
CMSC 858L: Quantum Complexity

Instructor: Daniel Gottesman

Spring 2023

11 Quantum lower bounds

11.1 References

The hybrid argument showing a lower bound on Grover’s algorithm and the separation of BQP from NP
is from Bennett, Bernstein, Brassard, and Vazirani, “Strengths and Weaknesses of Quantum Computing,”
quant-ph/9701001 (often known as “BBBV”), although I have modified the argument slightly. (The BBBV
paper also proved BQPBQP = BQP.) Lower bounds using polynomials were developed by Beals, Buhrman,
Cleve, Mosca, and de Wolf, “Quantum Lower Bounds by Polynomials,” quant-ph/9802049.

We now embark on studying methods of lower bounding the quantum query complexity. We’ll apply
each method to unstructured search, but we will look at some other applications as well.

11.2 Hybrid argument

But so far we have just an upper bound on the quantum query complexity. Can we set a lower bound on
the quantum query complexity? Yes, in fact, we can, but it requires some work. The first argument I will
show you is known as a hybrid argument, but then we will cover some other techniques for proving quantum
lower bounds and we’ll try them out on this same problem.

Theorem 1. The quantum query complexity for unstructured search is Q = Ω(
√
N), and thus in fact

Q = Θ(
√
N).

Proof. Suppose we have an algorithm that makes T queries. That algorithm can be written as an alternating
sequence of unitaries and oracle calls U0, O, U1, O, . . . , UT−1, O, UT . The unitaries don’t have to all be the
same and they can be many-qubit very complex unitaries — we only care about the query complexity, not
the circuit complexity. Importantly, the sequence U0, U1, . . . , UT of unitaries is the same regardless of the
oracle used, since the algorithm knows nothing about the oracle beyond what it learns in oracle calls, and
its reaction to those oracle calls is subsumed into the unitaries Ui.

Let

V0 = UT

0∏
i=T−1

O0Ui (1)

and

Vx0 = UT

0∏
i=T−1

Ox0Ui. (2)

We are using the same notation for oracles as before: O0 is the oracle with no marked elements and Ox0
is the

oracle with only x0 marked. We wish to show that V0|ψ〉 is close to Vx0
|ψ〉 for any |ψ〉 unless T = Ω(

√
N).

To do this, we will proceed through a sequence of hybrid circuits (thus the name of the method)

V (j)
x0

= UT

j∏
i=T−1

Ox0Ui

0∏
i=j−1

O0Ui. (3)

1

Thus V
(0)
x0 = Vx0

and V
(T)
x0 = V0. Each successive V

(j)
x0 has one less call to Ox0

and one more call to O0

instead. We will actually show that V
(j)
x0 and V

(j+1)
x0 are very close for almost all x0, and then the total

distance between V0 and Vx0 can be at most T times the maximum distance between adjacent V
(j)
x0 ’s.

Since the only difference between V
(j)
x0 and V

(j+1)
x0 is a single oracle call, we can simplify the comparison

into one between V f
x0
U0V

i and V f
x0
Ux0

V i, where V i is the product of unitaries (including oracles) performed
before the (j + 1)th oracle call and V f

x0
is the product of unitaries (including oracles) performed after the

(j + 1)th oracle call. Note in particular that while V f
x0

can depend on x0, V i does not. Let |ψ〉 be the initial
state of the algorithm and let

|φ〉 = V i|ψ〉 =
∑
x

αx|x〉 ⊗ |φx〉. (4)

Here the first register is the query that will be given to the oracle at step j + 1 and we can assume that the
states |φx〉 are normalized.

We can simplify this by noting that by permuting the inputs to the oracle, we can exchange any Ox0

with any other Ox′
0
. In particular, the algorithm has no reason to prefer any x0’s over any others. Indeed,

any algorithm can be symmetrized by choosing random permutation of inputs and applying it everywhere
without altering the average success probability, averaged over x0. We can purify this procedure (so that we
can use unitaries everywhere), and the conclusion is that since |φ〉 doesn’t depend at all on the actual x0 in
the oracle, the amplitudes |αx| must have the same magnitude 1/

√
N . Then

O0|φ〉 =
∑
x

αx|x〉 ⊗ |φx〉 (5)

Ox0
|φ〉 =

∑
x 6=x0

αx|x〉 ⊗ |φx〉 − αx0
|x0〉 ⊗ |φx0

〉. (6)

(Assume we use the oracle in the phase form, but the standard form doesn’t materially alter this argument.)
Thus,

〈φ|O†0Ox0
|φ〉 =

∑
x 6=x0

|αx|2 − |αx0
|2 = (N − 2)/N. (7)

This is indeed the lowest fidelity we can achieve between these two states for any ancilla state for the oracle
output. Because the operation V f

x0
is unitary, even though it depends on the marked value x0, the fidelity

between the two possible final states for V
(j)
x0 and V

(j+1)
x0 has to remain the same as the fidelity between

O0|φ〉 and Ox0
|φ〉, that is to say at least 1− 2/N .

The next step is to add up all these distances to get the distance between the V
(j)
x0 ’s in order to find the

distance between V0 and Vx0
. However, infidelity is not a metric and doesn’t need to satisfy the triangle

inequality, so we will switch to trace distance. The trace distance is at most√
1− F 2 ≤

√
1− (1− 2/N)2 =

√
4/N − 4/N2 ≤ 2/

√
N. (8)

The trace distance does satisfy the triangle inequality, so

D(V0|ψ〉, Vx0
|ψ〉) ≤

T−1∑
j=0

D(V (j+1)
x0

|ψ〉, V (j)
x0
|ψ〉) ≤ 2T/

√
N. (9)

(Trace distance is actually between density matrices, so consider the above pure states as shorthand for the
corresponding density matrices.) Thus, if T = o(

√
N), the outcome distributions of the two states must be

very close for large N .
Because of the symmetrization, we have made all the trace distances D(V0|ψ〉, Vx0

|ψ〉) the same, but
before symmetrization, some could be higher than that while others would be lower. However, by the
Markov inequality, the number of x0 such that D(V0|ψ〉, Vx0 |ψ〉) > 2kT/

√
N is at most N/k. In particular,

when T = o(
√
N), the fraction of values of x0 for which the trace distance is not small is itself vanishing in

the limit of large N .

2

Let Pb(O) be the probability that this algorithm outputs b to the decision problem when given oracle
O. Since for almost all x0, D(V0|ψ〉, Vx0 |ψ〉) is small when T = o(

√
N), Pb(O0) must be close Pb(Ox0) and

therefore, the algorithm fails to be correct with probability 2/3. In order to achieve this level of accuracy,
we must have T = Ω(

√
N).

11.3 Separating BQP from NP relative to an oracle

We then get

Theorem 2. Relative to a random oracle O, NPO 6⊆ BQPO with probability 1.

This gives some evidence, for what it’s worth, that BQP can’t solve NP-complete problems.

Proof. Given O, we can define another oracle Õ : Zn
2 → Zn

2 (for all n) as follows: the ith bit of Õ(x) is
O(x, i), where the input (x, i) is the concatenation of x and i, where i is written using exactly dlog2 ne bits.
Õ can be computed using O(log n) calls to O and a particular value of O for a given input of size n+dlog2 ne
can be computed using one call to Õ. Thus, querying O and querying Õ are essentially equivalent up to
possible logarithmic factors. Furthermore, every function Õ can be defined in this way from an O, and all
are equally likely for random O, so Õ is a random functional oracle.

Define the language L as follows: y ∈ L iff ∃x such that Õ(x) = y. This language can be decided in NPO

using just one oracle call to Õ and therefore just logarithmically many to O.
However, it cannot be decided in BQPO: Any algorithm to decide it using T queries to O can be coverted

to an algorithm using at most T queries to Õ. Queries to Õ are not going to be any more effective for this
problem that queries to a decision version which returns 0 if Õ 6= y and returns 1 if Õ = y. Since Õ is
random, for most values of y, there is at most one x0 such that Õ(x0) = y, and we know from the previous
proof that for any quantum query algorithm using o(

√
N) queries, for almost all x0, the algorithm does

not succeed with probability at least 2/3. That is, for most values of Õ for this particular value of n, the
algorithm fails. By letting n→∞, we get that L 6∈ BQPO with probability 1.

11.4 Bounds from polynomials

Another approach to setting lower bounds to query complexity is to approximate the functions we need to
compute by polynomials. In fact, if we think of the oracle as an N -bit string with ith bit Xi, we can think
of the Xi’s as variables that take on the value 0 or 1 as we vary the oracle. Then the function f(O) we
are supposed to compute in the query complexity problem is a polynomial in the Xi’s of degree at most N :
Any function on a finite number of points (in this case 2N points) can be written as a polynomial. A priori,
this polynomial would have very high degree, as high as 2N − 1. However, f is only evaluated for Xi = 0 or
Xi = 1, so any factor Xa

i = Xi for a > 1. Thus, the highest degree term possible is
∏

iXi, which is degree
N .

The function f itself is only defined at points where Xi = 0, 1, but the polynomial can be sensibly
interpolated to arbitrary real values for Xi between 0 and 1. There might be a much lower degree polynomial
than the obvious one that exactly matches f or gets close to it at all points where all Xi = 0, 1 but behaves
very differently elsewhere.

Definition 1. The degree deg f of a function f on N variables is the smallest value d such that there exists
polynomial p(X0, . . . , XN−1) of degree d (with real coefficients) with f(x0, . . . , xN−1) = p(x0, . . . , xN−1) for

all (x0, . . . , xN−1) ∈ {0, 1}N . The approximate degree d̃egf of f is the smallest degree d such that there
exists polynomial p of degree d (with real coefficients) with

|f(x0, . . . , xN−1)− p(x0, . . . , xN−1)| ≤ 1/3 (10)

for all (x0, . . . , xN−1) ∈ {0, 1}N .

3

It turns out that the approximate degree will give us a lower bound on the quantum query complexity:

Theorem 3. Q(f) ≥ (d̃egf)/2

Proof. The main observation is that if we have a quantum query algorithm with T queries, the amplitudes
are given by polynomials of degree at most T . To prove this claim, consider again the algorithm as an
alternating sequence of unitaries and oracle calls. Before the first oracle call, the state is

∑
i,j αi,j |i〉|j〉, with

the first register being the one used to query the oracle. After the first oracle call, the state is now∑
i,j

(−1)O(i)αi,j |i〉|j〉 =
∑
i,j

(1− 2Xi)αi,j |i〉|j〉. (11)

Here we are substituting O(i) = Xi and using the fact that the oracle takes values only at 0 and 1. At this
point, therefore, the amplitudes are linear functions of the variables Xi as the oracle changes.

By the same argument, if just before the jth oracle call, the amplitudes are degree j − 1 polynomials
of the Xi variables, then after the jth oracle call, the amplitudes are degree j polynomials. We therefore
can prove the claim that the final amplitudes are degree T polynomials by induction, provided that the
unitaries between the oracle calls don’t mess up this property. That is easy to check: If before U , the state
is

∑
a qa(X0, . . . , XN−1)|a〉, with qa polynomials of degree j, then after U , the state is

∑
b

[∑
a

qa(X0, . . . , XN−1)Uba

]
|b〉, (12)

and
∑

a qa(X0, . . . , XN−1)Uba is also a polynomial of degree j.
So now we know the final state has the form

∑
a qa(X0, . . . , XN−1)|a〉, where the qa’s are polynomials

of degree at most T . Note, however, that qa could have complex coefficients even though for d̃(f) we care
about polynomials over the real numbers; but this will get taken care of soon.

At the final stage, we make a measurement of the first qubit to determine the outcome of the algorithm.
The probability that the outcome is 1 is

Prob(1) =
∑

a=1a′

|q1a′(X0, . . . , XN−1)|2. (13)

When the qa’s are complex polynomials of degree at most T , Prob(1) is therefore a real polynomial p(X0, . . . , XN−1)
of degree at most 2T .

Now, since the algorithm decides f correctly, that means that Prob(1) ≥ 2/3 if f(O) = 1 and Prob(1) ≤
1/3 if f(O) = 0. In particular, in either case,

|f(O)− p(X0, . . . , XN−1)| ≤ 1/3. (14)

The algorithm must work for all oracles, so this equation holds for all (X0, . . . , XN−1) ∈ {0, 1}N .

Since d̃eg(f) is the smallest degree of a polynomial satisfying this condition, and p is a polynomial of

degree 2T satisfying the condition, it follows that d̃eg(f) ≤ 2T . Thus, Q(f) ≥ d̃eg(f)/2.

4

