CMSC/PHYS 457, Introduction to Quantum Computing Due: April 6th, 2023
Spring 2023, University of Maryland Date: March 17, 2023

Assignment 3

Please submit it electronically to ELMS. This assignment is 6% in your total points. For the simplicity
of the grading, the total points for the assignment are 60. Note that we will reward the use of Latex for
typesetting with bonus points (an extra 5% of your points).

Problem 1. The Bernstein-Vazirani problem.
1. (8 points) Suppose f:{0,1}" — {0,1} is a function of the form
f(z) = z181 + 2282+ -+ + TS mod 2

for some unknown s € {0,1}". Given a black box for f, how many classical queries are required to
learn s with certainty?

2. (4 points) Prove that for any n-bit string u € {0,1}",
Z (=1 = {O otherwise
ve{0,1}n
where 0 denotes the n-bit string 00...0.

3. (4 points) Let Uy denote a quantum black box for f, acting as Uy|z)|ly) = |x)ly & f(z)) for any
2z € {0,1}" and y € {0,1}. Show that the output of the following circuit is the state |s)(|0) —|1))/v/2.
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4. (1 points) What can you conclude about the quantum query complexity of learning s?

Problem 2. Determining the ”slope” of a linear function over Zy. Let Zy = {0,1,2,3}, with arithmetic
operations of addition and multiplication defined with respect to modulo 4 arithmetic on this set. Suppose
that we are given a black-box computing a linear function f : Zy — Z4, which of the form f(z) = ax+b, with
unknown coefficients a,b € Z4 (throughout this question, multiplication and addition mean these operations
in modulo 4 arithmetic). Let our goal be to determine the coefficient a (the ”slope” of the function). We
will consider the number of quantum and classical queries needed to solve this problem.

Assume that what we are given is a black box for the function f that is in reversible form in the following
sense. For each z,y € Z4, the black box maps (z,y) to (z,y + f(x)) in the classical case; and |x)|y) to
|z) |y + f(x)) in the quantum case (which is unitary).

Also, note that we can encode the elements of Z, into 2-bit strings, using the usual representation of
integers as a binary strings (00 = 0, 01 = 1, 10 = 2, 11 = 3). With this encoding, we can view f as a
function on 2-bit strings f : {0,1}> — {0,1}%. When refering to the elements of Z,, we use the notation
{0,1,2,3} and {00,01, 10,11} interchangeably.



(1) (5 points) Prove that every classical algorithm for solving this problem must make two queries.

(2) (5 points) Consider the 2-qubit unitary operation A corresponding to ”add 17, such that A |z) = |x 4+ 1)
for all x € Z4. It is easy to check that

o o = O
O = OO
o o o
o O O

Let |¢) = $(]00) + 14 |01) + 42 [10) +i* [11)), where i = \/—1. Prove that A|y) = —i[¢)).

(3) (5 points) Show how to create the state 3((—i)/(°9) [00) 4 (=) OV [01) + (—i)7 (10 |10) + (—i) /D) [11))
with a single query to Uy. (Hint: you may use the result in part (2) for this.)

(4) (5 points) Show how to solve the problem (i.e., determine the coefficient a € Z4) with a single quantum
query to f. (Hint: you may use the result in part (3) for this.)

Problem 3. Simon’s algorithm and its extension. In Simon’s problem, recall that we’re given oracle access
to a function f : {0,1}" — {0,1}"™ with the promise that there exists a secret string s # 0™ such that
f(@) = f(y) if and only if y = = @ s for all different z,y € {0, 1}".

1. (5 points) Recall the algorithm described during the lecture. Rigorously prove that O(n) repetitions
of Simon’s algorithm are enough if we want to succeed with 1 — e~ probability.

2. (10 points) Suppose instead that there are two nonzero secret strings, s # t, such that f(z) = f(x®s) =
fladt) = f(x ®sdt) for all x. Describe a variation of Simon’s algorithm that finds the entire set
s,t,s @t in time polynomial in n. When you measure a state in your algorithm, what are the possible
results of the measurement? How do you use those measurement results to reconstruct the set s, t, s@t?

Problem 4. Searching for a quantum state.

Suppose you are given a black box Uy that identifies an unknown quantum state |¢) (which may not be a
computational basis state). Specifically, Uy|¢) = —|¢), and Uy|€) = |£) for any state |€) satisfying (¢|¢) = 0.

Consider an algorithm for preparing |¢) that starts from some fixed state 1)) and repeatedly applies the
unitary transformation VU, where V' = 2|¢) ()| — I is a reflection about [¢).

Let |pt) = %&;?(W denote a state orthogonal to |¢) in span{|¢),|)}, where (¢[1)) = ™ sin(f)
for some A, 0 € R.

1. (2 points) Write the initial state |¢)) in the basis {|#),|¢")}.
2. (3 points) Write Us and V' as matrices in the basis {|¢), |¢1)}.

(8 points) Let k be a positive integer. Compute (VUy)*.

L

(8 points) Compute (p|(VUyz)*|1)).

5. (2 points) Suppose that |(¢[t)] is small. Approximately what value of k should you choose in order
for the algorithm to prepare a state close to |¢), up to a global phase? Express your answer in terms

of [{@[¢)].



