Assignment 2

Please submit it electronically to ELMS. This assignment is 6% in your final grade. For the simplicity of the grading, the total number of points for the assignment is 60.

Problem 1. Circuit identities.

1. (5 points) Show that the following circuit swaps two qubits:

2. (5 points) Verify the following circuit identity:

3. (5 points) Verify the following circuit identity:

$$= H + H + H$$

Give an interpretation of this identity.

Problem 2. Swap test.

1. (5 points) Let $|\psi\rangle$ and $|\phi\rangle$ be arbitrary single-qubit states (not necessarily computational basis states), and let SWAP denote the 2-qubit gate that swaps its input qubits (i.e., SWAP $|x\rangle|y\rangle = |y\rangle|x\rangle$ for any $x, y \in \{0, 1\}$). Compute the output of the following quantum circuit:

- 2. (5 points) Suppose the top qubit in the above circuit is measured in the computational basis. What is the probability that the measurement result is 0?
- 3. (3 points) If the result of measuring the top qubit in the computational basis is 0, what is the (normalized) post-measurement state of the remaining two qubits?
- 4. (2 points) How do the results of the previous parts change if $|\psi\rangle$ and $|\phi\rangle$ are *n*-qubit states, and SWAP denotes the 2*n*-qubit gate that swaps the first *n* qubits with the last *n* qubits?

Problem 3. The Hadamard gate and qubit rotations

1. (5 points) Suppose that $(n_x, n_y, n_z) \in \mathcal{R}^3$ is a unit vector and $\theta \in \mathcal{R}$. Show that

$$e^{-i\frac{\theta}{2}(n_x X + n_y Y + n_z Z)} = \cos(\frac{\theta}{2})I - i\sin(\frac{\theta}{2})(n_x X + n_y Y + n_z Z).$$

2. (5 points) Find a unit vector $(n_x, n_y, n_z) \in \mathcal{R}^3$ and numbers $\phi, \theta \in \mathcal{R}$ so that

$$H = e^{i\phi} e^{-i\frac{\theta}{2}(n_x X + n_y Y + n_z Z)}$$

where H denotes the Hadamard gate. What does this mean in terms of the Bloch sphere?

3. (5 points) Write the Hadamard gate as a product of rotations about the x and y axes. In particular, find $\alpha, \beta, \gamma, \phi \in \mathcal{R}$ such that $H = e^{i\phi}R_y(\gamma)R_x(\beta)R_y(\alpha)$.

Problem 4. Universality of gate sets. Prove that each of the following gate sets either is or is not universal. You may use the fact that the set $\{CNOT, H, T\}$ is universal.

- 1. (5 points) $\{H, T\}$
- 2. (5 points) $\{CNOT, T\}$
- 3. (5 points) $\{CNOT, H\}$
- 4. (Bonus: 10 points) {CNOT, H, T^2 }