
CMSC 858L: Quantum Complexity

Instructor: Daniel Gottesman

Spring 2023

23 Experimental quantum supremacy, PSPACE

23.1 References

Savitch’s theorem is a standard of classical complexity theory, but the full proof that BQPSPACE = PSPACE
is in Watrous, “On the complexity of simulating space-bounded quantum computations,” Computational
Complexity vol. 12, 48-84 (2003).

23.2 Complexity of experimental quantum supremacy

In recent years, there has been significant interest in experimental validation of a quantum speedup in NISQ
computers by a demonstration of quantum supremacy through one of the classes hopefully satisfying the
above properties. However, there are some further complexity-related issues with such experiments.

First, the experiments don’t precisely measure the output distribution p̃a, which would require many
samples. Instead, they need a simple criterion to decide if the experiment is close enough to the correct one
to demonstrate supremacy. Various criteria have been proposed but they are necessarily weaker than simply
being close in statistical distance. In particular, it is possible that it could be hard to generate a distribution
that has small statistical distance to pa while still being possible to generate a distribution that passes this
particular test. Thus, hardness of the experimental demonstrations rests on stronger assumptions than those
we have discussed.

Second, the whole point of these hardness arguments is that it is hard to calculate pa classically. Since
the actual circuit used in an experiment is generated randomly, this means that the correct distribution pa
is unknown, making it difficult to tell if the observed distribution passes the test (whatever it is) for being
sufficiently close to the quantum distribution. For systems just over the threshold of quantum supremacy,
a large enough classical computation can find pa, but that won’t work at all for larger systems. There are
some possibilities for a quantum superiority experiment with a more straightforward test, but all suggestions
so far require even stronger complexity assumptions to establish quantum supremacy.

Finally, quantum supremacy in the asymptotic sense (where complexity-theoretic arguments have their
full power) requires fault tolerance. The problem is that in a model without fault tolerance, noise will over-
whelm the system after a short amount of time (anything more than log depth), eliminating any advantage
for the quantum circuit. (Classical randomized circuits can also generate noise.)

23.3 BQPSPACE vs. PSPACE

We are now ready to move up to a larger complexity class, PSPACE. Recall that at the beginning of class we
defined PSPACE as the class of problems solvable by a classical algorithm with polynomial space available
to it, and that we said we don’t need to add a BQPSPACE class because it is the same as PSPACE. Now is
the time to prove that.

Unfortunately, I can’t quite do that because it turns out to be more complicated than I realized. We can
almost prove it, and the almost proof is quite straightforward given what we’ve done before.

1

Theorem 1. Suppose a language L can be decided by a quantum algorithm that runs in at most exponential
time using at most polynomial space. Then L ∈ PSPACE.

Proof. First, remember how we proved that BQP ⊆ PSPACE: by computing the path integral as an expo-
nentially large sum. Of course, it turns out that that can be done in the (probably) smaller complexity class
PP. But when we expand the quantum circuits to exponential size, then this argument doesn’t work any
more because each term in the sum is an exponential size product which naively requires too much space to
write down.

However, by improving our method using a version of the proof of Savitch’s theorem (which shows
PSPACE = NPSPACE), we can get the argument to work. In particular, note that

Ay,x(0, f(n)− 1) = 〈x|
f(n)−1∏
i=0

Ui|y〉 (1)

=
∑
z

〈x|
f(n)/2−1∏

i=0

Ui|z〉〈z|
f(n)−1∏
i=f(n)/2

Ui|0〉 (2)

=
∑
z

Ay,z(f(n)/2, f(n)− 1)Az,x(0, f(n)/2). (3)

That is, a transition amplitude for a circuit of size f(n) between y and x can be written as an exponential
sum of terms which are products of two transition amplitudes of circuits of half the size.

With a circuit of size 2O(polyn), we need only polynomially many levels of recursion, and each level can
be computed in PSPACE by stepping through the sum over z and computing Ay,z(f(n)/2, f(n) − 1) and
Az,x(0, f(n)/2). At any given time, we need enough space to keep track of one z for each level of recursion,
which is a total of O(npolyn) space. (We only need to keep one z for each level of recursion because we can
compute each A one at a time and don’t need to keep track of the intermediate values once that it done.)

But can language in BQPSPACE need more than exponential time to decide? I suspect it is true that
a quantum algorithm using polynomial space can run for more than exponential time before halting, which
cannot occur for a classical algorithm using polynomial space; but it is still true that there is an efficient
algorithm to decide the same problem using classical polynomial space (and therefore exponential time).

The actual proof involves various technicalities. The main idea seems to be to determine if∑
t≥0

[U t]0,N > 0, (4)

where U is the matrix for the action of a quantum Turing machine on a Hilbert space of polynomially many
qubits (those available to the algorithm). Here, the (0, N) matrix element of U t represents the amplitude for
U iterated for t steps to cause a transition from the initial state |0〉 to the accepting state |N〉. If this sum is
positive, then there is some chance of accepting. The individual matrix elements of U can be computed in
PSPACE (and actually in P). The elements of U t can also be computed in PSPACE provided t is at most
2O(polyn), but as noted above, I don’t think this is straightforward to guarantee. Instead, the proof rewrites
(4) as a formula involving a limit and determinants, and the determinant can be computed in PSPACE.

23.4 Interactive Proofs

NP and QMA can be thought of as classes involving proofs: NP is the class of languages for which there is a
short proof of “yes” instances. MA generalizes the notion of proof slightly to allow probabilistic proofs, and
QMA generalizes it further to allow the proof and checking procedure to be quantum.

But there is another way in which we can generalize the notion of a proof. A conventional mathematical
proof is a static thing, but fundamentally a proof is about a method of convincing a logical skeptic about
some statement. There is no need for this to be static: Instead, a proof can emerge from a conversation.

2

We can have a prover conversing with a verifier and allow the prover to convince the verfiier through a back
and forth conversation. This is known as an interactive proof.

To see how interactive proofs can potentially have more power than non-interactive proofs, consider
graph isomorphism. Suppose you have two graphs G1 and G2. If they are isomorphic, certainly there is an
easy non-interactive proof of this: The prover simply describes a permutation to take G1 into G2, and the
verifier can check this without any further involvement by the prover. However, graph non-isomorphism, the
complement problem, is not known to be in NP (so graph isomorophism is not known to be in co-NP).

But there is an straightforward interactive proof of graph non-isomorphism: The verifier secretly picks
one of the two graphs G1 or G2 and permutes it, then tells the verifier the permuted graph, but keeps secret
which of the two graphs was chosen. The prover must then tell the verifier which one it was, and the verifier
accepts only if the prover is right about thtat. If the graphs are actually isomorphic, then there is no way the
prover can tell which was permuted except by guessing, whereas if they are non-isomorphic, a prover with
no computational bound can tell which one (for instance by trying all permutations). Thus, if the prover
can consistently say which of the two graphs was permuted, then they must have been non-isomorphic.

Definition 1. A (classical) interactive protocol consists of a sequence of back-and-forth messages between a
prover Alice and a verifier Bob. In odd rounds, Bob sends Alice a message based on their previous messages,
Bob’s private state, and any random bits Bob chooses to use. In even numbered rounds, the roles are
reversed, with Alice sending a message to Bob based on ther previous messages, Alice’s private state, and
any other information needed. In all cases, there are at most polynomially many rounds, the messages sent
are polynomial in size, and Bob’s computations (but not Alice’s) must also be of polynomial size. At the end,
Bob outputs either “accept” to accept the protocol or “reject” to reject the protocol.

A quantum interactive protocol is the same except that Alice and Bob hold a quantum state, Bob can
perform polynomial-size quantum computations, and the messages passed back and forth are quantum states
as well. At the end, Bob measures his state and outputs either “accept” or “reject” as above.

It makes the most sense to allow even the classical interactive protocols to be probabilistic. If Bob’s
responses are deterministic functions of his previous interactions, then Alice can compute what they will be
herself and skip the interaction.

We can then define a class of problems for which there exist convincing interactive proof systems:

Definition 2. Let IP be the set of languages L for which there exists an interactive (classical) protocol Π
such that for any instance x of L,

• If x ∈ L, then there exists a verifier Alice such that Bob outputs “accept” with probability ≥ 2/3.

• If x 6∈ L, then for all actions by the verifier Alice, Bob outputs “reject” with probability ≥ 2/3.

Let QIP be the set of languages L for which there exists a quantum interactive protocol with the same
conditions.

It is a major result of classical complexity that IP = PSPACE. But what about QIP? This could be
potentially stronger. Certainly IP ⊆ QIP since we can run the classical protocol using basis states, but QIP
could potentially include additional languages. However, it turns out not to, and proving this will be our
next goal.

23.5 Formalizing quantum interactive proofs

Note that for a quantum interactive proof, we may as well assume that Alice and Bob perform only unitary
operations. This is because any non-unitary CPTP map can be purified using some extra qubits. Alice or
Bob can use the purified version and just keep the extra qubits off to the side, not using them again.

Therefore, we can think of a quantum interactive protocol as a sequence of unitaries UA
1 , . . . , UA

t for Alice
and a sequence of unitaries V B

0 , . . . , V B
t for Bob. Alice and Bob each have their own registers HA and HB ,

plus a message register HM which is passed back and forth. We can assume all registers are initialized to

3

|00 . . . 0〉. For instance, if Bob starts the protocol, Bob starts by performing V B
0 on HB ⊗ HM and then

passes HM to Alice. Alice performs UA
1 on HM ⊗HA and then passes HM back to Bob. This repeats: Bob

performs V B
i on HB ⊗HM and passes HM to Alice, who performs UA

i+1 on HM ⊗HA and passes HM back
to Bob, then repeat for i + 1. Finally, Bob performs V B

t and then measures one or more output qubits in
HB .

We are assuming limits on the power of Bob, but not of Alice, so Bob’s Hilbert space HB has polynomially
many qubits and his unitaries V B

i can be implemented efficiently, but Alice’s Hilbert space HA and unitaries
UA
i need not follow these restrictions.

4

