Assignment 2

Please submit it electronically to ELMS. This assignment is 6% in your final grade. For the simplicity of the grading, the total number of points for the assignment is 60 .

Problem 1. Circuit identities.

1. (5 points) Show that the following circuit swaps two qubits:

2. (5 points) Verify the following circuit identity:

3. (5 points) Verify the following circuit identity:

Give an interpretation of this identity.

Problem 2. Swap test.

1. (5 points) Let $|\psi\rangle$ and $|\phi\rangle$ be arbitrary single-qubit states (not necessarily computational basis states), and let SWAP denote the 2-qubit gate that swaps its input qubits (i.e., $\operatorname{sWAP}|x\rangle|y\rangle=|y\rangle|x\rangle$ for any $x, y \in\{0,1\})$. Compute the output of the following quantum circuit:

2. (5 points) Suppose the top qubit in the above circuit is measured in the computational basis. What is the probability that the measurement result is 0 ?
3. (3 points) If the result of measuring the top qubit in the computational basis is 0 , what is the (normalized) post-measurement state of the remaining two qubits?
4. (2 points) How do the results of the previous parts change if $|\psi\rangle$ and $|\phi\rangle$ are n-qubit states, and swap denotes the $2 n$-qubit gate that swaps the first n qubits with the last n qubits?

Problem 3. The Hadamard gate and qubit rotations

1. (5 points) Suppose that $\left(n_{x}, n_{y}, n_{z}\right) \in \mathcal{R}^{3}$ is a unit vector and $\theta \in \mathcal{R}$. Show that

$$
e^{-i \frac{\theta}{2}\left(n_{x} X+n_{y} Y+n_{z} Z\right)}=\cos \left(\frac{\theta}{2}\right) I-i \sin \left(\frac{\theta}{2}\right)\left(n_{x} X+n_{y} Y+n_{z} Z\right)
$$

2. (5 points) Find a unit vector $\left(n_{x}, n_{y}, n_{z}\right) \in \mathcal{R}^{3}$ and numbers $\phi, \theta \in \mathcal{R}$ so that

$$
H=e^{i \phi} e^{-i \frac{\theta}{2}\left(n_{x} X+n_{y} Y+n_{z} Z\right)}
$$

where H denotes the Hadamard gate. What does this mean in terms of the Bloch sphere?
3. (5 points) Write the Hadamard gate as a product of rotations about the x and y axes. In particular, find $\alpha, \beta, \gamma, \phi \in \mathcal{R}$ such that $H=e^{i \phi} R_{y}(\gamma) R_{x}(\beta) R_{y}(\alpha)$.

Problem 4. Universality of gate sets. Prove that each of the following gate sets either is or is not universal. You may use the fact that the set $\{\mathrm{CNOT}, H, T\}$ is universal.

1. (5 points) $\{H, T\}$
2. (5 points) $\{\mathrm{CNOT}, T\}$
3. (5 points) $\{$ CNOT, $H\}$
4. (Bonus: 10 points) $\left\{\mathrm{CNOT}, H, T^{2}\right\}$
