
CMSC 858L: Quantum Complexity

Instructor: Daniel Gottesman

Spring 2023

12 More Bounds From Polynomials, Adversary Method

12.1 References

Lower bounds using polynomials were developed by Beals, Buhrman, Cleve, Mosca, and de Wolf, “Quantum
Lower Bounds by Polynomials,” quant-ph/9802049. The adversary method was introduced by Ambainis,
“Quantum lower bounds by quantum arguments,” quant-ph/0002066.

12.2 Examples of polynomial bounds

Let us look at a few example functions and how to bound their query complexity with polynomials. The
first example is the unstructured search problem, where you are supposed to compute the OR of all the
bits in the bit string to determine if there is a marked element or not. The OR function is the polynomial
p(X0, . . . , XN−1) = 1−

∏N−1
i=0 (1−Xi). This is a degree N polynomial. However, note that Grover’s algorithm

tells us that there is a degree O(
√
N) polynomial that approximates p. But is this the best we can do?

Another example is the PARITY function, which is 0 if there are an even number of 1s in the input and
1 if there are an odd number of 1s. That is, given an oracle O, are there an even or odd number of inputs
that give output 1? Let us figure out a polynomial for PARITY: Let pn be the polynomial for n variables.
Then

pn = Xn−1(1− pn−1) + (1−Xn−1)pn−1 = Xn−1 + (1− 2Xn−1)pn−1. (1)

We get

pn =

n−1∑
i=0

Xi

n−1∏
j=i+1

(1− 2Xj) =

n∑
s=1

∑
i0<i1<...<is

(−2)s−1
s∏

j=1

Xij . (2)

With N variables, this is a degree N polynomial. But is there a lower degree polynomial that provides a
good approximation?

It is not necessarily straightforward to find the approximate degree. Luckily, a lot is known about
polynomials and approximating functions by polynomials, since a similar technique also works to set bounds
on classical query complexities. One important strategy is to simplify to polynomials of a single variable.
One way to do this is to symmetrize by averaging over permutations of the input bits. This gives us a
polynomial of the same (or lower) degree that is a function only of the Hamming weight (number of 1s) of
the input, since any input with a given Hamming weight can be permutated to any other input of the same
Hamming weight, so those two inputs have the same value for the symmetrized polynomial.

If the function f is already symmetric, the polynomial can be directly written in terms of the Hamming
weight. In this case, let fk be the f(X0, . . . , Xn−1) for any (X0, . . . , XN−1) of Hamming weight k (all give
the same value for fk), and let

Γ(f) = min{|2k −N + 1| such that fk 6= fk+1}. (3)

The classical study of these polynomials produced the following result:
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Theorem 1. If f is a non-constant symmetric Boolean function on {0, 1}N , then d̃eg(f) = Θ(
√
N(N − Γ(f))).

We can immediately apply this to give a lower bound on unstructured search: The function f is OR, and
is symmetric, so the theorem applies. f is 0 for the all-0 input and 1 otherwise; that is, f0 = 0, fi = 1 for

i > 0. Thus, Γ(f) = N − 1 and the theorem implies d̃eg(f) = Θ(
√
N). Theorem ?? then implies that the

quantum query complexity is Ω(
√
N).

The method of polynomials is quite powerful. As another example: the PARITY function, which is also
symmetric. It has fk = 0 for even k and fk = 1 for odd k. Thus adjacent fk are always unequal, and the
minimum value of |2k − N + 1| is when k = bN/2c, and Γ(f) is 0 or 1, depending on if N is odd or even.

In any case, the theorem then implies that d̃eg(f) = Θ(N) and so we have Q(PARITY) = Θ(N) (since N
is also an upper bound. This is thus a problem for which quantum computing offers no speedup at all (or
rather at most a constant factor speedup; in fact, it offers a factor of 2 speedup). The polynomial method
can also be applied to problems with promises or which are not symmetric, but it requires more work and
more results about properties of polynomials.

Another application is to limit the possible quantum speedup. The relationship between classical query
complexity and approximate degree is not as straightforward as the relationship with quantum query com-
plexity. However, using some more careful analysis of the structure of polynomials, one can show the
following:

Theorem 2. For any total function f (i.e., one with no promise on the input oracle), D(f) = O(Q(f)6).

Thus, without a promise, any decision problem can be sped up by at most the 6th power by a quantum
algorithm. This is not believed to be tight (although speedups better than quadratic between Q(f) and
R(f) are known).

Note that the polynomial method doesn’t always give a tight bound. There are problems for which there
is a lower degree approximate polynomial than the actual query complexity.

12.3 Adversary method

Another method to bound query complexity is known as the adversary method or quantum adversary method.
In this technique, along with the quantum computer running the query algorithm, there is a second quantum
register which governs which oracle we have. This quantum register is in a state which represents a super-
position of all possible oracles. In the initial state, the quantum computer has no information about the
oracle and so the two registers start out in a tensor product. The oracle calls create entanglement between
the two registers, representing the quantum computer learning some information about the oracle. In a
successful algorithm, the final state must have some degree of entanglement, and by bounding the amount of
entanglement generated by each oracle call, we can set a lower bound on the number of oracle calls needed.

Let us apply this technique to unstructured search. We will restrict attention to oracles that have exactly
one marked element; a lower bound on the number of queries needed to solve this problem will also provide
a lower bound on the harder problem where the number of marked elements is unknown. In the initial state,
the computer is in some standard state, such as |ψ0〉 = |00 . . . 0〉 ⊗

∑
i |Oi〉, where |Oi〉 indicates the oracle

with element i marked. In particular, the second (“oracle”) register is in a pure state ρ0 =
∑

ij ρ0,ij |i〉〈j|,
ρij = 1/N when normalized properly.

The final state if the algorithm succeeds with 100% chance is |ψT−1〉 =
∑

i |i〉|αi〉|Oi〉 (with some scratch
space left in the state |αi〉, since the computer has learned the value of the marked element in the oracle.
The state is now maximally entangled and the density matrix of the oracle register is now the maximally
mixed state: ρT−1 =

∑
ij ρT−1,ij |i〉〈j|, ρT−1,ij = δij/N .

If there is not 100% chance of success, the final state can be written as

|ψT−1〉 =
1√
N

∑
i

|ξi〉 ⊗ |Oi〉 (4)

with proper normalization. (The algorithm doesn’t change the oracle register except for a phase during an
oracle call, so the absolute value of the amplitude of each oracle option must remain 1/

√
N .) When the
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algorithm succeeds with probability 1− ε > 1/2, then for all i,

|〈i|ξi〉| ≥
√

1− ε. (5)

We will need some information about the final density matrix of the oracle register, so let us compute it:

ρT−1 =
1

N

∑
i

|Oi〉〈Oi|+
1

N

∑
i6=j

〈ξj |ξi〉|Oi〉〈Oj |. (6)

We are particularly interested in the off-diagonal terms, so let us focus on ρT−1,ij = 1
N 〈ξj |ξi〉. Let

|ξi〉 = a|i〉|ωii〉+ b|j〉|ωij〉+ c|η〉 (7)

|ξj〉 = a′|j〉|ωjj〉+ b′|i〉|ωji〉+ c′|η′〉 (8)

with |a|2 ≥ 1 − ε, |a′|2 ≥ 1 − ε, |b|2 + |c|2 ≤ ε, |b′|2 + |c′|2 ≤ ε, and |η〉 and |η′〉 both orthogonal to both |i〉
and |j〉. Then

〈ξj |ξi〉 = ab′〈ωji|ωii〉+ a′b〈ωjj|ωij〉+ cc′〈η′|η〉 (9)

|〈ξj |ξi〉| ≤ |ab′|+ |a′b|+ |cc′| (10)

(11)

If we fix a, a′, b, and c, we can maximize |ab′|+ |a′b|+ |cc′| by letting the vector (b′, c′) be parallel to (a, c),
so c′/b′ = c/a. Then if |b′|2 + |c′|2 = εj , |b′|2(1 + c2/a2) = ε2 and |a′| =

√
1− ε2, so

|ab′|+ |a′b|+ |cc′| = |ab′|+ |a′b|+ |c2b′/a| (12)

= (|a|+ |c2/a|)√εj |a|/
√
|a|2 + |c|2 + |b|

√
1− εj (13)

=
√
|a|2 + |c|2√εj + |b|

√
1− εj (14)

= |b|(√εj +
√

1− εj). (15)

This is clearly maximized by letting |b| be its maximum value
√
ε. This means the maximum occurs when

c = 0, which also means c′ = 0. Thus,
〈ξj |ξi〉 ≤ 2

√
ε(1− ε). (16)

We next must compute how much the entanglement between the two registers can change with a single
oracle call. Since the off-diagonal terms start initially at 1/N and end at O(

√
ε(1− ε)/N), we will how much

those off-diagonal terms decrease with each call and use this to quantify the entanglement at each stage. In
particular, let

S =
∑
i 6=j

|ρij |, (17)

the sum of the absolute values of the N(N − 1) off-diagonal terms. For the initial state, S0 = N − 1. In the
final state,

ST−1 ≤
2N(N − 1)

N

√
ε(1− ε) = 2(N − 1)

√
ε(1− ε). (18)

Since ε < 1/2, 2
√
ε(1− ε) < 1 and S0 − ST−1 = c(N − 1) for a constant c = 1− 2

√
ε(1− ε).

Let |ψ−t−1〉 =
∑

ij αij |i〉|φij〉|Oj〉 be the state of the two registers just before the t-th oracle call. Then
the state after the t-th oracle call is

|ψ+
t−1〉 =

∑
i 6=j

αij |i〉|φij〉|Oj〉 −
∑
i

αii|i〉|φii〉|Oi〉. (19)

3



Let us calculate the corresponding density matrices for the oracle register:

ρ−t−1 = Trcomputer

∑
ij

∑
kk′

αkiα
∗
k′j |k〉|φki〉|Oi〉〈k′|〈φk′j |〈Oj | (20)

=
∑
ij

∑
k

αkiα
∗
kj〈φkj |φki〉|Oi〉〈Oj | (21)

ρ+t−1 = Trcomputer

∑
i6=j

 ∑
k 6=i,k′ 6=j

αkiα
∗
k′j |k〉|φki〉〈k′|〈φk′j | −

∑
k 6=i

αkiα
∗
jj |k〉|φki〉〈j|〈φjj |

−
∑
k′ 6=j

αiiα
∗
k′j |i〉|φii〉〈k′|〈φk′j |+ αiiα

∗
jj |i〉|φii〉〈j|〈φjj |

 |Oi〉〈Oj |+
∑
i

ρii|Oi〉〈Oi| (22)

=
∑
i 6=j

 ∑
k 6=i,j

αkiα
∗
kj〈φkj |φki〉 − αjiα

∗
jj〈φjj |φji〉 − αiiα

∗
ij〈φij |φii〉

 |Oi〉〈Oj |+
∑
i

ρii|Oi〉〈Oi|. (23)

Since our quantification of entanglement doesn’t involve the diagonal terms, we don’t bother to calculate
them.

Then the change in S across the oracle step is

|S+ − S−| ≤
∑
i 6=j

|ρ+t−1,ij − ρ
−
t−1,ij | (24)

= 2
∑
i 6=j

|αjiα
∗
jj〈φjj |φji〉+ αiiα

∗
ij〈φij |φii〉| (25)

≤ 4
∑
i 6=j

|αji||αjj | (26)

= 4
∑
j

|αjj |(
∑
i6=j

|αji|). (27)

Let γj =
∑

i |αji|2. Then, by the Cauchy-Schwartz inequality,

∑
i6=j

|αji| ≤
√∑

i 6=j

1

√∑
i 6=j

|αji|2 =
√
N − 1

√
γj − |αjj |2. (28)

Thus,

|S+ − S−| ≤ 4
√
N − 1

∑
j

|αjj |
√
γj − |αjj |2 (29)

≤ 4
√
N − 1

√∑
j

|αjj |2
√∑

j

(γj − |αjj |2) (30)

≤ 4
√
N − 1

√
A(1−A) (31)

≤ 2
√
N − 1. (32)

again using Cauchy-Schwarz to get the second line and using the normalization condition
∑

j γj = 1 and

letting A =
∑

j |αjj |2 to get the third line. Each oracle call drops S by O(
√
N).

The oracle algorithm consists of alternating unitaries on the computer and oracle calls. The unitaries
don’t affect the oracle density matrix at all and thus don’t change S. Therefore, to get a change of c(N − 1)
in S between the initial and final states, we need c(N − 1)/(2

√
N − 1 = O(

√
N) oracle calls.
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The adversary method as presented here is sometimes stronger than the polynomial method and some-
times weaker. That is, there are some cases where the polynomial method can prove a good lower bound but
the adversary method can’t and vice-versa. However, the adversary method can be considerably generalized
and in principle can give fairly tight bounds in most cases. In practice, though, it may be more tractable to
prove things using the polynomial method.
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