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16 LOCAL HAMILTONIAN continued

16.1 References

For QMA-completeness of the 5-LOCAL HAMILTONIAN problem, see chapter 14 of Kitaev, Shen, and
Vyalyi, Classical and Quantum Computation. For QMA-completeness of the 3-LOCAL HAMILTONIAN
problem, see Kempe and Regev, “3-Local Hamiltonian is QMA-complete,” quant-ph/0302079. For QMA-
completeness of the 2-LOCAL HAMILTONIAN problem, see Kempe, Kitaev, and Regev, “The Complexity
of the Local Hamiltonian Problem,” quant-ph/0406180.

16.2 Kitaev Lemma

Last time we proved that O(log n)-LOCAL HAMILTONIAN is QMA-complete except for one lemma:

Lemma 1. Let K1, K2 be positive semi-definite operators with no shared 0 eigenstates and suppose that all
eigenstates of both K1 and K2 with nonzero eigenvalue have eigenvalue at least v. Let θ be the minimum
angle between |ψ1〉 and |ψ2〉 where |ψi〉 is an eigenstate of Ki with eigenvalue 0. Then

〈φ|(K1 +K2)|φ〉 ≥ 2v sin2 θ/2 (1)

for all state |φ〉.

Proof of lemma. Let |φ〉 be an arbitrary state and let Πi be a projector onto the 0 eigenvalue space of Ki.
Then

〈φ|(K1 +K2)|φ〉 ≥ v〈φ|[(I −Π1) + (I −Π2)]|φ〉 = (2− 〈φ|(Π1 + Π2)|φ〉)v. (2)

We wish to upper bound 〈φ|(Π1 + Π2)|φ〉.
Let us focus on |φ〉 which is an eigenstate of Π1 + Π2, (Π1 + Π2)|φ〉 = λ|φ〉. We can write |φ〉 as

|φ〉 = αi|ηi〉+ βi|ξi〉 (3)

for i = 1, 2, |ηi〉 in subspace projected on by Πi, and |ξi〉 a state orthogonal to the subspace projected on by
Πi. Then

〈φ|(Π1 + Π2)|φ〉 = |α1|2 + |α2|2 = λ. (4)

We also have

λ2 = (〈φ|(Π1 + Π2))((Π1 + Π2)|φ〉) (5)

= (α∗1〈η1|+ α∗2〈η2|)(α1|η1〉+ α2|η2〉) (6)

= |α1|2 + |α2|2 + 2Re(α∗1α2〈η1|η2〉) (7)

= λ+ 2Re(α∗1α2〈η1|η2〉). (8)

Now, we know that
|〈η1|η2〉| ≤ cos θ, (9)
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since θ is the minimum angle between 0 eigenvectors of K1 and K2. Thus,

λ2 − λ ≤ 2|α1α2| cos θ ≤ (|α1|2 + |α2|2) cos θ = λ cos θ. (10)

That is,
λ ≤ 1 + cos θ. (11)

Plugging this back into eq. (??), we find

〈φ|(K1 +K2)|φ〉 ≥ (1− cos θ)v = 2v sin2 θ/2. (12)

16.3 Completeness of 5-LOCAL HAMILTONIAN

Recall that for O(log n)-LOCAL HAMILTONIAN, we had a Hamiltonain H = HP + Hi + Hf , where HP

enforces the ground state to be a history state
∑

t |ψt〉|t〉 for the checking circuit, Hi enforces the t = 0
terms to have correctly initialized ancillas, and Hf gives an energy penalty if the final t = T time is not an
accepting state for the check circuit.

The O(log n) size of the terms in the previous result come purely from the clock. If we can find a better
way to encode the clock so that we can identify the time specified by the clock using only a few qubits, we
can instead show the completeness of k-LOCAL HAMILTONIAN with constant k.

For instance, we could encode the clock in unary. This is of course a very inefficient way of storing it,
but the maximum time T is still polynomial in n, so the number of qubits needed for a unary clock encoding
is acceptable. Then the time 0 is 00 . . . 0, time 1 is 10 . . . 0, and time T is 11 . . . 1. The advantage of this
encoding is that time t is 1 . . . 10 . . . 0, beginning with t 1’s, which always differs from the encoding of time
t− 1 in only one place, the tth bit, which is 1 for t and 0 for time t− 1.

In the Hamiltonian above, we had terms involving |t〉〈t− 1|. We might want to replace this by just a
single qubit operator 〈1||0〉 on the tth qubit. Indeed, this will convert the time t − 1 to time t, as desired.
Unfortunately, it will also convert time s (for s < t − 1) to something that is not a valid time encoding, so
using this replacement will have undesireable side effects. Instead, we need an operator that acts only on
the times t and t − 1. The thing that singles out those two times is that they have a 1 at the (t − 1)th
place and a 0 at the (t+ 1)th place; they are the only two times that have those two properties. Thus, if we
replace |t〉〈t− 1| by |110〉〈100| for qubits t − 1, t, and t + 1, this will only convert time t − 1 to time t and
have no effect on other times. (We might be tempted to just use |11〉〈10| for qubits t− 1 and t, but to keep
the Hamiltonian hermitian, we need to include also the adjoint of this |10〉〈11|, which will convert any time
greater than t into some invalid time encoding.)

Similarly, we can replace |t〉〈t| with |10〉〈10| on qubits t and t+ 1. Once we have done this everywhere in
HP , we can immediately see that history states using the new time encoding are once again ground states
for the new HP . We can similarly revise Hi and Hf . All terms of these Hamiltonians are now 5-local.

However, closer examination will reveal that HP +Hi+Hf has 0 energy states that are not history states.
In particular, any state where the clock qubits are not in a valid clock encoding, such as |ψ〉|00100 . . . 0〉,
will not activate any of the terms of HP , Hi, or Hf , and so have 0 energy. The solution is straightforward:
We need an additional constraint term in the Hamiltonian which forces the clock to be in a valid encoding.
One property of valid clock encodings is that they never have a 1 to the right of a 0. Any state that is not
a valid clock encoding, on the other hand, does have a 1 to the right of a 0. Thus, if we have a Hamiltonian

HC =
∑
i

I ⊗ |01〉i,i+1〈01| (13)

(where the non-trivial action is on qubits i and i + 1 of the clock), then the only states that have 0 energy
for HC are those with valid clock encodings.

If we consider the Hamiltonian
H = HP +Hi +Hf +HC , (14)
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the argument above for the proof of QMA-completeness of O(log n)-LOCAL HAMILTONIAN shows that
in a “yes” instance of L, the history state for a good witness for L has energy less than E, whereas in a
“no” instance of L, any state in the subspace spanned by states with valid clock encodings has energy at
least E+ ∆. We also note that any state in the subspace spanned by states with invalid clock encodings has
energy at least 1 (due to HC), which is greater than E+∆. The Hamiltonian preserves these two subspaces,
so any state which is a superposition over the two of them will have energy at least as big as the lesser energy
E + ∆. This proves:

Theorem 1. 5-LOCAL HAMILTONIAN is QMA-complete.

16.4 Completeness of 2-LOCAL HAMILTONIAN

5-LOCAL HAMILTONIANS are still rather complicated. Can we work with simpler Hamiltonians? By
improving our clock construction further, we can prove the completeness of 3-LOCAL HAMILTONIANS
(although I will skip most details of the proof). For instance, we could still use a unary clock encoding
|11 · · · 10 · · · 0〉 but then terms of HP will simply be

1

2

[
I ⊗ (|10〉t,t+1〈10|+ |10〉t−1,t〈10|)− Ut ⊗ |1〉t〈0| − U†t ⊗ |0〉t〈1|

]
, (15)

where the subscript indicates which clock qubits are addressed. In particular, the terms with a U involve only
the tth clock qubit, changing it from 0 to 1 (or from 1 to 0 for U†). This is just a 3-LOCAL HAMILTONIAN.

But hold on, this HP will involve transitions between valid clock encodings and invalid clock encodings,
for instance time 1 |100 · · · 0〉 could transition to |100010 · · · 0〉. But we still have the HC term, so this
invalid encoding will have an energy penalty. The Hamiltonian then becomes frustrated, meaning it is not
possible to satisfy all Hamiltonian terms at once, and the ground states won’t have 0 energy even when we
are reducing from a problem where the witness is accepted with 100% probability. The actual ground states
will be some compromise between satisfying the modified HP term and the HC term. In particular, if we
increase the relative strength of HC compared to the other terms, then the lowest energy states will have to
come very close to satisfying HC and thus have a valid clock encoding. Within this large component of the
ground state, the only relevant transitions are ones between consecutive valid clock encodings, and each is
associated with doing the appropriate gate Ut. Therefore, the ground state will be close to a valid history
state for the circuit, as required.

But this approach will not work for 2-LOCAL HAMILTONIAN, since Ut itself is already 2-local, and
we then don’t have any room to tie it to advancing the clock. Instead, we use another trick, known as
perturbation theory gadgets. The idea is that, given any 3-local Hamiltonian H, we can make a 2-local
Hamiltonian H ′ that “looks like” the 3-local Hamiltonian on the low energy states.

Suppose we have a 3-qubit Hamiltonian term of H which is the product of three Paulis, which we will
assume without loss of generality to be H123 = X1X2X3 on qubits 1, 2, and 3. The new Hamiltonian will
have the original 3 qubits but also 3 additional qubits A, B, and C to tie together the qubits 1, 2, and 3. In
particular, we will have terms in H ′:

H ′ABC = 3I − ZAZB − ZAZC − ZBZC . (16)

This will force all three qubits to be in the same state in the standard basis, either |000〉ABC or |111〉ABC

(or some superposition). Then we also have a term

H ′123 = X1XA +X2XB +X3XC . (17)

What are the low-energy states of the sum H ′123 +λH ′ABC when λ is large? The first priority to have low
energy is to satisfy H ′ABC as much as possible; H ′123 is a small perturbation. Thus, the low energy states
should be close to superpositions of |000〉ABC and |111〉ABC . But within this subspace, states that do a
better job of satisfying H ′123 will be lower energy than ones which don’t. However, a single term of H ′123
applied to such a state will give us a state that violates H ′ABC , so is severely penalized. However, there are

3



terms X1XAX2XBX3XC that are the product of 3 terms of H ′123 that respect H ′ABC and so are allowed in
the low-energy subspace. But notice: this term includes X1X2X3, the original term H123 from H! The best
attempt to satisfy H ′123 within the low-energy space of H ′ABC is to simulate the H123 term.

One can show that by replacing each 3-local product term in H with a 2-local Hamiltonian using these
perturbation theory gadgets, the resulting Hamiltonian has low-energy states which map to the low-energy
states of H. This in turn shows that it is possible to reduce 3-LOCAL HAMILTONIAN to 2-LOCAL
HAMILTONIAN, which must also be QMA-complete.

Naturally, 1-LOCAL HAMILTONIAN is not going to be QMA-complete. It is just a sum of single-qubit
terms, and each can be separately diagonalized in constant time. The ground state will just be a tensor
product of the ground states of the single-qubit Hamiltonians, and therefore the ground state energy can be
easily computed in P.

Note, though, that more general Hamiltonians which are a sum of commuting terms are not necessarily
easy, although probably they are not QMA-complete. For one thing, k-SAT can be phrased as a commuting
Hamiltonian where each clause can be enforced through a diagonal Hamiltonian term on k qubits. Thus,
commuting Hamiltonians are NP-hard. However, it’s not even clear that the general k-local commuting
Hamiltonian problem is in NP. (This is an open problem.) Again, all terms of the Hamiltonian can be
simultaneously diagonalized, but the eigenstates might be highly entangled states. (For instance, stabilizer
states, which we saw earlier, are eigenstates of commuting Hamiltonians formed from their stabilizers.)
Therefore, classically specifying a single one of these to be the witness might be difficult.

In general, when dealing with Hamiltonian complexity, one can consider different kinds of Hamiltonians as
we have seen above. The single-qubit (or single-qudit) Hamiltonians are essentially trivial. Then commuting
Hamiltonians are more complicated but still easier to deal with than the non-commuting but unfrustrated
Hamiltonians (as in theO(log n)-LOCAL HAMILTONIAN and 5-LOCAL HAMILTONIAN problems), which
in turn are easier to deal with than general frustrated Hamiltonians, as with the 3-LOCAL HAMILTONIAN
and 2-LOCAL HAMILTONIAN problems. That is, it is easier to prove things about the “less complicated”
Hamiltonian types on this list; but of course looking at a wider range of possible Hamiltonians may enable
you to find examples that have some particular interesting property.
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