
CMSC 858L: Quantum Complexity

Instructor: Daniel Gottesman

Spring 2023

21 Quantum Supremacy

21.1 References

The definition of PostBPP and the relationship to BPPpath comes from Bravyi, DiVincenzo, Oliveira, and
Terhal, “The Complexity of Stoquastic Local Hamiltonian Problems,” quant-ph/0606140. BPPpath and its

inclusion in BPPNP is from Han, Hemaspaandra, and Thierauf, “Threshold Computation and Cryptographic
Security,” SIAM J. Computing, vol. 26, p. 59 (1997). However, the proof here is simplified from those papers
since it avoids the detour into BPPpath.

21.2 Correction

In class last time, I said that Σp
i and Πp

i didn’t have complete problems after the third level. I don’t know
where I got that: that is not true. For instance, let language L be the set of true Σp

i statements. Then L
is Σp

i -complete. But it is true that PH has no complete languages for the reason I said, that any complete
language would have to be in one of the levels and that would cause the polynomial hierarchy to collapse.

Also, I looked into why people think the polynomial hierarchy doesn’t collapse, and . . . there isn’t a very
strong reason that I can see. Some of it is the same intuition why P 6= NP, that removing quantifiers seems
to be hard; and the corresponding experience of people looking at it and being unable to collapse levels of
the hierarchy. Also, it is proven that PH is infinite relative to a random oracle (a random oracle is a bit
more convincing than finding a specific oracle that separates classes because it is natural in the sense that
it is not tailored to the question you are asking). Finally, there is probably an element of “it is helpful to
assume this.” Since a variety of interesting and plausible results follow from the polynomial hierarchy being
infinite, it is a convenient assumption to make.

21.3 PostBPP

We can also apply post-selection to classical probabilistic computation.

Definition 1. Let PostBPP be the set of languages L such that there exists a polynomial-time randomized
algorithm A(x) (i.e., a uniform family of polynomial-size circuits including the ability to generate random
bits) with the following properties: For any instance x,

1. A(x) has two output bits A and B,

2. Prob(A = 1) > 0,

3. If x ∈ L, then Prob(B = 1|A = 1) ≥ 2/3,

4. If x 6∈ L, then Prob(B = 0|A = 1) ≥ 2/3.

1

Clearly PostBPP ⊆ PostBQP = PP. The argument that NP ⊆ PostBQP actually shows that NP ⊆
PostBPP, but the argument that PostBQP = PP doesn’t apply to PostBPP since it relies heavily on
quantum superposition and measurement.

So what is the power of PostBPP? It turns out to be equivalent to a somewhat strange class defined in
the classical literature under the name BPPpath.

Theorem 1. PostBPP ⊆ BPPNP.

Proof. Suppose we have an algorithm in PostBPP. We wish to simulate this algorithm in BPPNP. For a
particular run of the PostBPP algorithm, the random bits used are the string r. Some values of r will lead
to a valid post-selection, with A = 1, and some will have A = 0. We can use the NP oracle to find values
of r which lead to A = 1. In particular, there is some set S0 of random strings r which lead to A = 1. We
wish to choose a random string from S0 and use it to run the PostBPP algorithm. Then the distribution of
B under these conditions is exactly Prob(B|A = 1).

We might try to use the NP oracle using binary search to find a value of r: First pick a random bit r0
ask the oracle if there is a value of r ∈ S0 with first bit r0. This is an NP question, so the oracle can answer
it. If there is no such r, flip r0 and then there must be a solution (since Prob(A = 1) > 0). Then choose
random r1 and ask if there is a value of r ∈ S0 with first two bits r0r1. If not, flip r1 and continue. Keep
choosing random bits and determining if they can be part of r until we have a full string r.

Unfortunately, this strategy doesn’t quite work because it doesn’t sample r uniformly from S0. For
instance, if there is one string in S0 that starts with 0 and 10 that start with 1, then this algorithm has a
50% chance of selecting the string that starts with 0, not a 1/11 chance.

The solution is to use a better method of randomly selecting subsets of S0 to focus our search on. We
will define a sequence of subsets Si narrowing down possible values of r. Membership in Si will be tested
by the NP oracle. To define subset Si given Si−1, choose a random string ai (of the same length as r)
and a random bit bi and asking the oracle if there are any strings r ∈ Si−1 such that ai · r = bi. If so, let
Si = {r|r ∈ Si−1, ai ·r = bi}. Otherwise, let Si = {r|r ∈ Si−1, ai ·r = bi⊕1}. We keep going until St contains
just a single bit string, which can be determined by linear algebra; with high probability this happens when
t is slightly larger than r. (Indeed, if we constrain each random a to be independent of the previous ones,
then it automatically happens by the time t = r.)

Note that Si can be tested with the NP oracle, since given r, we can run the original algorithm using
the random bits r to determine if r ∈ S0 (which happens when the output A of the circuit is 1), and we can
also check if ai · r = bi for each i. Thus, the question, are there any elements of Si−1 such that ai · r = bi is
an NP language and can be decided by an NP oracle.

Lemma 1. Let S be any set of bit strings length n and let x 6= y ∈ S, and let a be a random n-bit string
and b be a random bit. Then the probability that a · x ⊕ b = a · y ⊕ b is 1/2. Moreover, the probability that
a · x⊕ b = 0 is 1/2.

Proof of lemma. a · x ⊕ b = a · y ⊕ b iff a · (x ⊕ y) = 0. But a is random, and there is always a probability
1/2 that a random string will have dot product 0 with a specific non-zero string. (For instance, pick one
non-zero bit of x⊕ y; then if a is 1 at that location, we will get one value for a · (x⊕ y), and if a is 0 at that
location, we will get the other value. These two possibilities are equally likely.)

Also, whatever the value of a · x, a random choice of b guarantees that the distribution of a · x ⊕ b is
uniform.

I claim that this process chooses a string uniformly at random from S0. In particular, given any two
r, r′ ∈ S0, they have an equal probability of being chosen. To prove this claim, let us assume for the moment
that both r and r′ are in Si. By the lemma, the probability that ai · r = bi and ai · r′ = bi ⊕ 1 is exactly
1/4, the same as the probability that ai · r = bi ⊕ 1 and ai · r′ = bi. In these two cases, assuming if both
are in Si−1, then just one of the two is in Si (which is certainly non-empty since it contains that string and
therefore will pass the NP oracle). It is equally likely that r and r′ is the one that survives to be in Si.

We also have a 1/4 probability that ai ·r = ai ·r′ = bi, so if both r and r′ are in Si−1, so there is a chance
that both of them are in Si (which is also equal to the chance that exaclty one of them is in Si). There is

2

also a 1/4 probability that ai · r = ai · r′ = bi ⊕ 1, but in this case, it might be that there are no values of r
such that ai · r = bi and r ∈ Si−1, so it is possible that this case will be rejected by the NP oracle.

The probability that r is chosen, given that both r and r′ are in Si is thus

Prob(r chosen|r, r′ ∈ Si) =
1− Prob(r, r′ 6∈ Si+1)

3
[Prob(r chosen|r, r′ ∈ Si) + Prob(r chosen|r ∈ Si+1, r

′ 6∈ Si+1)] ,

(1)
and similarly for Prob(r′ chosen|r, r′ ∈ Si) with r and r′ switched.

Now, we use induction on i, starting with the last i to show that all elements of Si are equally likely to be
chosen. Certainly this is true of the last i since there is only 1 element left. Then the inductive hypothesis
tells us

Prob(r chosen|r, r′ ∈ Si) = Prob(r′ chosen|r, r′ ∈ Si). (2)

By eqn. (1), we now only need to show that

Prob(r chosen|r ∈ Si+1, r
′ 6∈ Si+1) = Prob(r′ chosen|r′ ∈ Si+1, r 6∈ Si+1). (3)

The inductive hypothesis tells us that when r ∈ Si+1, the probability of r being chosen is 1/|Si+1|. So it is
sufficient to prove that

Prob(|Si+1 = s|r ∈ Si+1, r
′ 6∈ Si+1) = Prob(|Si+1 = s|r ∈ Si+1, r

′ 6∈ Si+1). (4)

If this is true, then the distribution of sizes of Si+1 is the same in the case when r ∈ Si+1 but r′ 6∈ Si+1 and
vice-versa, and therefore the probabilities of r or r′ being chosen in these cases is the same.

If r⊕ r′ ∈ Si, then a · (r⊕ r′) = 1 always if exactly one of r and r′ is in Si+1. Thus, whether r⊕ r′ ∈ Si+1

depends only on the value of b. If r = 0 or r′ = 0, then r+ r′ is not a new element, so we don’t need to think
about it, but if r, r′ 6= 0, then the probability that r is in Si+1 but not r′ is independent of b and therefore,
whether r ⊕ r′ ∈ Si+1 is independent of whether r or r′ is in Si+1. Similarly, if 0 ∈ Si and r, r′ 6= 0, then
whether 0 ∈ Si+1 only depends on b (it is if b = 0) and is independent of which of r and r′ is in Si+1.

Si consists of r, r′, possibly 0 and/or r + r′, and remaining elements which are linearly independent of r
and r′ (although not necessarily of each other). This means there is some vector c 6= 0 such that c·r = c·r′ = 1
but c · v = 0 for v ∈ Si \ {r, r′}. Let a be any string, a′ = a⊕ c, and Ta = {v ∈ Si \ {r, r′}|a · v = b}. Then
a′ · r = a · r ⊕ c · r = a · r ⊕ 1, a′ · r′ = a · r′ ⊕ 1, and a′ · v = a · v ⊕ c · v = a · v for v ∈ Si \ {r, r′}. Thus,
Ta,b = Ta′,b. Suppose we have some (a, b) for which r ∈ Si+1 but r′ 6∈ Si+1, so Si+1 = Ta ∪ {r}. Then for
(a′, b), Si+1 = Ta ∪ {r′}. That is, every case where r is in Si+1 but r′ is not, there is a matched case where
r′ ∈ Si+1, r 6∈ Si+1, but all other elements of Si+1 are the same, and in particular, the size is the same. This
proves eqn. (4) and therefore proves the claim that all strings are equally likely to be chosen.

Since the string r is chosen uniformly from S0, this algorithm correctly simulates the distribution of
outcomes of the original PostBPP algorithm and therefore this approach will have the same acceptance
probability as the conditional acceptance probability of the PostBPP algorithm, as needed.

Now, it turns out that BPP is in the second level of the polynomial hierarchy, so PostBPPNP is in the
third level of the hierarchy, since the NP oracle can be simulated with an extra quantifier.

21.4 Exact Quantum Supremacy

Now, as we have just seen, PostBPP is in the third level of the hierarchy. PostBQP, in contrast, is equal
to PP, which contains the whole polynomial hierarchy. There, if PostBQP = PostBPP, then the hierarchy
collapses to the third level. To the extent that this is unlikely, that implies that PostBQP and PostBPP are
unequal.

What, if anything, does this imply about BQP? Well, suppose there is an exact weak classical simulation
of any quantum algorithm. Then you could simulate the algorithm with two qubits measured instead of just
one, and in particular have the exactly correct distribution of outputs on qubits A and B in an arbitrary
algorithm for a PostBQP language. That means that a probabilistic classical algorithm with post-selection

3

would be able to decide any language in PostBQP; i.e., we would have PostBQP = PostBPP. Thus, we have
the following theorem:

Theorem 2. If there is an exact weak classical simulation of an arbitrary quantum circuit, then the poly-
nomial hierarchy collapses to the third level.

This result can be immediately strengthened to show that (unless the polynomial hierarchy collapses),
there can be no exact classical simulation of even a number of non-universal quantum models. In particular,
any model that can be promoted to universality by adding post-selection works in exactly the same way.
Here is a (non-exhaustive) list of examples of non-universal models for which this argument can be made:

• Constant-depth quantum circuits

• Clifford group circuits in a rotated basis

• Linear-optical networks with single-photon states

• Diagonal gates with X basis initial states and measurements

• Random quantum circuits

In the case of random quantum circuits, one first needs to show that being able to simulate a randomly
chosen circuit implies being able to simulate any specific circuit (in particular, the hardest ones). Then the
result follows from thm. 2. This ability to reduce the worst case problem to the average case problem is very
helpful in real-world applications of complexity, including (classical) cryptography and quantum supremacy.
This is because finding worst-case instances is itself a hard problem (it is not even clear how to tell if a
particular instance is a hard instance or an easy instance), but if randomly chosen instances are very likely
to be hard, then there is a straightforward way of generating probably hard instances (not provably hard
instances, unfortunately), even if you have no way to be certain you were not unlucky in your specific choice
of instance.

4

