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18 Witness Amplification and Quantum PCP

18.1 References

You can read more about the Quantum PCP conjecture in Aharonov, Arad, and Vidick, “The Quantum
PCP Conjecture,” arXiv:1309.7495, although there has been some progress since then, most notably the
recent resolution of the NLTS conjecture. Witness amplification was introduced in Marriott and Watrous,
“Quantum Arthur-Merlin Games,” cs/0506068. Vidick and Watrous, “Quantum Proofs,” arXiv:1610.01664
is a good reference for QMA and quantum interactive proofs (which we will discuss later).

18.2 Witness Amplification

We have been using the fact that we can amplify the acceptance probability of a QMA witness. The analogous
property for classical MA is quite straightfoward: If we have a randomized algorithm to test the witness
w with probability p, we can simply run the algorithm multiple times and take the majority result. The
probability of getting the right answer for a single test is independent over multiple runs of the algorithm,
so the chance of a majority of the trials giving the wrong answer is small.

For QMA, the roadblock to this strategy is that the witness is used up the first time we run a checking
circuit. If we want to amplify the success probability by repeating, the most obvious way to do so is to
require Merlin to give us multiple copies of the witness, and then we can run the checking circuit multiple
times. This works, but does require some additional proof to verify that Merlin cannot cheat by giving us a
large entangled state instead of the tensor product of witnesses.

However, surprisingly, there is a way to magnify the acceptance probability of a witness without having
to increase the size of the witness. The main idea is to run the checking circuit, measure or otherwise record
the output, and then reverse the checking circuit and see if the ancilla qubits return to their initial |00 · · · 0〉
state.

In particular, imagine that we start with the state |ψ〉⊗|00 · · · 0〉 (the second register being ancilla qubits
needed for the checking circuit), perform a unitary checking circuit C, concluding with a measurement, which
we can assume is a projective measurement of a single qubit. Let Mi = |i〉〈i| ⊗ I be a projection onto the
measured final qubit having value i and let P0 = I ⊗ |00 · · · 0〉〈00 · · · 0|, P1 = I − P0 be projections onto the
subspace with ancillas all 0 and the orthogonal subspace.

Consider the operators
Aij = PjC

†MiC. (1)

(Note that these are generally not projectors.) If the checking circuit is accepted with 100% probability,
then

A10|ψ〉 ⊗ |00 · · · 0〉 = |ψ〉 ⊗ |00 · · · 0〉 (2)

A00|ψ〉 ⊗ |00 · · · 0〉 = 0 (3)
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since the projection M1 is trivial and M0 annihilates the state. Conversely, if the checking is always rejected,

A00|ψ〉 ⊗ |00 · · · 0〉 = |ψ〉 ⊗ |00 · · · 0〉 (4)

A10|ψ〉 ⊗ |00 · · · 0〉 = 0. (5)

Note that in both cases, for the outcome that can actually occur, we get the original witness back by reversing
C.

In the case where the circuit is accepted with high probability, but not quite 1, we don’t always succeed
in getting back to |ψ〉 ⊗ |00 · · · 0〉, but we can get close. Instead, however, let us first focus on eigenstates of
the operators Ai0, albeit ones with eigenvalues less than 1. Thus, for instance, we have

Ai0|ψ〉 ⊗ |00 · · · 0〉 = λi|ψ〉 ⊗ |00 · · · 0〉. (6)

Note that any eigenstate with non-zero eigenvalue of Ai0 must be of the form |ψ〉 ⊗ |00 · · · 0〉 since Ai0 ends
with a projector onto such states and that since A00 + A10 = P0, any eigenvector of A10 will also be an
eigenvector of A00. Furthermore,

(〈ψ| ⊗ 〈00 · · · 0|)Ai0(|ψ〉 ⊗ |00 · · · 0〉) = (〈ψ| ⊗ 〈00 · · · 0|)C†MiC(|ψ〉 ⊗ |00 · · · 0〉), (7)

which is pi, the probability that the circuit C gives outcome i on input |ψ〉. Thus, λi = pi.
Suppose we actually run the procedure implied by Ai0. That is, run C, measure the output qubit to have

value i (which occurs with probability pi) and then run C† and measure to see if the ancilla qubits have been
reset to all 0. What is the overall probability that this happens, including the output qubit having value i?
It is

(〈ψ| ⊗ 〈00 · · · 0|)A†i0Ai0(|ψ〉 ⊗ |00 · · · 0〉) = (〈ψ| ⊗ 〈00 · · · 0|)C†MiCP0C
†MiC(|ψ〉 ⊗ |00 · · · 0〉) (8)

=
∑
`

|(〈ψ`| ⊗ 〈00 · · · 0|)C†MiC(|ψ〉 ⊗ |00 · · · 0〉)|2 (9)

= |(〈ψ| ⊗ 〈00 · · · 0|)C†MiC(|ψ〉 ⊗ |00 · · · 0〉)|2 (10)

= p2
i . (11)

Here, |ψ`〉 runs over a basis of possible witness states including |ψ〉 and the third line follows because
|ψ〉|00 · · · 0〉 is an eigenstate of Ai0.

Thus, the conditional probability of the ancillas being 0 conditioned on having outcome bit i is pi. Also,
note that for eigenstates |ψ〉, if we do happen to get the ancillas being in the state all 0, then we have restored
the ancilla and can just repeat the process on the same state to get more data as to the values of p0 and p1.

But what about if we find the ancillas are not all 0? In that case, we are instead performing Ai1. We
know that the conditional probability of ancillas not being 0 conditioned on output qubit being i is p1⊕i,
but what is the final state? It is not generally going to be |ψ〉, which might pose a problem for repeating
the measurement.

Let |φi〉 = Ai1|ψ〉⊗ |00 · · · 0〉. Note that 〈φi|φi〉 = p0p1. Suppose we go ahead and perform C on |φi〉 and
measure the output qubit. What state do we get if we get outcome k?

MkCAi1|ψ〉 ⊗ |00 · · · 0〉 = MkC(I − P0)C†MiC|ψ〉 ⊗ |00 · · · 0〉 (12)

= MkMiC|ψ〉 ⊗ |00 · · · 0〉 −MkCAi0|ψ〉 ⊗ |00 · · · 0〉 (13)

= δikMkC|ψ〉 ⊗ |00 · · · 0〉 − piMkC|ψ〉 ⊗ |00 · · · 0〉. (14)

That is, whether i = k or not, we get MkC|ψ〉⊗ |00 · · · 0〉, the same state we get from the correct initial state
on outcome probability k. If i 6= k, the normalization is pi and the overall probability of this sequence of
results is p2

i pk. If i = k, the normalization is 1−pi = pi⊕1 and the overall probability of this sequence of results
is pip

2
i⊕1. Since the probability of getting i and then P1 is p0p1, in either case, the conditional probability

of getting outcome k is pk⊕i. That is, the probabilities are reversed from the original circuit: outcome 1
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happens with probability p0 and outcome 0 happens with probability p1! And this is true regardless of what
the measurement outcome was the first time we ran C.

One consequence is that after running C and measuring the output qubit in value k, we always get the
same state, which depends on k but not on whether we started with |ψ〉 ⊗ |00 · · · 0〉 or |φi〉 (for either i).
And the probability of getting k didn’t depend on whether we started with |φ0〉 or |φ1〉, only on whether the
previous measurement result was P0 or P1. If we continue alternating C followed by a measurement of Mi

and then C† followed by measurement of Pj , the probability of getting outcome i or j only depends on the
previous measurement outcome and not on any earlier ones.

Moreover, the pattern is very simple: After measuring Pj , we get the following conditional probabilities:

Prob(i = 0|j = 0) = p0

Prob(i = 1|j = 0) = p1

Prob(i = 0|j = 1) = p1

Prob(i = 0|j = 1) = p0.

That is, Prob(i = j) = p0 and Prob(i 6= j) = p1. Similarly, after measuring Mi, we get conditional
probabilities:

Prob(j = 0|i = 0) = p0

Prob(j = 0|i = 1) = p1

Prob(j = 1|i = 0) = p1

Prob(j = 1|i = 1) = p0.

Once again, Prob(j = i) = p0 and Prob(j 6= i) = p1. Each outcome (i or j) has the same value as the
previous one with probability p0 and has the opposite value with probability p1. When we repeat this a
number of times, we get a good estimate of p0 and p1 by counting the number of changes of outcome. This
will enable us to determine if p0 ≥ 2/3 or ≤ 1/3 with high probability.

This analysis was done under the assumption that |ψ〉 ⊗ |00 · · · 0〉 was an eigenvector of Ai0. Since
A00 + A10 = P0, the projector on the space |ψ〉 ⊗ |00 · · · 0〉, we can choose a basis of eigenvectors |ψα〉 of
Ai0 in the subspace |ψ〉 ⊗ |00 · · · 0〉 and write any witness state as a superposition of eigenvectors. Since
Ai0|ψα〉 = pi|ψα〉 and Ak0Ai1|ψα〉 ∝ |ψα〉 as well, the different eigenvectors of Ai0 don’t get mixed up under
repeatedly applying Aij . Thus, if the initial state is a superposition of different eigenvectors, each of them
acts independently, meaning we see a sequence of measurement outcomes as if we had just a single eigenvector
chosen randomly from the superposition.

18.3 Quantum PCP

A major result of classical complexity theory is the PCP theorem (for “probabilistically checkable proofs”),
which states that every language in NP has a verification procedure (with appropriate witness) that only
checks the witness in a constant number of locations. One application of the PCP theorem is to show
that many NP-complete problems are hard to even approximate: For instance, suppose you have a k-SAT
instance. Recognizing that finding a satisfying instance is going to be hard, you might instead wish to find
a solution that satisfies a fraction f of all the clauses in the problem. However, PCP shows that this is not
possible if f > 7/8, or at least not unless P = NP.

The analogous statement for QMA is open, and is one of the biggest open problems in the field. The
Quantum PCP conjecture is most often phrased in terms of a local-Hamiltonian problem:

Conjecture 1. The following language is QMA-complete: Instances of the form (H,E,∆), for an n-qubit
system, with quantities specified to polynomial accuracy, H a k-local Hamiltonian (for constant k), ∆ = O(1)
with the promise that either:

1. The ground state energy of H is at most En (“yes” instance)
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2. The ground state energy of H is at least (E + ∆)n (“no” instance).

Note that this is just a standard k-LOCAL HAMILTONIAN problem, but we are requiring that the
promise gap is linear in n. (As opposed to O(1/poly(n)) as before.)

Again, this is an open problem; the above is a conjecture, and it is really not clear if it is true or not.
There’s no real evidence one way or the other. Note, though, that the hard-to-approximate instances of SAT
are special cases of the language above with a Hamiltonian diagonal in the standard basis, so the language
is at least NP-hard.

If the quantum PCP conjecture is true, that means that the ground state energy per particle is hard to
approximate for some systems to even constant accuracy, let alone accuracy increasing with any parameter.
It also implies that it is hard to find the thermal state for some systems at temperature greater than 0.
To understand this statement, note that thermodynamics tells us that at thermal equilibrium, we have a
mixture of states with different energies. The relative population of a particular eigenstate with energy E is

Prob(E) ∝ e−βE , (15)

where β = 1/kT . T is the temperature in Kelvin and k is known as Boltzmann’s constant. To get the actual
population for this particular eigenstate, divide the above by the partition function Z =

∑
e−βE .

In particular, as T → 0, the population is dominated by the ground state, whereas as T →∞, all states
are equally populated. A thermal state is one that satisfies the correct distribution (??). Therefore at
infinite temperature, finding the thermal state is easy: It is simply the maximally mixed state. However, at
0 temperature, for at least some systems, it is hard since the thermal state is just the ground state.

What about non-zero but low temperature? One might think that the thermal state will have a large
admixture of the ground state, and that therefore this case will be hard as well: If you could create the
thermal state, then with some high probability you could also create the ground state by simply measuring
the energy of a thermal state, repeating polynomially many times until you find a solution.

However, there is one additional factor to take into account, which is the degneneracy of low-energy
states. (??) only gives the weighting for a single state. But if we have nE states of energy E, each of them
has relative population e−βE , meaning the total population of energy E states is∑

E

nEe
−βE/Z. (16)

While the e−βE term decreases exponentially with E, it is possible (and often will be true) that the nE term
increases exponentially with E. If this is the case, then at any non-zero temperature T , the ground state is
overwhelmed by the much larger numbers of higher-energy states. This means that measuring the energy in
a thermal state of this sort is unlikely to produce ground states. That route to trying to show hardness of
the thermal state hits a dead end.

However, if the Hamiltonian satisfies the conditions and results of the quantum PCP conjecture, then
finding the thermal state is QMA-hard. We will show that for a Hamiltonian satisfying the promise of the
quantum PCP conjecture, the LOCAL HAMILTONIAN problem reduces to finding the energy of a thermal
state for that Hamiltonian. Under the quantum PCP conjecture, the k-LOCAL HAMILTONIAN with this
promise would be QMA-complete, which means that finding the energy of a thermal state would also be
QMA-complete.

Suppose you have an algorithm to measure the energy of the thermal state. Under the quantum PCP
promise, this tells you about the ground state energy: If it is a “no” instance of the LOCAL HAMILTONIAN
problem, then all eigenstates have energy at least (E+∆)n, and certainly we will get at least this value when
we measure the energy of the thermal state. On the other hand, if we have a “yes” instance of the LOCAL
HAMILTONIAN problem, then the ground state has energy En, which we can shift to 0, so its relative
probability is 1. We don’t know the distribution of higher-energy states, and there may be some or many
with energies below (E + ∆)n. There will also be some or many with energies above (E + ∆)n. However,
we know that the probability of such states in the thermal state is at most nEe

−β(E+∆)n. Even if nE ∝ 2n

(the total number of states), the overall population with energy at least (E + ∆)n is at most e(2−β(E−∆))n,
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which for low enough temperature (large enough β), will always be negligible. Thus, the thermal state will
be dominated by states with energy below (E + ∆)n. This means that the energy of the thermal state will
certainly be lower than (E+ ∆)n. Consequently, if we accept whenever the measured energy for the witness
is less than (E+∆)n and reject otherwise, we will have answered the instance the local Hamiltonian problem.
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