Samet

cl479
b

Copyright © 2002 by Hanan Samet

cl4710
b

Copyright © 2002 by Hanan Samet

cl4711
r

Copyright © 2002 by Hanan Samet

cl4712
z

Copyright © 2002 by Hanan Samet

cl471
b

MECHANICS OF BRESENHAM'S ALGORITHM

• Ex: A=3, B=13

A ← y1 – y0;
B ← x1 – x0;
x ← x0;
y ← y0;
v ← 0.0;
while x < x1 do
begin
 plot(x, y);
 x ← x + 1;
 v ← v + A/B;
 if v ≥ 1.0 then
 begin
 y ← y + 1;
 v ← v – 1.0;
 end;
end;

(x0,y0)

(x1,y1)

• Horizontal ball accumulates changes in v
• When v ≥ B, it is reset to 0

Copyright © 2002 by Hanan Samet

cl472
r

• prefer integer calculations
• rewrite as:

(Bv) ← (Bv) + A

if (Bv) ≥ B then

 (Bv) ← (Bv) – B;

Copyright © 2002 by Hanan Samet

cl473
z

A ← y1 – y0;
B ← x1 – x0;
x ← x0;
y ← y0;
V ← 0;
while x < x1 do
begin
 plot(x, y);
 x ← x + 1;
 V ← V + A;
 if V ≥ B then
 begin
 y ← y + 1;
 V ← V – B;
 end;
end;

• Substituting V for (Bv)

Copyright © 2002 by Hanan Samet

cl474
b

Copyright © 2002 by Hanan Samet

cl475
r

Copyright © 2002 by Hanan Samet

cl476
z

Copyright © 2002 by Hanan Samet

cl477
g

Copyright © 2002 by Hanan Samet

cl478
v

Copyright © 2002 by Hanan Samet

cl479
b

Copyright © 2002 by Hanan Samet

cl4710
b

Copyright © 2002 by Hanan Samet

cl4711
r

Copyright © 2002 by Hanan Samet

cl4712
z

Copyright © 2002 by Hanan Samet

cl4713
g

Copyright © 2002 by Hanan Samet

cl471
b

MECHANICS OF BRESENHAM'S ALGORITHM

• Ex: A=3, B=13

A ← y1 – y0;
B ← x1 – x0;
x ← x0;
y ← y0;
v ← 0.0;
while x < x1 do
begin
 plot(x, y);
 x ← x + 1;
 v ← v + A/B;
 if v ≥ 1.0 then
 begin
 y ← y + 1;
 v ← v – 1.0;
 end;
end;

(x0,y0)

(x1,y1)

• Horizontal ball accumulates changes in v
• When v ≥ B, it is reset to 0

Copyright © 2002 by Hanan Samet

cl472
r

• prefer integer calculations
• rewrite as:

(Bv) ← (Bv) + A

if (Bv) ≥ B then

 (Bv) ← (Bv) – B;

Copyright © 2002 by Hanan Samet

cl473
z

A ← y1 – y0;
B ← x1 – x0;
x ← x0;
y ← y0;
V ← 0;
while x < x1 do
begin
 plot(x, y);
 x ← x + 1;
 V ← V + A;
 if V ≥ B then
 begin
 y ← y + 1;
 V ← V – B;
 end;
end;

• Substituting V for (Bv)

Copyright © 2002 by Hanan Samet

cl474
b

Copyright © 2002 by Hanan Samet

cl475
r

Copyright © 2002 by Hanan Samet

cl476
z

Copyright © 2002 by Hanan Samet

cl477
g

Copyright © 2002 by Hanan Samet

cl478
v

Copyright © 2002 by Hanan Samet

cl479
b

Copyright © 2002 by Hanan Samet

cl4710
b

Copyright © 2002 by Hanan Samet

cl4711
r

Copyright © 2002 by Hanan Samet

cl4712
z

Copyright © 2002 by Hanan Samet

cl4713
g

Copyright © 2002 by Hanan Samet

cl4714
v

Copyright © 2002 by Hanan Samet

cl471
b

MECHANICS OF BRESENHAM'S ALGORITHM

• Ex: A=3, B=13

A ← y1 – y0;
B ← x1 – x0;
x ← x0;
y ← y0;
v ← 0.0;
while x < x1 do
begin
 plot(x, y);
 x ← x + 1;
 v ← v + A/B;
 if v ≥ 1.0 then
 begin
 y ← y + 1;
 v ← v – 1.0;
 end;
end;

(x0,y0)

(x1,y1)

• Horizontal ball accumulates changes in v
• When v ≥ B, it is reset to 0

Copyright © 2002 by Hanan Samet

cl472
r

• prefer integer calculations
• rewrite as:

(Bv) ← (Bv) + A

if (Bv) ≥ B then

 (Bv) ← (Bv) – B;

Copyright © 2002 by Hanan Samet

cl473
z

A ← y1 – y0;
B ← x1 – x0;
x ← x0;
y ← y0;
V ← 0;
while x < x1 do
begin
 plot(x, y);
 x ← x + 1;
 V ← V + A;
 if V ≥ B then
 begin
 y ← y + 1;
 V ← V – B;
 end;
end;

• Substituting V for (Bv)

Copyright © 2002 by Hanan Samet

cl474
b

Copyright © 2002 by Hanan Samet

cl475
r

Copyright © 2002 by Hanan Samet

cl476
z

Copyright © 2002 by Hanan Samet

cl477
g

Copyright © 2002 by Hanan Samet

cl478
v

Copyright © 2002 by Hanan Samet

cl479
b

Copyright © 2002 by Hanan Samet

cl4710
b

Copyright © 2002 by Hanan Samet

cl4711
r

Copyright © 2002 by Hanan Samet

cl4712
z

Copyright © 2002 by Hanan Samet

cl4713
g

Copyright © 2002 by Hanan Samet

cl4714
v

Copyright © 2002 by Hanan Samet

cl4715
b

Copyright © 2002 by Hanan Samet

cl471
b

MECHANICS OF BRESENHAM'S ALGORITHM

• Ex: A=3, B=13

A ← y1 – y0;
B ← x1 – x0;
x ← x0;
y ← y0;
v ← 0.0;
while x < x1 do
begin
 plot(x, y);
 x ← x + 1;
 v ← v + A/B;
 if v ≥ 1.0 then
 begin
 y ← y + 1;
 v ← v – 1.0;
 end;
end;

(x0,y0)

(x1,y1)

• Horizontal ball accumulates changes in v
• When v ≥ B, it is reset to 0

Copyright © 2002 by Hanan Samet

cl472
r

• prefer integer calculations
• rewrite as:

(Bv) ← (Bv) + A

if (Bv) ≥ B then

 (Bv) ← (Bv) – B;

Copyright © 2002 by Hanan Samet

cl473
z

A ← y1 – y0;
B ← x1 – x0;
x ← x0;
y ← y0;
V ← 0;
while x < x1 do
begin
 plot(x, y);
 x ← x + 1;
 V ← V + A;
 if V ≥ B then
 begin
 y ← y + 1;
 V ← V – B;
 end;
end;

• Substituting V for (Bv)

Copyright © 2002 by Hanan Samet

cl474
b

Copyright © 2002 by Hanan Samet

cl475
r

Copyright © 2002 by Hanan Samet

cl476
z

Copyright © 2002 by Hanan Samet

cl477
g

Copyright © 2002 by Hanan Samet

cl478
v

Copyright © 2002 by Hanan Samet

cl479
b

Copyright © 2002 by Hanan Samet

cl4710
b

Copyright © 2002 by Hanan Samet

cl4711
r

Copyright © 2002 by Hanan Samet

cl4712
z

Copyright © 2002 by Hanan Samet

cl4713
g

Copyright © 2002 by Hanan Samet

cl4714
v

Copyright © 2002 by Hanan Samet

cl4715
b

Copyright © 2002 by Hanan Samet

cl4716
r

Copyright © 2002 by Hanan Samet

cl471
b

MECHANICS OF BRESENHAM'S ALGORITHM

• Ex: A=3, B=13

A ← y1 – y0;
B ← x1 – x0;
x ← x0;
y ← y0;
v ← 0.0;
while x < x1 do
begin
 plot(x, y);
 x ← x + 1;
 v ← v + A/B;
 if v ≥ 1.0 then
 begin
 y ← y + 1;
 v ← v – 1.0;
 end;
end;

(x0,y0)

(x1,y1)

• Horizontal ball accumulates changes in v
• When v ≥ B, it is reset to 0

Copyright © 2002 by Hanan Samet

cl472
r

• prefer integer calculations
• rewrite as:

(Bv) ← (Bv) + A

if (Bv) ≥ B then

 (Bv) ← (Bv) – B;

Copyright © 2002 by Hanan Samet

cl473
z

A ← y1 – y0;
B ← x1 – x0;
x ← x0;
y ← y0;
V ← 0;
while x < x1 do
begin
 plot(x, y);
 x ← x + 1;
 V ← V + A;
 if V ≥ B then
 begin
 y ← y + 1;
 V ← V – B;
 end;
end;

• Substituting V for (Bv)

Copyright © 2002 by Hanan Samet

cl474
b

Copyright © 2002 by Hanan Samet

cl475
r

Copyright © 2002 by Hanan Samet

cl476
z

Copyright © 2002 by Hanan Samet

cl477
g

Copyright © 2002 by Hanan Samet

cl478
v

Copyright © 2002 by Hanan Samet

cl479
b

Copyright © 2002 by Hanan Samet

cl4710
b

Copyright © 2002 by Hanan Samet

cl4711
r

Copyright © 2002 by Hanan Samet

cl4712
z

Copyright © 2002 by Hanan Samet

cl4713
g

Copyright © 2002 by Hanan Samet

cl4714
v

Copyright © 2002 by Hanan Samet

cl4715
b

Copyright © 2002 by Hanan Samet

cl4716
r

Copyright © 2002 by Hanan Samet

cl4717
z

Copyright © 2002 by Hanan Samet

cl471
b

MECHANICS OF BRESENHAM'S ALGORITHM

• Ex: A=3, B=13

A ← y1 – y0;
B ← x1 – x0;
x ← x0;
y ← y0;
v ← 0.0;
while x < x1 do
begin
 plot(x, y);
 x ← x + 1;
 v ← v + A/B;
 if v ≥ 1.0 then
 begin
 y ← y + 1;
 v ← v – 1.0;
 end;
end;

(x0,y0)

(x1,y1)

• Horizontal ball accumulates changes in v
• When v ≥ B, it is reset to 0

Copyright © 2002 by Hanan Samet

cl472
r

• prefer integer calculations
• rewrite as:

(Bv) ← (Bv) + A

if (Bv) ≥ B then

 (Bv) ← (Bv) – B;

Copyright © 2002 by Hanan Samet

cl473
z

A ← y1 – y0;
B ← x1 – x0;
x ← x0;
y ← y0;
V ← 0;
while x < x1 do
begin
 plot(x, y);
 x ← x + 1;
 V ← V + A;
 if V ≥ B then
 begin
 y ← y + 1;
 V ← V – B;
 end;
end;

• Substituting V for (Bv)

Copyright © 2002 by Hanan Samet

cl474
b

Copyright © 2002 by Hanan Samet

cl475
r

Copyright © 2002 by Hanan Samet

cl476
z

Copyright © 2002 by Hanan Samet

cl477
g

Copyright © 2002 by Hanan Samet

cl478
v

Copyright © 2002 by Hanan Samet

cl479
b

Copyright © 2002 by Hanan Samet

cl4710
b

Copyright © 2002 by Hanan Samet

cl4711
r

Copyright © 2002 by Hanan Samet

cl4712
z

Copyright © 2002 by Hanan Samet

cl4713
g

Copyright © 2002 by Hanan Samet

cl4714
v

Copyright © 2002 by Hanan Samet

cl4715
b

Copyright © 2002 by Hanan Samet

cl4716
r

Copyright © 2002 by Hanan Samet

cl4717
z

Copyright © 2002 by Hanan Samet

cl4718
g

Copyright © 2002 by Hanan Samet

cl47.11
b

PROPERTY OF BRESENHAM’S ALGORITHM
• Does not mark all cells intersected by a line

• Ex:

• Rationale:

1. algorithm is discrete

Copyright © 2002 by Hanan Samet

cl47.11
b

PROPERTY OF BRESENHAM’S ALGORITHM
• Does not mark all cells intersected by a line

• Ex:

• Rationale:

1. algorithm is discrete

Copyright © 2002 by Hanan Samet

cl47.12
r

2. checks whether the line passes through a cell when it
first encounters the extreme left boundary of the cell

Copyright © 2002 by Hanan Samet

cl47.11
b

PROPERTY OF BRESENHAM’S ALGORITHM
• Does not mark all cells intersected by a line

• Ex:

• Rationale:

1. algorithm is discrete

Copyright © 2002 by Hanan Samet

cl47.12
r

2. checks whether the line passes through a cell when it
first encounters the extreme left boundary of the cell

Copyright © 2002 by Hanan Samet

cl47.13
z

3. misses cells that are crossed after the line has passed
through the left boundary of a cell at (x,y) but before
passing through the vertical line at its right boundary

Copyright © 2002 by Hanan Samet

cl47.11
b

PROPERTY OF BRESENHAM’S ALGORITHM
• Does not mark all cells intersected by a line

• Ex:

• Rationale:

1. algorithm is discrete

Copyright © 2002 by Hanan Samet

cl47.12
r

2. checks whether the line passes through a cell when it
first encounters the extreme left boundary of the cell

Copyright © 2002 by Hanan Samet

cl47.13
z

3. misses cells that are crossed after the line has passed
through the left boundary of a cell at (x,y) but before
passing through the vertical line at its right boundary

Copyright © 2002 by Hanan Samet

cl47.14
g

• if we were to count these cells as part of the line, then
two intersecting lines may be reported as intersecting
in more cells than before

Copyright © 2002 by Hanan Samet

cl47.11
b

PROPERTY OF BRESENHAM’S ALGORITHM
• Does not mark all cells intersected by a line

• Ex:

• Rationale:

1. algorithm is discrete

Copyright © 2002 by Hanan Samet

cl47.12
r

2. checks whether the line passes through a cell when it
first encounters the extreme left boundary of the cell

Copyright © 2002 by Hanan Samet

cl47.13
z

3. misses cells that are crossed after the line has passed
through the left boundary of a cell at (x,y) but before
passing through the vertical line at its right boundary

Copyright © 2002 by Hanan Samet

cl47.14
g

• if we were to count these cells as part of the line, then
two intersecting lines may be reported as intersecting
in more cells than before

Copyright © 2002 by Hanan Samet

cl47.15
b

• Ex: add an intersecting line

Copyright © 2002 by Hanan Samet

cl47.11
b

PROPERTY OF BRESENHAM’S ALGORITHM
• Does not mark all cells intersected by a line

• Ex:

• Rationale:

1. algorithm is discrete

Copyright © 2002 by Hanan Samet

cl47.12
r

2. checks whether the line passes through a cell when it
first encounters the extreme left boundary of the cell

Copyright © 2002 by Hanan Samet

cl47.13
z

3. misses cells that are crossed after the line has passed
through the left boundary of a cell at (x,y) but before
passing through the vertical line at its right boundary

Copyright © 2002 by Hanan Samet

cl47.14
g

• if we were to count these cells as part of the line, then
two intersecting lines may be reported as intersecting
in more cells than before

Copyright © 2002 by Hanan Samet

cl47.15
b

• Ex: add an intersecting line

Copyright © 2002 by Hanan Samet

cl47.16
g

1. result of Bresenham digitization

Copyright © 2002 by Hanan Samet

cl47.11
b

PROPERTY OF BRESENHAM’S ALGORITHM
• Does not mark all cells intersected by a line

• Ex:

• Rationale:

1. algorithm is discrete

Copyright © 2002 by Hanan Samet

cl47.12
r

2. checks whether the line passes through a cell when it
first encounters the extreme left boundary of the cell

Copyright © 2002 by Hanan Samet

cl47.13
z

3. misses cells that are crossed after the line has passed
through the left boundary of a cell at (x,y) but before
passing through the vertical line at its right boundary

Copyright © 2002 by Hanan Samet

cl47.14
g

• if we were to count these cells as part of the line, then
two intersecting lines may be reported as intersecting
in more cells than before

Copyright © 2002 by Hanan Samet

cl47.15
b

• Ex: add an intersecting line

Copyright © 2002 by Hanan Samet

cl47.16
g

1. result of Bresenham digitization

Copyright © 2002 by Hanan Samet

cl47.17
v

• digitized representations intersect at two cells

Copyright © 2002 by Hanan Samet

cl47.11
b

PROPERTY OF BRESENHAM’S ALGORITHM
• Does not mark all cells intersected by a line

• Ex:

• Rationale:

1. algorithm is discrete

Copyright © 2002 by Hanan Samet

cl47.12
r

2. checks whether the line passes through a cell when it
first encounters the extreme left boundary of the cell

Copyright © 2002 by Hanan Samet

cl47.13
z

3. misses cells that are crossed after the line has passed
through the left boundary of a cell at (x,y) but before
passing through the vertical line at its right boundary

Copyright © 2002 by Hanan Samet

cl47.14
g

• if we were to count these cells as part of the line, then
two intersecting lines may be reported as intersecting
in more cells than before

Copyright © 2002 by Hanan Samet

cl47.15
b

• Ex: add an intersecting line

Copyright © 2002 by Hanan Samet

cl47.16
g

1. result of Bresenham digitization

Copyright © 2002 by Hanan Samet

cl47.17
v

• digitized representations intersect at two cells

Copyright © 2002 by Hanan Samet

cl47.18
z

2. result of marking all cells intersected by the line

Copyright © 2002 by Hanan Samet

cl47.11
b

PROPERTY OF BRESENHAM’S ALGORITHM
• Does not mark all cells intersected by a line

• Ex:

• Rationale:

1. algorithm is discrete

Copyright © 2002 by Hanan Samet

cl47.12
r

2. checks whether the line passes through a cell when it
first encounters the extreme left boundary of the cell

Copyright © 2002 by Hanan Samet

cl47.13
z

3. misses cells that are crossed after the line has passed
through the left boundary of a cell at (x,y) but before
passing through the vertical line at its right boundary

Copyright © 2002 by Hanan Samet

cl47.14
g

• if we were to count these cells as part of the line, then
two intersecting lines may be reported as intersecting
in more cells than before

Copyright © 2002 by Hanan Samet

cl47.15
b

• Ex: add an intersecting line

Copyright © 2002 by Hanan Samet

cl47.16
g

1. result of Bresenham digitization

Copyright © 2002 by Hanan Samet

cl47.17
v

• digitized representations intersect at two cells

Copyright © 2002 by Hanan Samet

cl47.18
z

2. result of marking all cells intersected by the line

Copyright © 2002 by Hanan Samet

cl47.19
r

• digitized representations intersect at three
cells, instead of two

Copyright © 2002 by Hanan Samet

cl47.2

• Intersecting lines may fail to have a cell in common,
thereby causing the intersection to be missed

• With Bresenham’s algorithm, this happens relatively
frequently, as cells of a line are not four-connected when
the line crosses top or bottom edge of a cell

• Ex:

1
b

ANOMALIES OF BRESENHAM’S ALGORITHM AND
OTHER DIGITIZATION METHODS

Copyright © 2002 by Hanan Samet

cl47.2

• Intersecting lines may fail to have a cell in common,
thereby causing the intersection to be missed

• With Bresenham’s algorithm, this happens relatively
frequently, as cells of a line are not four-connected when
the line crosses top or bottom edge of a cell

• Ex:

1
b

ANOMALIES OF BRESENHAM’S ALGORITHM AND
OTHER DIGITIZATION METHODS

Copyright © 2002 by Hanan Samet

cl47.22
r

Bresenham
digitization

Bresenham
digitization

Copyright © 2002 by Hanan Samet

cl47.2

• Intersecting lines may fail to have a cell in common,
thereby causing the intersection to be missed

• With Bresenham’s algorithm, this happens relatively
frequently, as cells of a line are not four-connected when
the line crosses top or bottom edge of a cell

• Ex:

1
b

ANOMALIES OF BRESENHAM’S ALGORITHM AND
OTHER DIGITIZATION METHODS

Copyright © 2002 by Hanan Samet

cl47.22
r

Bresenham
digitization

Bresenham
digitization

Copyright © 2002 by Hanan Samet

cl47.23
z

Bresenham
digitization

Copyright © 2002 by Hanan Samet

cl47.2

• Intersecting lines may fail to have a cell in common,
thereby causing the intersection to be missed

• With Bresenham’s algorithm, this happens relatively
frequently, as cells of a line are not four-connected when
the line crosses top or bottom edge of a cell

• Ex:

1
b

ANOMALIES OF BRESENHAM’S ALGORITHM AND
OTHER DIGITIZATION METHODS

Copyright © 2002 by Hanan Samet

cl47.22
r

Bresenham
digitization

Bresenham
digitization

Copyright © 2002 by Hanan Samet

cl47.23
z

Bresenham
digitization

Copyright © 2002 by Hanan Samet

cl47.24
g

• In this example, two cell intersections are detected if all
cells that are entered are marked. However, what happens
when the lines cross at the corner of a cell?

• Ex:

Copyright © 2002 by Hanan Samet

cl47.2

• Intersecting lines may fail to have a cell in common,
thereby causing the intersection to be missed

• With Bresenham’s algorithm, this happens relatively
frequently, as cells of a line are not four-connected when
the line crosses top or bottom edge of a cell

• Ex:

1
b

ANOMALIES OF BRESENHAM’S ALGORITHM AND
OTHER DIGITIZATION METHODS

Copyright © 2002 by Hanan Samet

cl47.22
r

Bresenham
digitization

Bresenham
digitization

Copyright © 2002 by Hanan Samet

cl47.23
z

Bresenham
digitization

Copyright © 2002 by Hanan Samet

cl47.24
g

• In this example, two cell intersections are detected if all
cells that are entered are marked. However, what happens
when the lines cross at the corner of a cell?

• Ex:

Copyright © 2002 by Hanan Samet

cl47.25
v

Copyright © 2002 by Hanan Samet

cl47.2

• Intersecting lines may fail to have a cell in common,
thereby causing the intersection to be missed

• With Bresenham’s algorithm, this happens relatively
frequently, as cells of a line are not four-connected when
the line crosses top or bottom edge of a cell

• Ex:

1
b

ANOMALIES OF BRESENHAM’S ALGORITHM AND
OTHER DIGITIZATION METHODS

Copyright © 2002 by Hanan Samet

cl47.22
r

Bresenham
digitization

Bresenham
digitization

Copyright © 2002 by Hanan Samet

cl47.23
z

Bresenham
digitization

Copyright © 2002 by Hanan Samet

cl47.24
g

• In this example, two cell intersections are detected if all
cells that are entered are marked. However, what happens
when the lines cross at the corner of a cell?

• Ex:

Copyright © 2002 by Hanan Samet

cl47.25
v

Copyright © 2002 by Hanan Samet

cl47.26
r

Bresenham
digitization

Copyright © 2002 by Hanan Samet

cl47.2

• Intersecting lines may fail to have a cell in common,
thereby causing the intersection to be missed

• With Bresenham’s algorithm, this happens relatively
frequently, as cells of a line are not four-connected when
the line crosses top or bottom edge of a cell

• Ex:

1
b

ANOMALIES OF BRESENHAM’S ALGORITHM AND
OTHER DIGITIZATION METHODS

Copyright © 2002 by Hanan Samet

cl47.22
r

Bresenham
digitization

Bresenham
digitization

Copyright © 2002 by Hanan Samet

cl47.23
z

Bresenham
digitization

Copyright © 2002 by Hanan Samet

cl47.24
g

• In this example, two cell intersections are detected if all
cells that are entered are marked. However, what happens
when the lines cross at the corner of a cell?

• Ex:

Copyright © 2002 by Hanan Samet

cl47.25
v

Copyright © 2002 by Hanan Samet

cl47.26
r

Bresenham
digitization

Copyright © 2002 by Hanan Samet

cl47.27
b

• No other cells are entered except at a corner

Copyright © 2002 by Hanan Samet

cl47.2

• Intersecting lines may fail to have a cell in common,
thereby causing the intersection to be missed

• With Bresenham’s algorithm, this happens relatively
frequently, as cells of a line are not four-connected when
the line crosses top or bottom edge of a cell

• Ex:

1
b

ANOMALIES OF BRESENHAM’S ALGORITHM AND
OTHER DIGITIZATION METHODS

Copyright © 2002 by Hanan Samet

cl47.22
r

Bresenham
digitization

Bresenham
digitization

Copyright © 2002 by Hanan Samet

cl47.23
z

Bresenham
digitization

Copyright © 2002 by Hanan Samet

cl47.24
g

• In this example, two cell intersections are detected if all
cells that are entered are marked. However, what happens
when the lines cross at the corner of a cell?

• Ex:

Copyright © 2002 by Hanan Samet

cl47.25
v

Copyright © 2002 by Hanan Samet

cl47.26
r

Bresenham
digitization

Copyright © 2002 by Hanan Samet

cl47.27
b

• No other cells are entered except at a corner

Copyright © 2002 by Hanan Samet

cl47.28
z

• Could adopt the convention that a cell is included if the line
touches the left or bottom edge at a point

Copyright © 2002 by Hanan Samet

cl47.2

• Intersecting lines may fail to have a cell in common,
thereby causing the intersection to be missed

• With Bresenham’s algorithm, this happens relatively
frequently, as cells of a line are not four-connected when
the line crosses top or bottom edge of a cell

• Ex:

1
b

ANOMALIES OF BRESENHAM’S ALGORITHM AND
OTHER DIGITIZATION METHODS

Copyright © 2002 by Hanan Samet

cl47.22
r

Bresenham
digitization

Bresenham
digitization

Copyright © 2002 by Hanan Samet

cl47.23
z

Bresenham
digitization

Copyright © 2002 by Hanan Samet

cl47.24
g

• In this example, two cell intersections are detected if all
cells that are entered are marked. However, what happens
when the lines cross at the corner of a cell?

• Ex:

Copyright © 2002 by Hanan Samet

cl47.25
v

Copyright © 2002 by Hanan Samet

cl47.26
r

Bresenham
digitization

Copyright © 2002 by Hanan Samet

cl47.27
b

• No other cells are entered except at a corner

Copyright © 2002 by Hanan Samet

cl47.28
z

• Could adopt the convention that a cell is included if the line
touches the left or bottom edge at a point

Copyright © 2002 by Hanan Samet

cl47.29
g

1. two cell intersections

Copyright © 2002 by Hanan Samet

cl47.2

• Intersecting lines may fail to have a cell in common,
thereby causing the intersection to be missed

• With Bresenham’s algorithm, this happens relatively
frequently, as cells of a line are not four-connected when
the line crosses top or bottom edge of a cell

• Ex:

1
b

ANOMALIES OF BRESENHAM’S ALGORITHM AND
OTHER DIGITIZATION METHODS

Copyright © 2002 by Hanan Samet

cl47.22
r

Bresenham
digitization

Bresenham
digitization

Copyright © 2002 by Hanan Samet

cl47.23
z

Bresenham
digitization

Copyright © 2002 by Hanan Samet

cl47.24
g

• In this example, two cell intersections are detected if all
cells that are entered are marked. However, what happens
when the lines cross at the corner of a cell?

• Ex:

Copyright © 2002 by Hanan Samet

cl47.25
v

Copyright © 2002 by Hanan Samet

cl47.26
r

Bresenham
digitization

Copyright © 2002 by Hanan Samet

cl47.27
b

• No other cells are entered except at a corner

Copyright © 2002 by Hanan Samet

cl47.28
z

• Could adopt the convention that a cell is included if the line
touches the left or bottom edge at a point

Copyright © 2002 by Hanan Samet

cl47.29
g

1. two cell intersections

Copyright © 2002 by Hanan Samet

cl47.210
r

2. this causes some lines to appear thicker than others!
Copyright © 2002 by Hanan Samet

cl481
b

LINE SEGMENT INTERSECTION
• Simple solution is to solve a pair of simultaneous

equations

• Need special cases

1. intersection is computed by using the infinite extension
of the line segments and the point of intersection may
possibly lie on a point which is not on the line segments
that are being considered

2. vertical lines have infinite slopes

3. parallel lines

• May not have enough precision to calculate intersection

• Digital representation may cause multiple intersections as
in the braiding of lines

• Ex: 1. parallel lines

2. intersecting lines

Copyright © 2002 by Hanan Samet

cl481
b

LINE SEGMENT INTERSECTION
• Simple solution is to solve a pair of simultaneous

equations

• Need special cases

1. intersection is computed by using the infinite extension
of the line segments and the point of intersection may
possibly lie on a point which is not on the line segments
that are being considered

2. vertical lines have infinite slopes

3. parallel lines

• May not have enough precision to calculate intersection

• Digital representation may cause multiple intersections as
in the braiding of lines

• Ex: 1. parallel lines

2. intersecting lines

Copyright © 2002 by Hanan Samet

cl482
r

Copyright © 2002 by Hanan Samet

cl481
b

LINE SEGMENT INTERSECTION
• Simple solution is to solve a pair of simultaneous

equations

• Need special cases

1. intersection is computed by using the infinite extension
of the line segments and the point of intersection may
possibly lie on a point which is not on the line segments
that are being considered

2. vertical lines have infinite slopes

3. parallel lines

• May not have enough precision to calculate intersection

• Digital representation may cause multiple intersections as
in the braiding of lines

• Ex: 1. parallel lines

2. intersecting lines

Copyright © 2002 by Hanan Samet

cl482
r

Copyright © 2002 by Hanan Samet

cl483
z

Copyright © 2002 by Hanan Samet

cl481
b

LINE SEGMENT INTERSECTION
• Simple solution is to solve a pair of simultaneous

equations

• Need special cases

1. intersection is computed by using the infinite extension
of the line segments and the point of intersection may
possibly lie on a point which is not on the line segments
that are being considered

2. vertical lines have infinite slopes

3. parallel lines

• May not have enough precision to calculate intersection

• Digital representation may cause multiple intersections as
in the braiding of lines

• Ex: 1. parallel lines

2. intersecting lines

Copyright © 2002 by Hanan Samet

cl482
r

Copyright © 2002 by Hanan Samet

cl483
z

Copyright © 2002 by Hanan Samet

cl484
g

Copyright © 2002 by Hanan Samet

cl481
b

LINE SEGMENT INTERSECTION
• Simple solution is to solve a pair of simultaneous

equations

• Need special cases

1. intersection is computed by using the infinite extension
of the line segments and the point of intersection may
possibly lie on a point which is not on the line segments
that are being considered

2. vertical lines have infinite slopes

3. parallel lines

• May not have enough precision to calculate intersection

• Digital representation may cause multiple intersections as
in the braiding of lines

• Ex: 1. parallel lines

2. intersecting lines

Copyright © 2002 by Hanan Samet

cl482
r

Copyright © 2002 by Hanan Samet

cl483
z

Copyright © 2002 by Hanan Samet

cl484
g

Copyright © 2002 by Hanan Samet

cl485
v

(true intersection point)

Copyright © 2002 by Hanan Samet

cl49

WINDOWING AND CLIPPING

1
b

Copyright © 2002 by Hanan Samet

cl49

WINDOWING AND CLIPPING

1
b

Copyright © 2002 by Hanan Samet

cl492
r

• Windowing: process of extracting the information in a
subset (window) of the map (usually
rectangular)

Copyright © 2002 by Hanan Samet

cl49

WINDOWING AND CLIPPING

1
b

Copyright © 2002 by Hanan Samet

cl492
r

• Windowing: process of extracting the information in a
subset (window) of the map (usually
rectangular)

Copyright © 2002 by Hanan Samet

cl493
z

• Clipping: process of eliminating the objects (or parts of
objects) that are not in the window

Copyright © 2002 by Hanan Samet

cl49

WINDOWING AND CLIPPING

1
b

Copyright © 2002 by Hanan Samet

cl492
r

• Windowing: process of extracting the information in a
subset (window) of the map (usually
rectangular)

Copyright © 2002 by Hanan Samet

cl493
z

• Clipping: process of eliminating the objects (or parts of
objects) that are not in the window

Copyright © 2002 by Hanan Samet

cl494
g

• Brute force solution intersects every line segment with the
line segments corresponding to the window boundaries
1. use equations of line segments
2. very complex and cumbersome for vertical line

segments
3. use parametric representations of lines:

• line 1: x = xs1 + t1 • (xe1 – xs1) and
 y = ys1 + t1 • (ye1 – ys1)
• line 2: x = xs2 + t2 • (xe2 – xs2) and
 y = ys2 + t2 • (ye2 – ys2)

• obtain point of intersection by setting the two x and y
coordinate values to each other and solving for t1 and t2

• intersection point lies within the ranges of the two lines if t1
and t2 are in [0,1]

Copyright © 2002 by Hanan Samet

cl50

COHEN-SUTHERLAND-LANE ALGORITHM

1
b

A
B

H

C D
F

E

G

Copyright © 2002 by Hanan Samet

cl50

COHEN-SUTHERLAND-LANE ALGORITHM

1
b

A
B

H

C D
F

E

G

Copyright © 2002 by Hanan Samet

cl502
r

ymax

ymin

xmin xmax

Copyright © 2002 by Hanan Samet

cl50

COHEN-SUTHERLAND-LANE ALGORITHM

1
b

A
B

H

C D
F

E

G

Copyright © 2002 by Hanan Samet

cl502
r

ymax

ymin

xmin xmax

Copyright © 2002 by Hanan Samet

cl503
z

1. Classify regions of endpoints using a 4 bit string (left to
right)
• bit 1: point above top border of window (y > ymax)

• bit 2: point below bottom border of window (y < ymin)

• bit 3: point right of right border of window (x > xmax)

• bit 4: point left of left border of window (x < xmin)

2. Can use subtraction to classify
3. Accept entire line if both endpoints in region 0000 (e.g., AB)
4. Reject line if logical and of codes of endpoints is nonzero

(e.g., CD)
5. Otherwise, subdivide line into two parts at a window

boundary or its extension using the code of an endpoint that
is nonzero and reapply the clipping procedure (e.g., EF)

1001

0000

1000 1010

0010

01100100

0001

0101

Copyright © 2002 by Hanan Samet

cl50

COHEN-SUTHERLAND-LANE ALGORITHM

1
b

A
B

H

C D
F

E

G

Copyright © 2002 by Hanan Samet

cl502
r

ymax

ymin

xmin xmax

Copyright © 2002 by Hanan Samet

cl503
z

1. Classify regions of endpoints using a 4 bit string (left to
right)
• bit 1: point above top border of window (y > ymax)

• bit 2: point below bottom border of window (y < ymin)

• bit 3: point right of right border of window (x > xmax)

• bit 4: point left of left border of window (x < xmin)

2. Can use subtraction to classify
3. Accept entire line if both endpoints in region 0000 (e.g., AB)
4. Reject line if logical and of codes of endpoints is nonzero

(e.g., CD)
5. Otherwise, subdivide line into two parts at a window

boundary or its extension using the code of an endpoint that
is nonzero and reapply the clipping procedure (e.g., EF)

1001

0000

1000 1010

0010

01100100

0001

0101

Copyright © 2002 by Hanan Samet

cl504
g

1

2 3
4

• at most four iterations (e.g., EF)

Copyright © 2002 by Hanan Samet

cl50

COHEN-SUTHERLAND-LANE ALGORITHM

1
b

A
B

H

C D
F

E

G

Copyright © 2002 by Hanan Samet

cl502
r

ymax

ymin

xmin xmax

Copyright © 2002 by Hanan Samet

cl503
z

1. Classify regions of endpoints using a 4 bit string (left to
right)
• bit 1: point above top border of window (y > ymax)

• bit 2: point below bottom border of window (y < ymin)

• bit 3: point right of right border of window (x > xmax)

• bit 4: point left of left border of window (x < xmin)

2. Can use subtraction to classify
3. Accept entire line if both endpoints in region 0000 (e.g., AB)
4. Reject line if logical and of codes of endpoints is nonzero

(e.g., CD)
5. Otherwise, subdivide line into two parts at a window

boundary or its extension using the code of an endpoint that
is nonzero and reapply the clipping procedure (e.g., EF)

1001

0000

1000 1010

0010

01100100

0001

0101

Copyright © 2002 by Hanan Samet

cl504
g

1

2 3
4

• at most four iterations (e.g., EF)

Copyright © 2002 by Hanan Samet

cl505
v

• Improvements (all use the parametric approach)
1. Cyrus-Beck

• can clip to an arbitrary polygon or polyhedra
2. Liang-Barsky

• very efficient for rectangular regions
3. Lee-Nichol-Lee

• most efficient but only works in two dimensions
Copyright © 2002 by Hanan Samet

cl50.1
SPATIAL RANGE QUERIES

1
b

Ex: find all objects within 10 miles of St. Louis, the
 Mississippi River, Lake Michigan, ...

1. ex: find all people with height between 1.5 and 1.8
 meters and weight between 60 and 70 kilos

Analog of range query in conventional databases

2. difference is that the range query is not rectangular
3. instead, region is spatially defined

Known as a buffer or a corridor in GIS, image dilation or
region expansion in image processing

Can be computed very efficiently for a quadtree by
using the L∞ (i.e., chessboard) distance metric since
locus of all points within a given distance is a square
1. dist(a,b) = max(|ax – bx|,|ay – by|)

Copyright © 2002 by Hanan Samet

cl50.1
SPATIAL RANGE QUERIES

1
b

Ex: find all objects within 10 miles of St. Louis, the
 Mississippi River, Lake Michigan, ...

1. ex: find all people with height between 1.5 and 1.8
 meters and weight between 60 and 70 kilos

Analog of range query in conventional databases

2. difference is that the range query is not rectangular
3. instead, region is spatially defined

Known as a buffer or a corridor in GIS, image dilation or
region expansion in image processing

Can be computed very efficiently for a quadtree by
using the L∞ (i.e., chessboard) distance metric since
locus of all points within a given distance is a square
1. dist(a,b) = max(|ax – bx|,|ay – by|)

Copyright © 2002 by Hanan Samet

cl50.12
g

Copyright © 2002 by Hanan Samet

cl50.1
SPATIAL RANGE QUERIES

1
b

Ex: find all objects within 10 miles of St. Louis, the
 Mississippi River, Lake Michigan, ...

1. ex: find all people with height between 1.5 and 1.8
 meters and weight between 60 and 70 kilos

Analog of range query in conventional databases

2. difference is that the range query is not rectangular
3. instead, region is spatially defined

Known as a buffer or a corridor in GIS, image dilation or
region expansion in image processing

Can be computed very efficiently for a quadtree by
using the L∞ (i.e., chessboard) distance metric since
locus of all points within a given distance is a square
1. dist(a,b) = max(|ax – bx|,|ay – by|)

Copyright © 2002 by Hanan Samet

cl50.12
g

Copyright © 2002 by Hanan Samet

cl50.13
r

2. an overapproximation to L2 (Euclidean) distance

 metric — i.e., dist(a,b) = (ax − bx)2 + (ay − by)2

Copyright © 2002 by Hanan Samet

cl50.1
SPATIAL RANGE QUERIES

1
b

Ex: find all objects within 10 miles of St. Louis, the
 Mississippi River, Lake Michigan, ...

1. ex: find all people with height between 1.5 and 1.8
 meters and weight between 60 and 70 kilos

Analog of range query in conventional databases

2. difference is that the range query is not rectangular
3. instead, region is spatially defined

Known as a buffer or a corridor in GIS, image dilation or
region expansion in image processing

Can be computed very efficiently for a quadtree by
using the L∞ (i.e., chessboard) distance metric since
locus of all points within a given distance is a square
1. dist(a,b) = max(|ax – bx|,|ay – by|)

Copyright © 2002 by Hanan Samet

cl50.12
g

Copyright © 2002 by Hanan Samet

cl50.13
r

2. an overapproximation to L2 (Euclidean) distance

 metric — i.e., dist(a,b) = (ax − bx)2 + (ay − by)2

Copyright © 2002 by Hanan Samet

cl50.14
z

3. compare with the L1 (i.e., city block) distance
 metric which underapproximates the Euclidean
 distance — i.e., dist(a,b) = |ax – bx| + |ay – by|

Copyright © 2002 by Hanan Samet

cl51

POINT IN POLYGON TEST

• Shoot a ray from the point and count how many
boundaries it intersects

1. even number means it is outside

2. odd number means it is inside

• Special cases

1. ray is collinear with polygon

2. ray only touches a vertex of the polygon

Copyright © 2002 by Hanan Samet

cl52

DATA STRUCTURE TRANSFORMATIONS

1. Only by scale
• line generalization
• grid resampling

2. Dimensional change
• can represent a point by an area (e.g., Voronoi

diagram)
• can represent an area by a point but this is not

necessarily invertible—i.e., not every polygon is a
Voronoi polygon

3. Change data structure without changing scale or
dimension
• digital elevation model to TIN

Copyright © 2002 by Hanan Samet

cl53

SPATIAL INTERPOLATION

• Interpolation is the process of estimating an unknown
value of a property at unsampled sites within an area
covered by existing point observations

• Extrapolation is an estimate outside an area covered
by existing observations

• Based on observation that points that are close in
space have a higher probability of having similar values
than points that are far apart

• Applications

1. calculate contours

2. calculate property of a surface at a specific point

3. change means of comparison when using different
scales or data structures on different map layers

• Types

1. discrete interpolation—change occurs at the
boundary

2. continuous interpolation—change occurs
everywhere

Copyright © 2002 by Hanan Samet

cl54

DISCRETE INTERPOLATION

• Areal interpolation—surface has been measured in a
set of zones (e.g., density)

1. different regions have different elevation values—
resulting in a skyline

2. determine the values in another set of zones that
overlay the source but do not coincide with it

• e.g., given populations for school districts,
estimate the populations for the police districts

• Best information is obtained from nearest point—e.g.,
Voronoi diagram

1. estimate uses a sample of one!

2. not in line with notion that points close to each other
are more likely to be similar than those far apart

3. good for nominal values since interpolation is
irrelevant for them

Copyright © 2002 by Hanan Samet

cl55

CONTINUOUS INTERPOLATION

• Point interpolation—surface has been measured at
sample points

• Global techniques—use observations at all points of
the study area

1. trend surface analysis—e.g., least squares

2. Fourier series

• Local techniques—use observations in a small
neighborhood

1. moving averages—really a smoothing technique

• based on a window

• weighted by distance

2. splines

• approximation by a sequence of piecewise
continuous functions

Copyright © 2002 by Hanan Samet

cl56

SPLINES

• Assume lines but more general
• Use polynomials to fit a curve through the values (knots) of

a number of given points while ensuring that the transitions
are continuous (thus piecewise continuous)

• Ex: y (knots)

• Degree of polynomials depends on the number of points
used and denotes the number of continuous derivatives
(i.e., continuity of the transitions between the pieces)

1. linear - 2 points and no continuous derivatives
2. quadratic - 3 points and continuous first derivatives
3. cubic - 4 points and continuous first and second
 derivatives

• bicubic spline describes three-dimensional situation
where a surface is being fit instead of a line

• If values of a few points change, then can modify a small
part of the curve without having to recompute entire curve

1
b

piece 1 piece 2 piece 3
x (points)

Copyright © 2002 by Hanan Samet

cl56

SPLINES

• Assume lines but more general
• Use polynomials to fit a curve through the values (knots) of

a number of given points while ensuring that the transitions
are continuous (thus piecewise continuous)

• Ex: y (knots)

• Degree of polynomials depends on the number of points
used and denotes the number of continuous derivatives
(i.e., continuity of the transitions between the pieces)

1. linear - 2 points and no continuous derivatives
2. quadratic - 3 points and continuous first derivatives
3. cubic - 4 points and continuous first and second
 derivatives

• bicubic spline describes three-dimensional situation
where a surface is being fit instead of a line

• If values of a few points change, then can modify a small
part of the curve without having to recompute entire curve

1
b

piece 1 piece 2 piece 3
x (points)

Copyright © 2002 by Hanan Samet

cl562
r

Copyright © 2002 by Hanan Samet

cl56

SPLINES

• Assume lines but more general
• Use polynomials to fit a curve through the values (knots) of

a number of given points while ensuring that the transitions
are continuous (thus piecewise continuous)

• Ex: y (knots)

• Degree of polynomials depends on the number of points
used and denotes the number of continuous derivatives
(i.e., continuity of the transitions between the pieces)

1. linear - 2 points and no continuous derivatives
2. quadratic - 3 points and continuous first derivatives
3. cubic - 4 points and continuous first and second
 derivatives

• bicubic spline describes three-dimensional situation
where a surface is being fit instead of a line

• If values of a few points change, then can modify a small
part of the curve without having to recompute entire curve

1
b

piece 1 piece 2 piece 3
x (points)

Copyright © 2002 by Hanan Samet

cl562
r

Copyright © 2002 by Hanan Samet

cl563
z

• The junctions need not occur at the data points although
they usually do

Copyright © 2002 by Hanan Samet

cl56

SPLINES

• Assume lines but more general
• Use polynomials to fit a curve through the values (knots) of

a number of given points while ensuring that the transitions
are continuous (thus piecewise continuous)

• Ex: y (knots)

• Degree of polynomials depends on the number of points
used and denotes the number of continuous derivatives
(i.e., continuity of the transitions between the pieces)

1. linear - 2 points and no continuous derivatives
2. quadratic - 3 points and continuous first derivatives
3. cubic - 4 points and continuous first and second
 derivatives

• bicubic spline describes three-dimensional situation
where a surface is being fit instead of a line

• If values of a few points change, then can modify a small
part of the curve without having to recompute entire curve

1
b

piece 1 piece 2 piece 3
x (points)

Copyright © 2002 by Hanan Samet

cl562
r

Copyright © 2002 by Hanan Samet

cl563
z

• The junctions need not occur at the data points although
they usually do

Copyright © 2002 by Hanan Samet

cl564
g

• Maxima and minima need not necessarily occur at the data
points

Copyright © 2002 by Hanan Samet

cl57

KRIGING
• Makes use of semivariance—variance of differences

only depends on the distance between the sites
• Tabulates the average variance (e.g., difference in eleva-

tion) between any two points that are a distance d apart
y

d

nugget

range

sill

1. y is E (z i–z j)2

2. d is the distance (e.g., in the plane) between points i
and j

3. sill is the maximum variance
4. range is the maximum distance between the points

that makes any contribution to the interpolation
• this is where the differences are spatialy-

dependent
• use the mean outside the range
• a good estimate for the size of the window in the

moving-average method
5. nugget is the y -intercept

• non-zero value indicates that repeated measure-
ments at the same point will yield different
values—i.e., a residual error

• if the nugget value dominates, then data is so
noisy that spatial interpolation is meaningless and
just use the mean

Copyright © 2002 by Hanan Samet

cl58

MECHANICS OF KRIGING AND VARIOGRAMS

• Nature of variation on the surface affects the variogram

1. simple Kriging assumes a constant mean (i.e., that
all variation is statistical)

2. uniform Kriging assumes the existence of trends

• i.e., different means in different regions implies that
the variogram and the interpolation are archieved
by detrending the original data through subtraction
of appropriate values corresponding to the means
in the different regions

• Constructing the variogram

1. partition the distance into distinct intervals—i.e., form
bins

2. compute the distance and squared difference in z
values for every possible pair of sample points and
associate the difference with the bin corresponding
to its distance interval

3. calculate the average squared difference for each bin
and plot it at the midpoint of the bin’s interval

• Using the variogram

1. use a sum of weighted values of known points

2. weights depend on distance between the point to be
interpolated and the known points

3. y - values on the variogram can provide the weights

• Computationally expensive when the number of known
points is large

Copyright © 2002 by Hanan Samet

cl59

THREE-DIMENSIONAL TRANSFORMATIONS

1. Between data structures

• interpolation to a grid

• surface-specific point sampling

2. Transformation between scales

• surface generalization

3. Analytical transformations

• elevations to slope and aspect

• terrain partitioning—e.g., TIN creation
a. point to grid, point to TIN, and TIN to grid are

interpolation problems and relatively simple
b. grid to TIN is difficult

• TIN is compact
• must be able to detect critical points in terrain

• intervisibility
a. given a point, find visible and invisible regions
b. useful in siting towers and planning

4. Terrain symbolization

• automated contouring

• hill shading
a. enables detecting if in shadow
b. enables generating realistic perspective views

• gridded perspective views—3-d in 2-d

Copyright © 2002 by Hanan Samet

cl60

INTERPOLATION TO A GRID

• Problem: given a set of data, build a grid for them

• Use neighborhood property of a surface

1. elevations are continuously distributed

2. no sudden cliffs, caves, overhangs, etc.

3. values are closely related to those in proximity

Copyright © 2002 by Hanan Samet

cl61

INTERPOLATION ISSUES

• What is a neighborhood?

1. a given number of points satisfying a particular
condition, OR

2. all the points that satisfy a particular condition

• How to weight the contributions of the neighboring data
points?

1. equally

2. inversely with distance from the grid point

• violates neighborhood property which says that the
elevation at any point is most closely related to the
points which are closest to it and ignores points
further away

• Where are the maxima and minima of the interpolated
surface?

1. at the data points, OR

2. at interpolated points

• How should the grid relate to the data points (i.e.,
spacing)?

1. data rich and data poor areas complicate the
problem

2. sampling theorem implies that once the grid spacing
has been chosen, all features with a spatial size
(e.g., extent) less than twice the spacing can be
ignored

Copyright © 2002 by Hanan Samet

cl621
b

RESTRICTING NEIGHBORHOOD OF INTERESTRESTRICTING NEIGHBORHOOD OF INTEREST
• Limit number of data points

Copyright © 2002 by Hanan Samet

cl621
b

RESTRICTING NEIGHBORHOOD OF INTERESTRESTRICTING NEIGHBORHOOD OF INTEREST
• Limit number of data points

Copyright © 2002 by Hanan Samet

cl622
r

1. by radius

Copyright © 2002 by Hanan Samet

cl621
b

RESTRICTING NEIGHBORHOOD OF INTERESTRESTRICTING NEIGHBORHOOD OF INTEREST
• Limit number of data points

Copyright © 2002 by Hanan Samet

cl622
r

1. by radius

Copyright © 2002 by Hanan Samet

cl623
z

2. take nearest n (e.g., 2) points

Copyright © 2002 by Hanan Samet

cl621
b

RESTRICTING NEIGHBORHOOD OF INTERESTRESTRICTING NEIGHBORHOOD OF INTEREST
• Limit number of data points

Copyright © 2002 by Hanan Samet

cl622
r

1. by radius

Copyright © 2002 by Hanan Samet

cl623
z

2. take nearest n (e.g., 2) points

Copyright © 2002 by Hanan Samet

cl62

• if inverse weight is linear, neighborhood is 3, and
neighborhood surrounds grid point, then equivalent to
interpolation over a TIN

4
g

• problem when data points are clustered

Copyright © 2002 by Hanan Samet

cl621
b

RESTRICTING NEIGHBORHOOD OF INTERESTRESTRICTING NEIGHBORHOOD OF INTEREST
• Limit number of data points

Copyright © 2002 by Hanan Samet

cl622
r

1. by radius

Copyright © 2002 by Hanan Samet

cl623
z

2. take nearest n (e.g., 2) points

Copyright © 2002 by Hanan Samet

cl62

• if inverse weight is linear, neighborhood is 3, and
neighborhood surrounds grid point, then equivalent to
interpolation over a TIN

4
g

• problem when data points are clustered

Copyright © 2002 by Hanan Samet

cl625
r

• Avoid directional clustering
1. choose nearest points in each quadrant

Copyright © 2002 by Hanan Samet

cl621
b

RESTRICTING NEIGHBORHOOD OF INTERESTRESTRICTING NEIGHBORHOOD OF INTEREST
• Limit number of data points

Copyright © 2002 by Hanan Samet

cl622
r

1. by radius

Copyright © 2002 by Hanan Samet

cl623
z

2. take nearest n (e.g., 2) points

Copyright © 2002 by Hanan Samet

cl62

• if inverse weight is linear, neighborhood is 3, and
neighborhood surrounds grid point, then equivalent to
interpolation over a TIN

4
g

• problem when data points are clustered

Copyright © 2002 by Hanan Samet

cl625
r

• Avoid directional clustering
1. choose nearest points in each quadrant

Copyright © 2002 by Hanan Samet

cl626
z

or octant

Copyright © 2002 by Hanan Samet

cl621
b

RESTRICTING NEIGHBORHOOD OF INTERESTRESTRICTING NEIGHBORHOOD OF INTEREST
• Limit number of data points

Copyright © 2002 by Hanan Samet

cl622
r

1. by radius

Copyright © 2002 by Hanan Samet

cl623
z

2. take nearest n (e.g., 2) points

Copyright © 2002 by Hanan Samet

cl62

• if inverse weight is linear, neighborhood is 3, and
neighborhood surrounds grid point, then equivalent to
interpolation over a TIN

4
g

• problem when data points are clustered

Copyright © 2002 by Hanan Samet

cl625
r

• Avoid directional clustering
1. choose nearest points in each quadrant

Copyright © 2002 by Hanan Samet

cl626
z

or octant

Copyright © 2002 by Hanan Samet

cl627
b

2. problematic when no points in some quadrants or octants
• Use Kriging

Copyright © 2002 by Hanan Samet

cl63

• Errors can result in missing streams, ridges, summit points,
saddle points, and bottoms of depressions

• Digitization along the contour is one solution

• If data is from a contour map, placing a grid on a map and
simply digitizing the elevations at the grid points can lead to
significant errors

1
b

SURFACE-SPECIFIC POINT SAMPLING

1. OK when the spacing between data points along the con-
tour is similar to that between the contours

2. OK in rough terrain

Copyright © 2002 by Hanan Samet

cl63

• Errors can result in missing streams, ridges, summit points,
saddle points, and bottoms of depressions

• Digitization along the contour is one solution

• If data is from a contour map, placing a grid on a map and
simply digitizing the elevations at the grid points can lead to
significant errors

1
b

SURFACE-SPECIFIC POINT SAMPLING

1. OK when the spacing between data points along the con-
tour is similar to that between the contours

2. OK in rough terrain

Copyright © 2002 by Hanan Samet

cl632
r

3. problem with interpolating using points

• if only use a few points in the neighborhood search, then
results in the creation of artificial plateaus within the loops
of the contours

× ×
×

×
×

××
×

×

××
××

× ×

×

×
×

××

×
×

×
×

× ×
×

× ×
×

×

×
×

×
×

×
×

×
×

×

Copyright © 2002 by Hanan Samet

cl63

• Errors can result in missing streams, ridges, summit points,
saddle points, and bottoms of depressions

• Digitization along the contour is one solution

• If data is from a contour map, placing a grid on a map and
simply digitizing the elevations at the grid points can lead to
significant errors

1
b

SURFACE-SPECIFIC POINT SAMPLING

1. OK when the spacing between data points along the con-
tour is similar to that between the contours

2. OK in rough terrain

Copyright © 2002 by Hanan Samet

cl632
r

3. problem with interpolating using points

• if only use a few points in the neighborhood search, then
results in the creation of artificial plateaus within the loops
of the contours

× ×
×

×
×

××
×

×

××
××

× ×

×

×
×

××

×
×

×
×

× ×
×

× ×
×

×

×
×

×
×

×
×

×
×

×

Copyright © 2002 by Hanan Samet

cl633
z

• need to interpolate using lines

Copyright © 2002 by Hanan Samet

cl63

• Errors can result in missing streams, ridges, summit points,
saddle points, and bottoms of depressions

• Digitization along the contour is one solution

• If data is from a contour map, placing a grid on a map and
simply digitizing the elevations at the grid points can lead to
significant errors

1
b

SURFACE-SPECIFIC POINT SAMPLING

1. OK when the spacing between data points along the con-
tour is similar to that between the contours

2. OK in rough terrain

Copyright © 2002 by Hanan Samet

cl632
r

3. problem with interpolating using points

• if only use a few points in the neighborhood search, then
results in the creation of artificial plateaus within the loops
of the contours

× ×
×

×
×

××
×

×

××
××

× ×

×

×
×

××

×
×

×
×

× ×
×

× ×
×

×

×
×

×
×

×
×

×
×

×

Copyright © 2002 by Hanan Samet

cl633
z

• need to interpolate using lines

Copyright © 2002 by Hanan Samet

cl634
g

• plateau is caused by using the elevation of the closest
point along a contour

Copyright © 2002 by Hanan Samet

cl64

SURFACE OR SPATIAL FILTERING

• Performed exclusively on gridded data

• Process each grid cell by a filter (i.e., window) which
weights each grid cell by its neighboring values
(positive and negative weights)

• Weights must sum to unity as otherwise the terrain is

1. damped (< 1.0)

2. amplified (> 1.0)

• Special-purpose filters can be used to enhance
particular features on the basis of size, shape, or
orientation

1. horizontal linear can amplify erroneous scan lines

2. filter specific shapes (e.g., circle)

3. enhance features of width of one grid cell

• 3 by 3 window

• 8 negative weights and one positive weight

• good approximation of random noise and then
subtract it from original to yield “enhanced” image

4. computationally complex

Copyright © 2002 by Hanan Samet

cl65

direction of
maximum
slope

y slope

x slope

y

x

y

x

NORTH

elevation

direction of
maximum
slope

azimuth

SLOPE AND ASPECT TRANSFORMATIONS

• Slope is defined by a plane tangent to a surface at a
specific point

1. rate of change of elevation

2. can calculate in x direction, y
direction, or in the direction of
maximum slope (termed
gradient)

• Aspect is the direction faced by
the surface and measured by both the horizontal and
vertical angles faced by the surface:

1. the horizontal angle (azimuth)
is measured by moving
clockwise from due north to the
direction of maximum slope
(i.e., gradient)

2. the elevation angle is mea-
sured by moving from horizon-
tal plane to line drawn normal
to surface (= 90°– gradient?)

• Maximum slope is known to skiers as the fall line and
the aspect is the direction in which the fall line tends

• Slope of zero implies flat terrain and aspect is undefined
• Slope is computed by best-fit plane through points in

neighborhood

• TIN

1. each triangle has uniform slope and a single aspect
2. slope and aspect are discontinuous at the triangle

boundaries

Copyright © 2002 by Hanan Samet

cl66

ERROR

1. Source errors
• often digital data is an “unbelievably faithful reproduc-

tion of incorrect maps”
• in the digital cartographic data
• in the data capture and geocoding process

a. missing parts of an area
b. inappropriate density (e.g., elevation data)

2. Use errors
• lack of information about mapping system
• unexpected deviation from cartographic convention
• use of maps with too small a scale
• use of out-of-date maps
• lack of documentation on the quality of the data

Copyright © 2002 by Hanan Samet

cl67

3. Process errors

• numerical errors
a. floating point precision
b. e.g., line intersection problem

• errors in the geometry of the map
a. features mislocated in three-dimensional

geometry of the world
b. often caused by controlled distortion

• changing map projection
• statistical space fitting

• scale change
a. ideally one high resolution data base instead of

many sources at different scales
b. some errors cannot even be detected

• removal of islands at smaller scale

• transformation of cartographic objects in digital form
between data structures
a. not really an unknown source since the process

is known
• gridding error in vector-to-raster conversion
• map overlay can result in many small meaning-

less polygons
b. can use topology to perform consistency checks

• changes in data dimension
a. intentional errors
b. but OK since permit analysis or display which is

otherwise impossible

• type of symbolization used

Copyright © 2002 by Hanan Samet

