Assignment 3

Please submit it electronically to ELMS. This assignment is 6% in your total points. For the simplicity of the grading, the total points for the assignment are 60 . Note that we will reward the use of Latex for typesetting with bonus points (an extra 5% of your points).
Problem 1. The Bernstein-Vazirani problem.

1. (3 points) Suppose $f:\{0,1\}^{n} \rightarrow\{0,1\}$ is a function of the form

$$
f(\underline{x})=x_{1} s_{1}+x_{2} s_{2}+\cdots+x_{n} s_{n} \bmod 2
$$

for some unknown $\underline{s} \in\{0,1\}^{n}$. Given a black box for f, how many classical queries are required to learn s with certainty?
2. (4 points) Prove that for any n-bit string $\underline{u} \in\{0,1\}^{n}$,

$$
\sum_{\underline{v} \in\{0,1\}^{n}}(-1)^{\underline{u} \cdot \underline{v}}= \begin{cases}2^{n} & \text { if } \underline{u}=\underline{0} \\ 0 & \text { otherwise }\end{cases}
$$

where $\underline{0}$ denotes the n-bit string $00 \ldots 0$.
3. (4 points) Let U_{f} denote a quantum black box for f, acting as $U_{f}|\underline{x}\rangle|y\rangle=|\underline{x}\rangle|y \oplus f(\underline{x})\rangle$ for any $\underline{x} \in\{0,1\}^{n}$ and $y \in\{0,1\}$. Show that the output of the following circuit is the state $|\underline{s}\rangle(|0\rangle-|1\rangle) / \sqrt{2}$.

4. (1 points) What can you conclude about the quantum query complexity of learning s ?

Problem 2. Determining the "slope" of a linear function over \mathbb{Z}_{4}. Let $\mathbb{Z}_{4}=\{0,1,2,3\}$, with arithmetic operations of addition and multiplication defined with respect to modulo 4 arithmetic on this set. Suppose that we are given a black-box computing a linear function $f: \mathbb{Z}_{4} \rightarrow \mathbb{Z}_{4}$, which of the form $f(x)=a x+b$, with unknown coefficients $a, b \in \mathbb{Z}_{4}$ (throughout this question, multiplication and addition mean these operations in modulo 4 arithmetic). Let our goal be to determine the coefficient a (the "slope" of the function). We will consider the number of quantum and classical queries needed to solve this problem.

Assume that what we are given is a black box for the function f that is in reversible form in the following sense. For each $x, y \in \mathbb{Z}_{4}$, the black box maps (x, y) to $(x, y+f(x))$ in the classical case; and $|x\rangle|y\rangle$ to $|x\rangle|y+f(x)\rangle$ in the quantum case (which is unitary).

Also, note that we can encode the elements of \mathbb{Z}_{4} into 2-bit strings, using the usual representation of integers as a binary strings $(00=0,01=1,10=2,11=3)$. With this encoding, we can view f as a function on 2 -bit strings $f:\{0,1\}^{2} \rightarrow\{0,1\}^{2}$. When refering to the elements of \mathbb{Z}_{4}, we use the notation $\{0,1,2,3\}$ and $\{00,01,10,11\}$ interchangeably.
(1) (5 points) Prove that every classical algorithm for solving this problem must make two queries.
(2) (5 points) Consider the 2-qubit unitary operation A corresponding to "add 1 ", such that $A|x\rangle=|x+1\rangle$ for all $x \in \mathbb{Z}_{4}$. It is easy to check that

$$
A=\left(\begin{array}{llll}
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right)
$$

Let $|\psi\rangle=\frac{1}{2}\left(|00\rangle+i|01\rangle+i^{2}|10\rangle+i^{3}|11\rangle\right)$, where $i=\sqrt{-1}$. Prove that $A|\psi\rangle=-i|\psi\rangle$.
(3) (5 points) Show how to create the state $\frac{1}{2}\left((-i)^{f(00)}|00\rangle+(-i)^{f(01)}|01\rangle+(-i)^{f(10)}|10\rangle+(-i)^{f(11)}|11\rangle\right)$ with a single query to U_{f}. (Hint: you may use the result in part (2) for this.)
(4) (5 points) Show how to solve the problem (i.e., determine the coefficient $a \in \mathbb{Z}_{4}$) with a single quantum query to f. (Hint: you may use the result in part (3) for this.)

Problem 3. Simon's algorithm and its extension. In Simon's problem, recall that we're given oracle access to a function $f:\{0,1\}^{n} \rightarrow\{0,1\}^{n}$ with the promise that there exists a secret string $s \neq 0^{n}$ such that $f(x)=f(y)$ if and only if $y=x \oplus s$ for all different $x, y \in\{0,1\}^{n}$.

1. (5 points) Recall the algorithm described during the lecture. Rigorously prove that $O(n)$ repetitions of Simon's algorithm are enough if we want to succeed with $1-e^{-n}$ probability.
2. (10 points) Suppose instead that there are two nonzero secret strings, $s \neq t$, such that $f(x)=f(x \oplus s)=$ $f(x \oplus t)=f(x \oplus s \oplus t)$ for all x. Describe a variation of Simon's algorithm that finds the entire set $s, t, s \oplus t$ in time polynomial in n. When you measure a state in your algorithm, what are the possible results of the measurement? How do you use those measurement results to reconstruct the set $s, t, s \oplus t$?

Problem 4. Searching for a quantum state.
Suppose you are given a black box U_{ϕ} that identifies an unknown quantum state $|\phi\rangle$ (which may not be a computational basis state). Specifically, $U_{\phi}|\phi\rangle=-|\phi\rangle$, and $U_{\phi}|\xi\rangle=|\xi\rangle$ for any state $|\xi\rangle$ satisfying $\langle\phi \mid \xi\rangle=0$.

Consider an algorithm for preparing $|\phi\rangle$ that starts from some fixed state $|\psi\rangle$ and repeatedly applies the unitary transformation $V U_{\phi}$, where $V=2|\psi\rangle\langle\psi|-I$ is a reflection about $|\psi\rangle$.

Let $\left|\phi^{\perp}\right\rangle=\frac{e^{-i \lambda}|\psi\rangle-\sin (\theta)|\phi\rangle}{\cos (\theta)}$ denote a state orthogonal to $|\phi\rangle$ in $\operatorname{span}\{|\phi\rangle,|\psi\rangle\}$, where $\langle\phi \mid \psi\rangle=e^{i \lambda} \sin (\theta)$ for some $\lambda, \theta \in \mathcal{R}$.

1. (2 points) Write the initial state $|\psi\rangle$ in the basis $\left\{|\phi\rangle,\left|\phi^{\perp}\right\rangle\right\}$.
2. (3 points) Write U_{ϕ} and V as matrices in the basis $\left\{|\phi\rangle,\left|\phi^{\perp}\right\rangle\right\}$.
3. (3 points) Let k be a positive integer. Compute $\left(V U_{\phi}\right)^{k}$.
4. (3 points) Compute $\langle\phi|\left(V U_{\phi}\right)^{k}|\psi\rangle$.
5. (2 points) Suppose that $|\langle\phi \mid \psi\rangle|$ is small. Approximately what value of k should you choose in order for the algorithm to prepare a state close to $|\phi\rangle$, up to a global phase? Express your answer in terms of $|\langle\phi \mid \psi\rangle|$.
