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15 QMA-Completeness of LOCAL HAMILTONIAN

15.1 References

For QMA-completeness of the local Hamiltonian problem, see chapter 14 of Kitaev, Shen, and Vyalyi,
Classical and Quantum Computation.

15.2 Completeness of O(log n)-LOCAL HAMILTONIAN

One exception to the last statement is when the Hamiltonian is O(log n)-local rather than k-local for constant
k. That is, the Hamiltonian is a sum of terms, each of which acts on O(log n) qubits, where n is the total
number of qubits in the system. The instance size is polynomial in n, so we could equally have said
logarithmic in the instance size. In this case, the “local” matrices are still polynomial in size and there
is still an efficient quantum simulation. This is convenient, because it is a bit easier to prove that the
O(log n)-LOCAL HAMILTONIAN problem is QMA-complete.

The main technique for proving QMA-completeness of local Hamiltonian problems is the history state.
The idea is construct hard subsets of instances by designing a Hamiltonian whose ground state represents
the history of some circuit. Given a circuit with T gates, let |ψ0〉 be the initial state of the circuit and |ψt〉
(t = 1, . . . , T ) be the state of the circuit after the ith gate. Then, at its simplest, the history state of this
circuit is the state

T∑
t=0

|ψt〉|t〉. (1)

That is, the history state has two registers, one containing the state of the circuit at time t and the other a
clock register containing the time, and then we have a superposition over all times.

We can create a Hamiltonian that has history states as ground states by including terms that cause
transitions between |ψt−1〉|t− 1〉 and |ψt〉|t〉.

Lemma 1. If a circuit consists of a sequence of gates Ut, t = 1, . . . , T , then the Hamiltonian

HP =
1

2

T∑
t=1

[
I ⊗ (|t〉〈t|+ |t− 1〉〈t− 1|)− Ut ⊗ |t〉〈t− 1| − U†t ⊗ |t− 1〉〈t|

]
(2)

has as 0 energy states all states of the form
∑T

t=0 |ψt〉|t〉 for arbitrary initial states |ψ0〉 and no other states.
The eigenvalues of HP are 1− cos(πk/(T + 1)) for k = 0, . . . , T .

We need the U†t ⊗ |t− 1〉〈t|) term to ensure that the Hamiltonian is Hermitian.
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Proof. Let us calculate what the Hamiltonian does to any history state
∑T

t=0 |ψt〉|t〉. First consider the
action of a single term:

I ⊗ |t〉〈t|

(
T∑

t=0

|ψt〉|t〉

)
= |ψt〉|t〉 (3)

(Ut ⊗ |t〉〈t− 1|)

(
T∑

t=0

|ψt〉|t〉

)
= Ut|ψt−1〉|t〉 = |ψt〉|t〉 (4)

(U†t ⊗ |t− 1〉〈t|)

(
T∑

t=0

|ψt〉|t〉

)
= U†t |ψt〉|t− 1〉 = |ψt−1〉|t− 1〉. (5)

Then

HP

(
T∑

t=0

|ψt〉|t〉

)
=

1

2

T∑
t=1

[(|ψt〉|t〉+ |ψt−1〉|t− 1〉)− |ψt〉|t〉 − |ψt−1〉|t− 1〉] = 0. (6)

Thus, all history states are eigenstates of 0 eigenvalue.
To understand the other eigenvalues, note that for any specific |ψ0〉, all terms in the Hamiltonian preserve

the subspace spanned by states of the form |ψt〉|t〉 for the specific value of |ψt〉 derived from |ψ0〉:

|ψt〉 =

1∏
i=t

Ui|ψ0〉. (7)

Thus, any eigenvectors are superpositions of states of this form. Let us look at this subspace and consider the
basis {|vt〉 = |ψt〉|t〉} for t = 0, . . . , T . Using this basis, what does the Hamiltonian look like? The diagonal

terms are 1
2 |v0〉〈v0|+

∑T−1
t=1 |vt〉〈vt|+

1
2 |vT 〉〈vT | (since the middle terms |vt〉〈vt| get 1

2 contributions from the
t and t+ 1 terms in the Hamiltonian, whereas the first and last terms only get one such contribution, from
either the t = 1 or t = T term). The off-diagonal terms are − 1

2

∑T
t=1(|vt〉〈vt−1|+ |vt−1〉〈vt|). We can write

this as a matrix too:

HP =


1
2 − 1

2 0 0 0
− 1

2 1 − 1
2 0 0

0 − 1
2 1 − 1

2 0
0 0 − 1

2 1 − 1
2

0 0 0 − 1
2

1
2

 . (8)

We can recognize this as a quantum walk on a line. A prospective eigenvector will be a wave along the line:

|φ〉 =

T∑
t=0

(αeiωt + βe−iωt)|vt〉. (9)

To see when something of this form is an eigenvector, compute

HP |φ〉 =
1

2
(α+ β − αeiω − βe−iω)|v0〉+

T−1∑
t=1

(αeiωt + βe−iωt)(1− 1

2
eiω − 1

2
e−iω)|vt〉

+
1

2

[
αeiωT (1− e−iω) + βe−iωT (1− eiω)

]
|vT 〉 (10)

= i(−αeiω/2 + βe−iω/2) sinω/2|v0〉+

T−1∑
t=1

(αeiωt + βe−iωt)(1− cosω)|vt〉

+ i(αeiω(T−1/2) − βe−iω(T−1/2)) sinω/2|vT 〉. (11)
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We have eigenvalue λ if:

i(−αeiω/2 + βe−iω/2) sinω/2 = λ(α+ β) (12)

(αeiωt + βe−iωt)(1− cosω) = λ(αeiωt + βe−iωt) (13)

i(αeiω(T−1/2) − βe−iω(T−1/2)) sinω/2 = λ(αeiωT + βe−iωT ) (14)

The equations for t = 1, . . . , T − 1 tell us λ = 1− cosω = 2 sin2 ω/2. Thus, to satisfy the equations for t = 0
and t = T , we need that

i

2
(−αeiω/2 + βe−iω/2) = sinω/2(α+ β) (15)

i

2
(αeiω(T−1/2) − βe−iω(T−1/2)) = sinω/2(αeiωT + βe−iωT ). (16)

The first can be solved by letting α = eiωβ since then we have

eiωeiω/2 − e−iω/2 = (eiω/2 − e−iω/2)(eiω + 1). (17)

The last equation then becomes

eiω(T+1/2) − eiω(T−1/2) = −(eiω/2 − e−iω/2)(eiω(T+1) + e−iωT ) (18)

= −eiω(T+3/2) + eiω(T+1/2) − e−iω(T−1/2) + e−iω(T+1/2), (19)

or
eiω(T+3/2) = e−iω(T+1/2) (20)

This means that 2ω(T + 1) is an integer multiple of 2π, or ω = πk/(T + 1) for integer k.
This gives T + 1 eigenvalues 1− cos(πk/(T + 1)), which matches the dimension of the subspace, so these

are all the eigenvalues. This argument also gives us the explicit eigenstates, and we can see that we don’t get
a proper history state unless ω = 0; otherwise, we get a history state with some additional phases between
terms.

But how is this related to proving that the local Hamiltonian problem is QMA-complete? We can prove
QMA-completeness by reducing from an arbitrary QMA language to O(log n)-LOCAL HAMILTONIAN.
What do we know about an arbitrary QMA language? It has an efficient checking circuit. We will therefore
pick a Hamiltonian whose ground state is a history state for the language we are reducing from.

Theorem 1. O(log n)-LOCAL HAMILTONIAN is QMA-complete.

Proof. We wish to reduce from a language L to O(log n)-LOCAL HAMILTONIAN. Let C be the checking
circuit for L for an instance of size n, and assume that the acceptance probability of this checking circuit
has been amplified to close to 1 (we will need it to be polynomially close). We will discuss the best ways to
do this later. We define a Hamiltonian H as follows:

H = HP +Hi +Hf . (21)

Here HP is the Hamiltonian defined above whose ground states are history states for C.
Hi =

∑
j |1〉j〈1| ⊗ |0〉〈0|, where the sum is taken over all qubits j which are ancilla states for C and the

second tensor factor is the clock register. This ensures that at time 0, the ancilla states for C start out in
the |0〉 state; otherwise they will suffer an energy penalty. Note that we don’t put a constraint on all the
input qubits to C, since C also takes the witness as input, and we don’t know what that is supposed to be.

Hf = |0〉0〈0| ⊗ |T 〉〈T |, where the first register is a projector on the output qubit of C and the second
tensor factor is the clock register. This term gives an energy penalty if the output qubit of the circuit is 0,
indicating that the checking circuit does not accept.
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Note that each of HP , Hi, and Hf are positive semi-definite. This means that the energy of a state for
H is at least as large as the energy for each of the three pieces.

This Hamiltonian is O(log n)-local, since each gate for C acts on a constant number of qubits. The clock
requires log T qubits, and T = O(polyn), so the clock has O(log n) qubits in it. The Hamiltonian is the sum
of terms each of which is an operator on the first register which acts on a constant number of qubits tensor
an operator of the form |t〉〈t| or |t〉〈t′|, which can potentially act on all qubits in the clock. Thus, each term
of the Hamiltonian may act on up to O(log n) qubits.

Let us compute the energy of a history state |ψ〉 = 1√
T+1

∑
t |ψt〉|t〉 for C with correctly-initialized

ancillas for some choice of witness. (I have normalized the state correctly since this will be important for
our calculation.) HP |ψ〉 = 0 by lemma 1. Since the initial state |ψ0〉 of the circuit has 0 for all ancilla
qubits, Hi|ψ〉 = 0 as well. However, Hf does not necessarily give 0 energy because the witness might not
be accepted. Suppose the final state |ψT 〉 for a particular witness is accepted with probability p. Then
|ψT 〉 =

√
p|1〉|ψ1

T 〉+
√

1− p|0〉|ψ0
T 〉 and

Hf |ψ〉 =
1√
T + 1

T∑
t=0

Hf |ψt〉|t〉 (22)

=
1√
T + 1

(|0〉0〈0| ⊗ |T 〉〈T |)(
√
p|1〉|ψ1

T 〉+
√

1− p|0〉|ψ0
T 〉)⊗ |T 〉 (23)

=
1√
T + 1

√
1− p|0〉|ψ0

T 〉 ⊗ |T 〉 (24)

〈ψ|Hf |ψ〉 =
1− p
T + 1

. (25)

Thus, the energy of this state is not 0 unless the witness for L is accepted by C with probability 1. The
history state is also not an eigenstate of H unless the witness is accepted with probability 1.

Now, let us consider a “yes” instance of L. Then there exists a witness that is accepted with probability
p ≥ 1 − O(1/poly(n)). Therefore, we can construct a history state using that witness and the expectation
value of its energy for H is (1 − p)/(T + 1) ≤ O(1/[(T + 1)poly(n)]) = E. While this history state is not
an eigenstate, there must be a ground state and its energy must be less than or equal to that of the history
state, so in particular, we see that the ground state energy is at most E.

For a “no” instance of L, we can make a history state out of any witness, but C will always accept
with probability p ≤ O(1/poly(n)). This implies that the energy of that history state is at least (1 −
O(1/poly(n))/(T + 1) = E + c1/(T + 1) for some constant c1. We want this to be a “no” instance of
O(log n)-LOCAL HAMILTONIAN, which means that the energy of every eigenstate is at least E + ∆. This
is equivalent to saying that all states have their energy at least this big. However, so far we have only checked
history states formed with initial states with correctly initialized ancillas. What about states that are not
of this form?

For instance, consider a history state |ψ〉 with one or more incorrectly initialized ancillas. Then

〈ψ|H|ψ〉 ≥ 〈ψ|Hi|ψ〉 =
1

T + 1

∑
j

〈ψ0|1〉j〈1|ψ0〉 ⊗ 〈0|0〉 =
d

T + 1
, (26)

where d is the number of incorrectly initialized ancillas. This is greater than E by at least c2/(T + 1) for
some constant c2. Let c = min(c1, c2).

But what if we don’t have a history state at all? Such a state will be penalized by HP , but how much?
We will determine this using a lemma by Kitaev:

Lemma 2. Let K1, K2 be positive semi-definite operators with no shared 0 eigenstates and suppose that all
eigenstates of both K1 and K2 with nonzero eigenvalue have eigenvalue at least v. Let θ be the minimum
angle between |ψ1〉 and |ψ2〉 where |ψi〉 is an eigenstate of Ki with eigenvalue 0. Then

〈φ|(K1 +K2)|φ〉 ≥ 2v sin2 θ/2 (27)
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for all state |φ〉.

We will apply this lemma by letting K1 = HP and K2 = Hi + Hf . The 0 eigenstates of HP are the
history states and the arguments above show that for any history state |ψ1〉,

〈ψ1|Hi +Hf |ψ1〉 ≥ E +
c

T + 1
. (28)

Thus, K1 and K2 have no shared 0 eigenstates. By lemma 1, the smallest non-zero eigenvalue of K1 = HP

is 1 − cos(π/(T + 1)) = Θ(1/T 2). Hi + Hf is easy to diagonalize, and we see that the smallest non-zero
eigenvalues are 1.

To determine the angle between 0 eigenstates of K1 and K2, let |ψ1〉 be a history state, a 0 eigenstate of
K1, and let |ψ2〉 be a 0 eigenstate of K2. Choose |ψ1〉 and |ψ2〉 that achieve the minimum angle θ. Then

cos θ = 〈ψ1|ψ2〉 = 〈ψ1|(I −K2)|ψ2〉. (29)

Now,
‖(I −K2)|ψ1〉‖ =

√
〈ψ1|(I −K2)|ψ1〉 ≤

√
1− (E + c/(T + 1)) (30)

since K2 is a projector and I −K2 is a projector onto the orthogonal space. Then

cos θ ≤ ‖(I −K2)|ψ1〉‖ ≤ 1− Ω(1/T ) (31)

and sin2 θ/2 = Ω(1/T ). By lemma 2, we then have that

〈φ|H|φ〉 ≥ 2Θ(1/T 2)Ω(1/T ) = Ω(1/poly(n)) = ∆. (32)

Thus, the instance (H,E,∆) is a “no” instance. It follows that we have a reduction from L to O(log n)-
LOCAL HAMILTONIAN for arbitrary L ∈ QMA, and therefore O(log n)-LOCAL HAMILTONIAN is QMA-
complete.
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