
CMSC 858L: Quantum Complexity

Instructor: Daniel Gottesman

Spring 2023

10 More oracle algorithms

10.1 References

Again, Simon’s and Grover’s algorithms are both standard quantum textbook material. Nielsen and Chuang,
Quantum Computation and Quantum Information, has a chapter on Grover’s algorithm and mentions Si-
mon’s algorithm as an example of the broader framework of abelian hidden subgroup algorithms. The hybrid
argument showing a lower bound on Grover’s algorithm and the separation of BQP from NP is from Bennett,
Bernstein, Brassard, and Vazirani, “Strengths and Weaknesses of Quantum Computing,” quant-ph/9701001
(often known as “BBBV”), although I have modified the argument slightly. (The BBBV paper also proved
BQPBQP = BQP.)

10.2 Correction

To prove BQPBQP = BQP, we need to do a bit more than I said last time. When you call a quantum oracle,
all you get is the answer, with no scratch bits with extra information lying around. This is important to
make quantum oracle algorithms work, because otherwise the scratch bits might have information about
the query that would effectively decohere the different branches of the computation and prevent interference
later on. Thus, if you use an explicit BQP subroutine in place of an oracle call, you need to make sure that
the subroutine leaves no scratch bits behind. In the case where the BQP subroutine gives the answer with
amplitude 1, this is easy to ensure: Run the unitary U , use a CNOT to copy the answer onto an extra qubit
(which will be the answer qubit), then run U−1 to reverse the original computation. When the amplitude
of the answer is 1, copying it with a CNOT doesn’t change the state, so U−1 brings us back to the initial
state except for the answer qubit. If the probability of success is less than 1, this reversal might not work
exactly, but if it is very close to 1, then the CNOT will only make a slight change to the state and reversing
will give us something very close to the initial state. The subroutine will then function almost the same as
the idealized oracle. Thus, there is a second reason to amplify the success probability of the subroutines in
order to prove BQPBQP = BQP.

10.3 Simon’s algorithm

Simon’s algorithm is historically important because it is the first exponential separation between BPP and
BQP, and because it served as inspiration for Shor’s algorithm. It is also an oracle problem, but it uses a
functional oracle O : Zn

2 → Zn
2 . To make this quantum (or reversible), we therefore need n ancilla qubits:

O|x〉|c〉 = |x〉|c⊕O(x)〉, with c being an n-bit string and the XOR being a bitwise sum.
The function in Simon’s problem has the promise that for distinct x and y, O(x) = O(y) iff x ⊕ y = s

for some secret s. Our goal is to learn s. This is a property of O; it could be determined given a full list of
values of O.

So what is the classical randomized query complexity of s(O)? We can find an upper bound through the
following algorithm: Choose random x and query O(x), keeping a list of all queries and outcomes. After
each query, we check if the value O(x) is equal to O(y) for some y that we previously queried. If so, we halt

1

and return s = x⊕ y. Otherwise, we add (x,O(x)) to the list and keep going. Birthday paradox arguments
show that we are likely to find a collision of two values O(x) = O(y) after about 2n/2 queries. Similarly,
since the values for unequal values of O are arbitrary, we learn little by having queries that don’t match,
and birthday paradox arguments show that we need Ω(2n/2) queries. Thus, R(s) = Θ(2n/2).

The quantum algorithm for Simon’s problem looks superficially very similar to that for the Deutsch-Jozsa
algorithm, but there are some crucial differences. The analysis is (unsurprisingly) more similar to Shor’s
algorithm.

|0〉

|0〉

|0〉

|0〉

|0〉

|0〉

H

H

H

O
H

H

H

�H

�
H

�H

�H

�H

�
H

1 2 3 4

At step 3, we have the state
∑

x |x〉|O(x)〉. The measurement of the ancilla qubits at this stage is not
needed but it makes the analysis simpler: We get a value w and collapse to just two values x and y such
that O(x) = O(y) = w, so the state (pre-Hadamards) is (|x〉+ |y〉)|w〉.

Now,

H⊗n|x〉+H⊗n|y〉 =
∑
z

[(−1)x·z + (−1)y·z]|z〉 (1)

=
∑
z

(−1)x·z[1 + (−1)(x⊕y)·z]|z〉 (2)

=
∑

z|s·z=0

(−1)x·z|z〉 (3)

since x⊕y = s. Thus, at step 4, we get a random z such that s·z = 0. If we run this algorithm multiple times,
we get a set of linear equations for s. After O(n) trials, we are very likely to have n linearly independent
such equations: we get another new equation whenever the new z is not in the linear span of the previous
ones, which happens with probability at least 1/2 if the existing z’s don’t already span the binary vector
space. Once we have n independent equations, we can solve for s in polynomial time and not additional
queries. This tells us that Q(s) = O(n). In fact, Q(s) = Θ(n), although we don’t yet have the techniques
required to prove this.

Simon’s algorithm shows an exponential separation between quantum and randomized classical query
complexity. It can also be used to create an oracle O (albeit a functional one rather than decisional one)
such that BPPO 6= BQPO.

10.4 Grover’s algorithm

Grover’s algorithm is an algorithm that performs unstructured search. This could be a database that is
specially designed to allow retrieving superpositions of different entries, but it is more likely to be searching
a function to find inputs that give outputs with a particular property (for instance, equal to a specific value).
Grover’s algorithm is phrased as solving the following oracle problem:

Definition 1. The unstructured search problem is as follows; Given an oracle O : ZN → Z2, find input x0
such that O(x0) = 1. Any such x0 is known as a marked state.

2

There are a number of equivalent variations: The oracle O could be structured in a number of different
ways; for instance, it could have any range, not just a single bit, and there is some particular value we want
to find. Sometimes we are given a promise that there is a unique solution or a known number t of solutions.
Sometimes the only goal is to determine if O(x) = 0∀x or if ∃x0 such that O(x0) = 1; this is equivalent to
finding the OR of all the bits that make up the bit string representation of the oracle O. This last decision
version of the problem is equivalent up to logarithms using binary search as before: search half the domain
to determine which half the solution is and then repeat with the narrowed-down part of the domain.

Unstructured search can act as a model for NP-complete problems. Any algorithm that works for
unstructured search will solve any problem in NP: Let O(w) be the checking circuit applied to witness w
for some particular instance x of a language L. Then determining whether or not there exists w such that
O(w) = 1 is the same as determining if there is a witness for instance x, which in turn is the same as
determining if x ∈ L. Of course, many NP problems will have a lot of structure in the checking circuit,
so while an oracle algorithm will work to find a witness, it may be that there are other faster algorithms
which take advantage of structure in the real problem that is not present in the oracle. However, the general
belief is that the reason NP-complete problems are so hard is that they don’t have any usable structure.
That belief could be wrong, of course, but if so, that would suggest that for NP-complete problems, the best
algorithms are derived from solutions to the unstructured search problem.

Grover’s algorithm differs from the previous examples we have done in two aspects: First, it is only a
polynomial speedup instead of an exponential speedup. We will need to develop techniques to prove a lower
bound on the quantum query complexity to prove this. Second, the unstructured search problem is not a
promise problem, whereas the previous examples were both promise problems. A lot of complexity theorists
seem to consider this important, although I don’t really understand the reasons why. One significance it
has is that we know that there cannot be an exponential separation between classical and quantum query
complexity for total functions (ones without a promise), at least for decision problems. Whereas in contrast,
we have just seen an exponential separation between them when we do have a promise. However, it turns
out that for sampling problems, Yamakawa and Zhandry have shown it is possible to find an exponential
separation. (I don’t think that we will cover their work in this class, unless someone wants to pick it for
their project.)

In any case, Grover’s algorithm provides a square root speedup. It works by repeatedly performing the
following operation, starting on the state

∑
x |x〉:

G = H⊗nF0H
⊗n(−1)O. (4)

Here, H is the Hadamard transform, F0 is an operation that does a phase of −1 on the |00 . . . 0〉 state and
+1 on all other basis states, and (−1)O is the version of the oracle that does a phase −1O(x) on a basis state
|x〉. This phase oracle can be implemented using one standard oracle call by applying it with an ancilla
qubit in the state |−〉, as for the Deutsch-Jozsa algorithm.

The Grover iteration rotates the state in the 2-dimensional subspace spanned by
∑

x|O(x)=1 |x〉 and∑
x|O(x)=0 |x〉, the superpositions of marked and unmarked states. If there are t marked states and N

possible inputs, each application of G rotates the state by an angle θ, with sin θ =
√

t
N . Therefore, after

about π/4
√
N/t iterations (each of which requires one oracle call), the state will be close to a superposition

of marked states, and measuring produces a random marked state with high probability. The quantum query
complexity is thus Q = O(

√
N/t), which for all t > 0 is O(

√
N).

When t is not known, there are various solutions, one of the most elegant being to note that Grover
iterations produce a periodic oscillation with a period depending on t, and that therefore we can use Shor’s
period-finding algorithm to approximate t without dramatically more oracle calls. Once we have a rough
approximation of t, we can measure after the appropriate amount of time; since we don’t know t exactly, the
probability of getting a marked element will be O(1) but not necessarily extremely close to 1, but by trying
a few times and checking the answers using the oracle, we can rapidly find a marked element. When t = 0,
if we try this same procedure and fail to find a marked element, we can be fairly confident that there are no
marked elements. Thus, the query complexity for the decision version is also Q = O(

√
N).

3

We can compare this with the classical randomized query complexity for this problem. The hardest
case is likely to be cases where there is only 1 marked element. Let Ox0 be the oracle Ox0(x) = 0 unless
x = x0 and Ox0

(x0) = 1. We want to determine if the oracle is Ox0
for some x0 or if it is O0, defined

by O0(x) = 0 for all x. An arbitrary classical algorithm will make a sequence of queries y1, y2, . . . , yr. If
the oracle is Ox0

and any yi = x0, then the algorithm has succeeded. If we fix the randomness used in
the classical algorithm (which we can do by assuming it comes from a pre-determined list of random bits),
then the sequence y1, y2, . . . , yr doesn’t depend on the actual oracle we have, only on the values O(yi). If
the algorithm has not succeeded by query j, then O(yi) = 0 for all i ≤ j, which means that the sequence
y1, . . . , yj is that same for all oracles such that yi 6= x0 for any i < j. Considering all such oracles, there are
N − j oracles Ox0

that are still possible as well as the oracle O0. The next query yj+1 is the same for all
these oracles, so the probability of succeeding with query j + 1 averaged over x0 is at most 1/N − j. The
total probability of success with r queries is therefore at most

r∑
j=1

1/N − j ≤ r/(N − r). (5)

For the success probability to exceed 2/3, we therefore need

r ≥ 2/3(N − r), (6)

or r ≥ 3/5N . Since the classical query complexity R = O(N) (we can try all inputs if needed), R = Θ(N).
The quantum algorithm offers a quadratic improvement in the query complexity.

4

