INTRODUCTION

WHAT IS A GIS?

Def: a system that uses spatial (i.e., geographically referenced) and non-spatial (i.e., attribute) data and includes operations that support spatial analysis

Alternative names:

- AM/FM (automated mapping and facilities management)
- geographically referenced information system
- land information system
- natural resources information system
- spatial data management (or handling) system
- spatial database

FIELDS THAT ARE INVOLVED IN GIS

- 1. Cartography—display of visual information
- 2. Civil Engineering—transportation
- 3. Computer science—databases, computer graphics, image processing
- 4. Geodesy—high accuracy positional control
- 5. Geography—spatial analysis, relation of man to world
- 6. Mathematics—geometry, graph theory
- 7. Operations research—optimization
- 8. Photogrammetry—aerial photographs are best sources for topography
- 9. Remote sensing—images from space
- 10. Statistics-models, analysis of error
- 11. Surveying—position of land boundaries, buildings, etc.

SOME TYPICAL GIS QUERIES

- 1. What feature is at location *X*?
- 2. Does feature *F* exist anywhere?
- 3. Report the identity of all features present
- 4. Select all the locations where feature *F* is present
- 5. Where is object A with respect to object B?
- 6. Simulate the effect of phenomenon *P* for time period *T* in area *A*
- 7. What is the cheapest, fastest, or least resistant path from *A* to *B*?
- 8. What is the value of function *f* at location *X*?
- 9. What is the result of overlaying a given set of map layers?
- 10. What is the result of intersecting a given set of map layers?
- 11. What combination of features is at location X?
- 12. Where is object A in relation to object B or location X?
- Report all features within distance d of location X or object A
- 14. Reclassify certain ranges of feature values
- 15. Proximity queries such as what objects are next to other objects having certain attribute values
- 16. Measure properties such as area, perimeter, etc.

GIS OPERATIONS

- 1. Display the data
- 2. Find a pattern in the data
- 3. Predict the behavior of the data at another time or place

GIS ANALYSIS FUNCTIONS

- 1. Local operations
 - retrieval
 - classification and recoding
 - generalization—reducing detail
 - measurement
- 2. Overlay operations
- 3. Neighborhood operations
 - search
 - proximity—e.g., Voronoi diagrams
 - TIN generation
 - interpolation
 - contour generation
 - buffer or corridor generation
- 4. Connectivity operations
 - network functions—e.g., flow, routing, siting
 - spread functions—i.e., phenomena accumulate with distance
 - seek or stream functions—e.g., drainage
 - intervisibility

EXAMPLE OF GIS (MUNICIPAL DATABASE)

- 1. Basemap data
 - control points
 - topographic contours
 - building sites
- 2. Natural area data
 - soil types
 - landuse (e.g., industrial, agricultural, zoning, etc.)
 - vegetation
 - water (e.g., rivers, ponds, etc.)
- 3. Manmade area data
 - school districts
 - emergency service areas (e.g., fire, police, etc.)
- 4. Land records data
 - lot boundaries
 - zoning
 - easements and rights-of-way
- 5. Network data
 - utilities (e.g., phones, sewers, water, electricity, etc.)
 - roads
 - a. road centerlines
 - b. road intersections
 - c. street lights

LAND RECORDS (CADASTRAL) DATABASES

- Keep track of the nature and extent of interests in land
 - 1. conveyance of real property
 - 2. taxation
 - 3. delivery of public services
- Information
 - 1. copies of deeds
 - legal description of the property
 - chronological tabulation of names of grantors and grantees
 - 2. plat maps
 - graphical representation of legal description of property which contains:
 - a. subdivision name
 - b. block number
 - c. lot number
 - parcel number
 - a. combination of adjacent lots with common owner
 - b. a subdivided lot
 - usually indexed by block number
 - 3. copies of legal documents pertaining to the interest in the property
 - usually indexed by names of grantor and grantee

HISTORY OF GIS

- 1. Canada Geographic Information System (late 1960's)
 - early use of layer approach
- 2. Harvard Laboratory for Computer Graphics and Spatial Analysis (1970's)
 - SYMAP—first use of computers to make maps (line printer)
 - POLYVRT—conversion between different area representations
 - ODYSSEY—many functions based on vector format including polygon overlay
- 3. Bureau of the Census
 - DIME (1970 census)
 - a. use of geocoding to match street addresses to geographic coordinate and census reporting zones
 - b. only urban areas
 - TIGER—entire country (1990 census)
- 4. ESRI
 - spinoff of ODYSSEY from Harvard
 - combine attribute data management (INFO) with spatial data management (ARC)
 - vector-based approach

WHAT IS A MAP?

- Cartographic definition: a representation, usually to scale and on a flat medium, of a selection of material or abstract features on, or in relation to, the surface of the Earth
- Mathematical definition: a function (usually singlevalued) from a domain to a range
- A map is really an abstraction (has little to do with reality!)
 - 1. especially true for atlas and road maps
 - hairpin symbol indicates winding road but not the number of turns
 - 2. not so true for large-scale maps
 - 3. not good for measuring distance
 - e.g. effects of elevation cannot be taken into account easily
- Cartographic abstraction requires:
 - 1. selection of the features that are to be included
 - 2. classification of the features into groups (e.g., roads, buildings, etc.)
 - 3. simplification of the features (e.g., coastlines)
 - 4. exaggeration of important features that the scale of the map renders too small to be shown
 - 5. symbolization (e.g., hairpin symbol for winding roads)

MAPS ARE CHARACTERIZED BY SCALE

- Three types
 - 1. ratio
 - relate a unit of distance on a map to a specific distance on the ground
 - dimensionless (i.e., the units are the same)
 - large scale means a small area is covered with much detail (small denominator)
 - what ratio is considered large scale and what is small?
 - 2. verbal
 - useful for relating units for measuring distance on paper to those which are used on the ground
 - e.g., "one inch represents one mile"
 - more meaningful than 1:63360
 - not necessary if use the metric system
 - 3. graphical
 - safest especially if enlarge or reduce the map
 - e.g., reducing a 1:1000 map by 2 makes it a 1:2000 map
- Ratio and verbal are meaningless on a display screen
- Should say "represents" and NOT "equals"

USE OF RATIO SCALES IN MAPS

- 1. Atlas maps
 - 1:1,000,000 and smaller
 - general view of earth's surface
 - shapes of continents, borders of countries, major mountains, major cities, rivers
- 2. Topographic maps
 - 1:1,000,000 to 1:10,000
 - for military and civilian purposes
 - creeks, ponds, trails, etc.
- 3. Cadastral maps or plans
 - 1:1,000 or even 1:500
 - show property interests
 - useful for administration of local government e.g., subdivisions, fire hydrants, taxes, etc.

NATURE OF MAPS

- Projections of three dimensional data on a flat surface
- Cartograms
 - 1. distance
 - distance is proportional to some cost function (e.g., postage)
 - does not involve shape
 - distorts distance to represent distance-related concepts such as travel time, transport cost, postage, telephone fee, etc.
 - like azimuthal equidistance map projection in that it has a single focus
 - can still find some mathematical transformations so that additional features such as boundaries, rivers, contours, etc., can be shown even though the time or cost distorts the map
 - 2. area
 - area unit is proportional to an attribute associated with it such as population
 - try to preserve shape
- Cognitive maps
 - 1. distort shape but preserve topological relationships
 - 2. usually use non-linear scales for distances

TYPES OF MAPS: SOURCE

- 1. Line map
 - features depicted by conventional symbols and boundaries
- 2. Photo map
 - derived from a photographic aerial images
 - features are depicted as they are seen
 - subject to distortions

PLANIMETRIC MAPS

- 1. Created from field surveys or aerial photos
- 2. Contain physical features
 - curbs, sidewalks
 - roadways, bridges
 - rivers, washes, lakes
 - manhole covers, fire hydrants, street lights, traffic signals
 - buildings
- 3. Don't contain legal features
 - rights of way, easements, property lines
 - must be visible!
- 4. Use stereo process to obtain elevations and hence topographic maps
- 5. Aerial photos can be combined in a mosaic pattern
 - photos are usually taken at one point in time
 - field surveys have errors since taken over a long period of time
 - a. gaps can exist
 - b. different surveying techniques and precision

) ERRORS IN AERIAL PHOTOGRAPHS

- 1 in15) b
- Distortions caused by fact that surface of the earth is not flat
- Once a scale has been chosen, relative distances between objects may be erroneous since they can appear at different elevations and hence at different scales

- Observations:
 - 1. surface of earth between A and B is at a higher elevation than the surface of the earth between C and D
 - 2. assume scale is determined by the ground plane

C ERRORS IN AERIAL PHOTOGRAPHS

- **21** in15 r b
- Distortions caused by fact that surface of the earth is not flat
- Once a scale has been chosen, relative distances between objects may be erroneous since they can appear at different elevations and hence at different scales

- Observations:
 - 1. surface of earth between A and B is at a higher elevation than the surface of the earth between C and D
 - 2. assume scale is determined by the ground plane
 - 3. actual distance on the ground (i.e., ground truth) between A and B is not accurately represented on the photo by the points a and b as the scale along ab is different than the scale along cd even though their lengths are the same

C ERRORS IN AERIAL PHOTOGRAPHS

- 321 in15 z r b
- Distortions caused by fact that surface of the earth is not flat
- Once a scale has been chosen, relative distances between objects may be erroneous since they can appear at different elevations and hence at different scales

- Observations:
 - 1. surface of earth between A and B is at a higher elevation than the surface of the earth between C and D
 - 2. assume scale is determined by the ground plane
 - 3. actual distance on the ground (i.e., ground truth) between A and B is not accurately represented on the photo by the points a and b as the scale along ab is different than the scale along cd even though their lengths are the same
 - 4. scale of the length A'B' is the same as the scale of the length CD but A'B' is not on the photo

) AIRPLANE AND CAMERA ERRORS IN AERIAL PHOTOGRAPHS

- Tilt of airplane and camera
- Photo is not parallel to the ground or surface of the earth

in16

1 b

• Observations:

AIRPLANE AND CAMERA ERRORS IN AERIAL PHOTOGRAPHS

- Tilt of airplane and camera
- Photo is not parallel to the ground or surface of the earth

in16

2 1 r b

- Observations:
 - 1. distance between A and B (ab) appears smaller than expected a'b'

) AIRPLANE AND CAMERA ERRORS IN AERIAL PHOTOGRAPHS

- Tilt of airplane and camera
- Photo is not parallel to the ground or surface of the earth

in16

- Observations:
 - 1. distance between A and B (ab) appears smaller than expected a'b'
 - 2. distance between C and D (cd) appears larger than expected c'd'

AIRPLANE AND CAMERA ERRORS IN AERIAL^{g z r b} PHOTOGRAPHS

- Tilt of airplane and camera
- Photo is not parallel to the ground or surface of the earth

in16

- Observations:
 - 1. distance between A and B (ab) appears smaller than expected a'b'
 - 2. distance between C and D (cd) appears larger than expected c'd'
 - 3. correction process is called orthogonal rectification

TYPES OF MAPS: OUTPUT:

- 1. Topography map
 - outlines of natural and man-made features
 - refers to shape of the surface but also shows roads and other features
 - a. represented by contours, OR
 - b. shading
- 2. Thematic map
 - geographic concepts such as rainfall, crop coverage, population density, per capita income, etc.
 - types of maps
 - a. choropleth—display a particular feature such as average rainfall in a predefined partition of a region of interest
 - the boundaries of the elements of the partition are independent of the data (e.g., counties, Congressional districts)
 - b. area class map—partition into zones with the same attribute value
 - the boundaries of zones depend directly on the data values (e.g., crop coverage map)
 - c. isopleth map—lines are drawn between points of equal value (similar to contour lines)
 - assumes an imaginary surface
 - useful for data that varies continuously across the map (e.g., elevation, temperature, rainfall, etc.)
 - describes higher dimensional data on a medium of lower dimensionality

DATA INPUT: SAMPLING STRATEGIES

- 1. Random—all equally likely
- 2. Systematic—choose a sample every x units ...
- 3. Stratified—different sampling strategies in different regions
 - more samples in rugged terrain

DATA INPUT: DATA CAPTURE

- 1. Digitizers
 - cursor position is detected by the computer as it is moved (e.g., using a mouse and a digitizing tablet)
 - point mode—operator identifies points to be captured (which can be tedious)
 - stream mode—automatically by elapsed time or movement of cursor by a predetermined distance
- 2. Scanners
 - yield a raster image which can be converted to a vector
 - video-television camera
 - a. produces array of brightness or color values
 - b. difficult to use due to distortion
 - electromechanical such as a drum
 - can use a laser beam to scan surface of a map
- 3. Global Position System (GPS)
 - computes position in three-dimensional space based on signals from satellites that cover the earth (NAVSTAR)
 - can determine location on Earth's surface within meters
- 4. Rasterization
 - sometimes easier to scan the endpoints of vector data and then rasterize by vector-to-raster conversion
- 5. Vectorization
 - conversion of raster input to vectors
 - not easy