
CMSC 858L: Quantum Complexity

Instructor: Daniel Gottesman

Spring 2023

20 More About PP and PostBQP

20.1 References

PostBQP is defined and its relation to PP given in Aaronson, “Quantum Computing, Postselection, and
Probabilistic Polynomial-Time,” quant-ph/0412187. PH is a standard classical complexity class and can be
found in standard textbooks, along with Toda’s theorem.

The definition of PostBPP and the relationship to BPPpath comes from Bravyi, DiVincenzo, Oliveira, and
Terhal, “The Complexity of Stoquastic Local Hamiltonian Problems,” quant-ph/0606140. BPPpath and its

inclusion in BPPNP is from Han, Hemaspaandra, and Thierauf, “Threshold Computation and Cryptographic
Security,” SIAM J. Computing, vol. 26, p. 59 (1997). However, the proof here is simplified from those papers
since it avoids the detour into BPPpath.

20.2 PP= PostBQP

Recall that last time we defined PostBQP and PP and showed that PostBQP ⊆ PP. Now let us prove that
they are actually equal.

Since the definition of PP involves a classical polynomial-time randomized algorithm, we can assume that
the random bits used in the algorithm come from some predetermined string. Given a particular string x
of n random bits, the algorithm outputs f(x). For a “yes” instance, the number of values of x for which
f(x) = 1 must be > 2n−1 (so the acceptance probability for random x is greater than 1/2), and for a “no”
instance, the number of values x for which f(x) = 0 is > 2n−1. We need to find a polynomial-time quantum
algorithm with post-selection to decide this same language.

Let s = |{x|f(x) = 1}|. Then as a first step in the quantum algorithm, prepare the state
∑

x |x〉|f(x)〉.
Then perform the Hadamard on all qubits of the first register, which gives us∑

x

∑
y

(−1)x·y|y〉|f(x)〉. (1)

Now we post-select on the first register being y = 0. We now have for the last qubit the state

|ψ〉 =
(2n − s)|0〉+ s|1〉√

(2n − s)2 + s2
. (2)

If s is very different from 2n−1, we can easily determine whether it is larger or smaller than 2n−1 by making
a number of copies of |ψ〉 and measuring them to see whether 0 or 1 is the most common. In the hard case
where s ≈ 2n−1, the state is very close to |0〉 + |1〉 and we need to determine whether the amplitude of |1〉
is slightly larger or smaller than the amplitude of |0〉.

Essentially we need to distinguish the two states |ψ+〉 =
√

(1− ε)/2|0〉 +
√

(1 + ε)/2|1〉 and |ψ−〉 =√
(1 + ε)/2|0〉+

√
(1− ε)/2|1〉 (although we don’t know the exact value of ε). Now, these are non-orthogonal

states and are in fact very close together, so normal quantum mechanics cannot distinguish them except

1

with very small probability. But one thing you can do in standard quantum mechanics is something called
unambiguous state discrimination, in which you do a POVM (generalized measurement) which has three
outcomes: the two states you want to distinguish and a third “don’t know” outcome. When the unambiguous
state discrimination succeeds, you definitely know which state you have, but when it fails, you learn nothing.
If the two states are very close together, as they are here, the probability of the “don’t know” outcome is
very high, but when we have post-selection available, we can post-select on the cases where we don’t get
that outcome!

To be more specific, we can imbed the two-dimensional Hilbert space into a 3-dimensional Hilbert space
and measure by projecting on the outcomes

|A+〉 = α
√

(1− ε)/2|0〉 − α
√

(1 + ε)/2|1〉+ iα
4
√

1− ε2|2〉, (3)

|A+〉 = α
√

(1 + ε)/2|0〉 − α
√

(1− ε)/2|1〉+ iα
4
√

1− ε2|2〉, (4)

|?〉 =
1√
2
γ(|0〉+ |1〉) + iδ|2〉 (5)

where α2 = 1/(1 +
√

1− ε2) and γ and δ are chosen so that |?〉 is chosen to be normalized and orthogonal
to |A±〉.

Now, we don’t know ε in the actual system, so suppose we perform the above POVM designed for ε but
instead we have the state |ψ′±〉 =

√
(1∓ ε′)/2|0〉 +

√
(1± ε′)/2|1〉. Then the probabilities of the outcomes

± given input |ψ′+〉 are:

Prob(+) = |〈ψ′+|A+〉|2 (6)

= α2|
√

(1− ε)(1− ε′)/2−
√

(1 + ε)(1 + ε′)/2|2 (7)

=
α2

2

(
1 + εε′ −

√
(1− ε2)(1− ε′2)

)
(8)

=
α2

2

[
1 + εε′ − 1 + (ε2 + ε′2)/2 +O(ε4 + ε′4 + ε2ε′2)

]
(9)

=
α2

4

[
(ε+ ε′)2 +O(ε4 + ε′4 + ε2ε′2)

]
(10)

Prob(−) = |〈ψ′+|A−〉|2 (11)

= α2|
√

(1 + ε)(1− ε′)/2 +
√

(1− ε)(1 + ε′)/2|2 (12)

=
α2

2

(
1− εε′ −

√
(1− ε2)(1− ε′2)

)
(13)

=
α2

4

[
(ε− ε′)2 +O(ε4 + ε′4 + ε2ε′2)

]
(14)

(15)

For the initial state |ψ′−〉, the probabilities are switched. When ε and ε′ are small, the ratio of the probability
of the + outcome to the − outcome is about (ε± ε′)2/(ε∓ ε′)2 for the |ψ′±〉 state.

In particular, if we post-select on getting one of the outcomes + or − and ε′ = cε, then the probability
of the two outcomes are about

(1± c)2

2(1 + c2)
, (16)

which is 1/2+Θ(1) if c = Θ(1). Thus, if we perform the above POVM n times for ε = 2−i for i running from
1 to n, we will always get a Θ(1) chance of distinguishing the two states for one of the values of i. We can
repeat each measurement a number of times to get the desired level of accuracy for the overall algorithm.
This proves that PP ⊆ PostBQP.

2

20.3 Polynomial hierarchy

Now, the next thread is bring in classical knowledge about PP in the form of Toda’s theorem. To explain
what Toda’s theorem is, I first have to define a number of new complexity classes. (Infinitely many, actually.
But they are closely related.)

Recall that NP can be defined as the set of languages for which there exists a witness such that the
checking circuit accepts it. The checking circuit C(x,w) is a Boolean function of the instance x and the
prospective witness w. So phrasing the definition of NP in a symbolic way, we get that L ∈ NP when there
is some polynomial time computable C such that

x ∈ L ⇐⇒ ∃w s.t. C(x,w) = 1. (17)

We can also define co-NP similarly: L ∈ co-NP when there is some polynomial time computable C such that

x ∈ L ⇐⇒ !∃w s.t. C(x,w) = 1; (18)

or equivalently, L ∈ co-NP when there is some polynomial time computable C = 1⊕ C such that

x ∈ L ⇐⇒ ∀w C(x,w) = 1. (19)

That is, NP is associated with statements of the form “there exists” and co-NP is associated with statements
of the form “for all”.

What if we have both quantifiers? For instance, we can define a complexity class Σp
2 as the set of languages

L for which there exists some polynomial time computable C such that

x ∈ L ⇐⇒ ∃u s.t. ∀w C(x, u, w) = 1. (20)

Then Σp
2 contains both NP and co-NP. We could also put the quantifiers the other way to get a class Πp

2

containing languages L for which there is C such that

x ∈ L ⇐⇒ ∀u∃w s.t. C(x, u, w) = 1. (21)

This also contains both NP and co-NP. Note that Πp
2 contains a language L iff Σp

2 contains the complement
of L. That is, Πp

2 = co− Σp
2. This is because NOT switches the quantifiers ∀ and ∃: !∀x,B(x) = ∃y!B(y).

The classes Σp
2 and Πp

2 are not as interesting as NP and co-NP, they still contain a number of interesting
problems. Whereas NP problems tend to be relatively straightforward optimizations, the “best” of something,
these two involve more complicated optimzations where you have two different kinds of optimizations working
against each other. For instance, the traveling salesman is NP-complete: Does there exist a path of length
less than L? But suppose you ask, is the length of the shortest path exactly L? That involves 2 quantifiers:
Does there exist a path of length L? And, for all other paths, are they at least as long as L? This is an Σp

2

question.
We can continue adding quantifiers to get new classes, although they become less and less practically

relevant:

Definition 1. Let a Σp
n statement S(·) be one of the form ∃u P (u, ·), where P (u, ·) is a Πp

n−1 statement. Let
a Πp

n statement P (·) be one of the form ∀u S(u, ·), where S(u, ·) is a Σp
n−1 statement. Σp

0 and Πp
0 statements

are of the form C(·) = 1 for some polynomial-time computable C.
Then Σp

n is the class of languages L for which x ∈ L iiff x satisfies a Σp
n statement. Πp

n is the class of
languages L for which x ∈ L iiff x satisfies a Πp

n statement. The polynomial hierarchy

PH = ∪∞n=1Σp
n. (22)

Σp
n and Πp

n statements are defined using alternating quantifiers. We usually define them for n ≥ 1, but
you can think of Σp

0 = Πp
0 = P. Repeating the same quantifier twice in a row just allows you to combine

them into a single quantifier with a larger variables (e.g., ∀x ∀y = ∀(x, y)). Note that Σp
n−1,Π

p
n−1 ⊆ Σp

n,Π
p
n

(which is why we don’t need to take the union over both Σ and Π to define PH.
One critical fact about the polynomial hierarchy is that either all of the Σ and Π are distinct or at some

point they become all the same:

3

Theorem 1. If Σp
n = Πp

n for some n ≥ 1, then Σp
n = Σp

m for any m > n.

If the hypothesis of the theorem is true, this is referred to as “the polynomial hierarchy collapses to the
nth level.”

Proof. Suppose Σp
n = Πp

n. Then given some language L in Σp
n+1, x ∈ L iff x satisfies ∀uP (u, ·). But P (u, ·) =

∃vS(u, v, ·) is a Πp
n statement, so by the hypothesis, there is a Σp

n statement that is true whenever P (u, ·)
is true, and only then (since it must define the same language). Assume the Σp

n statement is ∀vP ′(u, v, ·),
where P ′(u, v, ·) is a Πp

n−1 statement. Then the original Σp
n+1 statement is equivalent to ∀u∀vP ′(u, v, ·). We

can combine the two ∀ quantifiers, giving a Σp
n statement ∀(u, v)P ′(u, v, ·). Thus Σp

n+1 = Σp
n.

Essentially the same argument shows that Πp
n+1 = Πp

n, and therefore Πp
n+1 = Πp

n = Σp
n = Σp

n+1. By
induction, it follows that all Σp

m and Πp
m for m ≥ n are equal.

Theorem 2 (Toda’s theorem). PH ⊆ PPP.

The proof of this is somewhat involved, so I will not go through it.

4

