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25 QIP = PSPACE

25.1 References

Vidick and Watrous, “Quantum Proofs,” arXiv:1610.01664 is again a useful reference for quantum interactive
proofs (and also QMA). The specific proof I cover here is from the paper Jain, Ji, Upadhyay, and Watrous,
“QIP = PSPACE,” arXiv:0907.4737.

25.2 Overview of QIP = PSPACE proof

The basic idea of the proof that QIP = PSPACE is that we can write any quantum interactive proof
protocol as a semidefinite program, where the acceptance probability is the function to be maximized in the
semidefinite program. There are efficient algorithms to solve semidefinite programs. However, the matrices
in this semidefinite program are of exponential size. This does immediately let us conclude that QIP ⊆ EXP,
but we need to do more work to show it is in PSPACE.

To do so, the strategy is to write down an explicit algorithm to solve the semidefinite program for a
QIP protocol and then to show that the algorithm can be performed with polynomial space. The specific
algorithm used here is in a class called multiplicative weights update algorithms.

Before we discuss the algorithm, though, we should discuss semidefinite programs.

25.3 Semidefinite Programming for Quantum Interactive Proofs

A semidefinite program is a set of linear equalities or inequalities using positive semidefinite matrices instead
of numbers (which would give us a linear program). The goal is to optimize some linear objective function
of the matrices. Because density matrices are positive semidefinite matrices, the theory of semidefinite
programming is useful in quantum information, particularly when dealing with multiple-round protocols like
quantum interactive proofs.

To be more specific, suppose we have a three-round quantum interactive proof. Let ρi be the density
matrix of the whole system at round i. We could start with ρ0 as the initial state, but since Alice goes first
and her unitary is unknown, it makes more sense to start with ρ1, the state after Alice performs her initial
unitary, which could be any state on AM , but must be correctly initialized on B:

TrAM ρ1 = |00 . . . 0〉〈00 . . . 0|. (1)

Now, ρ2, the state after Bob performs his action, is just related to ρ1 by Bob’s unitary:

ρ2 = (IA ⊗ V B
1 )ρ1(IA ⊗ V B

1 )†. (2)

Finally, ρ3 is related to ρ2 by some unknown unitary on HA ⊗HM , but must be the same on HB :

TrAM ρ3 = TrAM ρ2. (3)
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Finally, Alice is trying to maximize the chance of Bob accepting, which is equal to Tr Πρ3, where Π is a
projector for Bob’s final measurement. In this particular case, all the constraints above are equalities rather
than inequliaities.

Note that when the protocol is purified, any (ρ1, ρ2, ρ3) that satisfy these equations can be realized
through appropriate choice of unitaries by Alice:

Theorem 1. If ρ and σ on HA⊗HB are any two pure states such that TrA ρ = TrA σ, then exists U acting
on HA such that UσU† = ρ.

Proof. This is easily proved via the Schmidt decomposition, which says that there exists bases such that any
bipartite pure state

|ψ〉 =
∑
a

√
λa|a〉 ⊗ |a〉. (4)

Then in the Schmidt basis, we can see that TrA ρ = diag(λa)|a〉〈a|, so when TrA ρ = TrA σ, that implies
that their Schmidt decompositions have the same eigenvalues λa. It also implies that the Schmidt bases on
B match. (At least, they match exactly if all λa are distinct, but if not, we can choose an alternate Schmidt
basis for one of them that does match.)

I ρ = |ψ〉〈ψ| and σ = |φ〉〈φ|, then

|ψ〉 =
∑
a

√
λa|a〉 ⊗ |a〉 (5)

|φ〉 =
∑
a′

√
λa|a′〉 ⊗ |a〉. (6)

Both |a〉A and |a′〉A are orthonormal bases, so there exists a U acting on HA alone such that U |a〉 = |a′〉.
Then

U ⊗ I|ψ〉 =
∑
a

√
λaU |a〉 ⊗ |a〉 = |φ〉. (7)

Semidefinite programs have a duality theory. The original semidefinite program above is called a primal
program, and the dual is the dual program. In the dual program, the roles of the constraints vs. objective
function, and also the direction of the inequalities are switched.

In particular, if the primal semidefinite program is:

• Variables X, positive semidefinite

• Maximize 〈C,X〉

• Subject to Ψ(X) ≤ D

then the dual program is

• Variables Y , positive semidefinite

• Minimize 〈D,Y 〉

• Subject to Ψ∗(Y ) ≥ C

Here, Ψ∗(Y ) is the adjoint, 〈Ψ(X), Y 〉 = 〈X,Ψ∗(Y )〉. The inner product is 〈C,X〉 = TrC†X.
The value of this duality is that the minimal value of the dual program is always greater than or equal

to the maximum value of the primal program. This is improved to having the minimal dual value exactly
equal to the maximum primal value if some additional condition is met, for instance if there is an interior
feasible point for the dual program (i.e., a solution for which the inequalities in the dual program are strictly
satisfied).
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25.4 The semidefinite program we will use

For this proof, we first make one more simplification to the protocol. Note that in a 3-round protocol, Alice
sends to Bob, then Bob sends back to Alice, and finally Alice sends to Bob again. When we apply the
transformation from last time, it can’t make this shorter, but it can further simplify it if we alter it slightly.
In the transformation, we could start by Alice sending Bob the state σ (on HB) he would have after round
2 instead of round 1 (when Bob has sent a transmission back to Alice). Bob then sends a single bit to Alice
saying whether to go forward or backward. Alice goes next, and she either finishes the protocol by sending
the last transmission to Bob or sends back to Bob the state she would have received from him for round
2. When they reverse, Bob can then reverse his round 2 unitary V B

1 to get his initial state and a message
received from Alice; he only needs to check that his initial state has been returned to the state |00 . . . 0〉.

Basically, Bob sends his bit to Alice who sends him more qubits, giving him either the state ρ0 or ρ1 on
HM ⊗HB , and then Bob projects on either P0 or P1 and accepts only if that projection succeeds. Let

Q =
1

2

(
P0 0
0 P1

)
, X̃ =

(
ρ0 0
0 ρ1

)
. (8)

The additional degree of freedom (representing the value of the random bit Bob sends to Alice) we will call
C.

Since Alice cannot have the initial state she sends Bob depend on the random bit, we have that TrM ρ0 =
TrM ρ1 = σ. Therefore, TrM X̃ = IC ⊗ σ. The chance of acceptance is Tr(QX̃). Alice can choose σ and
X̃ arbitrarily subject to these constraints, but Q is given by the protocol. Thus, this is a semidefinite
programming problem.

To get this program in the form used in the proof, we first relax the constraint Tr X̃ = IC ⊗ σ to
Tr X̃ ≤ IC ⊗ σ. Since the only constraint on σ is that it is a density matrix (and thus has trace 1), the
relaxation doesn’t increase the achievable value of Tr(QX̃), since if the inequallity is not tight, we can scale
X up linearly to make it tight; this increases Tr(QX̃), so the maximum value of Tr(QX) is always achieved
when the inequality is at its maximum value. We can also relax the constraint that Trσ = 1 to Trσ ≤ 1.

The next step is to let Φ(D) = TrM (Q−1/2DQ−1/2) and Φ∗(D) = Q−1/2(D ⊗ IM )Q−1/2). This is
an adjoint in the sense that Tr(Φ(D)†E) = Tr(D†Φ∗(E)). Here, Φ : HM ⊗ HC ⊗ HB → HC ⊗ HB and
Φ∗ : HC ⊗HB → HM ⊗HC ⊗HB .

Next we write the program in terms of the variable X = QX̃ instead of X̃. We then get the following
primal program:

• Variables X, σ positive semidefinite.

• Maximize Tr(X)

• Subject to Φ(X) ≤ IC ⊗ σ and Trσ ≤ 1.

To compute its dual, let us put in the form above. The variables are (X,σ), we have C = I,

Ψ(X,σ) = (Φ(X)− I ⊗ σ,Trσ), (9)

and D = (0, 1). Then the dual variables should be (Y, y), Y positive semidefinite, y ≥ 0 a number, and

〈(X,σ),Ψ∗((Y, y))〉 = Tr[([Φ(X)]† − IC ⊗ σ)Y ] + yTrσ (10)

This gives us
Ψ∗(Y, y) = (Φ∗(Y ), yI − TrC Y ). (11)

We then get the constraints Φ∗(Y ) ≥ I and yI ≥ TrC Y , and we want to minimize y. Now, the second
constraint yI ≥ TrC Y is achieved whenever y is at least the maximum eigenvalue of TrC Y , so to minimize
y, we should minimize the maximum eigenvalue of TrC Y . This gives us the following dual program:

• Variables Y positive semidefinite.

• Minimize ‖TrC(Y )‖sup
• Subject to Φ∗(Y ) ≥ I
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25.5 Algorithm to solve the semidefinite program

To solve this program, we use the following algorithm:

1. Initialize W0 = I, Z0 = I, constants γ, ε, δ, T .

2. We always have ρi = Wi/TrWi, ξi = Zi/TrZi.

3. Run for T steps:

(a) Let Πi be the projection onto the positive eigenspaces of

Φ(ρi)− γIC ⊗ ξi. (12)

(b) Let βi = Tr(ΠiΦ(ρi)). If βi ≤ ε, then accept and end.

(c) Otherwise, let

Wi+1 = exp

−εδ i∑
j=0

Φ∗(Πj/βj)

 (13)

Zi+1 = exp

εδ i∑
j=0

TrC(Πj/βj)

 (14)

4. If it hasn’t accepted after T steps, reject.

Note that

TrWi+1 = exp

−εδ i∑
j=0

Φ∗(Πj/βj)− εδΦ†(Πi+1/βi+1)

 ≤ Tr[Wi exp(−εδΦ∗(Πi+1/βi+1))] (15)

by the Golden-Thompson inequality Tr exp(A+B) ≤ Tr(expA expB). Similarly,

TrZi+1 ≤ Tr[Zi exp(εδTrA(Πj/βj))]. (16)

This is the sense in which this is a multiplicative weights update algorithm.
At all times i, let

X =
ρi

γ + 2 Tr(ΠiΦ(ρi))
(17)

σ =
γξi + 2 TrC(ΠiΦ(ρi)Πi)

γ + 2 Tr(ΠiΦ(ρi))
. (18)

Then one can show that (X,σ) is a primal solution. If we accept, it is true that

TrX =
1

γ + 2 Tr(ΠiΦ(ρi))
≥ 1

γ + 2ε
, (19)

which is close to 1/γ for small ε. In particular, for an appropriate choice of parameters, this is higher than
the maximum probability of acceptance for a “no” instance, meaning that it must be a “yes” instance. Thus,
the algorithm accepts only for “yes” instances.

If we reject, then

Y =
1 + 2ε

T

T−1∑
j=0

Πj/βj (20)
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is a dual solution. If we take the same combination for a smaller T , it is not a feasible dual solution, but
with each iteration of the algorithm we add to Y , making it larger and larger. After an appropriate number
of steps, we have Φ†(Y ) ≥ I and it is a valid solution. In this case, we find that

TrC Y ≤ (1 + 2ε)(exp(ε)/γ + ε2/4), (21)

which again is close to 1/γ for small ε. In particular, this definitely means that the optimal dual solution is
below 1, which is the probability of acceptance in the “yes” instance, meaning this is a “no” instance. The
algorithm rejects only for “no” instances, so it is correct in all cases.

25.6 Performing the algorithm in PSPACE

The goal will be to approximate each matrix element of any matrix that appears in the algorithm using
polynomial space. Then traces, determinants, and inner products of those matrices can be calculated with
exponential sums, which can be done in PSPACE.

Note that we can find matrix elements of Q in polynomial space using the usual methods of simulating a
quantum algorithm with polynomial space. We can also find eigenvalues of Q by computing the characteristic
polynomial (using the determinant) and using numerical methods to approximate its roots. We can solve
the linear equations to find an eigenvector corresponding to a particular eigenvalue of Q. This lets us
approximate matrix elements of Q−1/2. This in turn lets us compute matrix elements of Φ(D) and Φ∗(D)
when needed.

Finally, we approximate exponentials by taking a finite number of terms in the sum, giving us a compo-
sition of usual matrix operations, all of which can be done in PSPACE.

To complete the proof, we need to analyze how accurately all this can be done. This requires some work,
but the bottom line is that these quantities can be computed very precisely, meaning the algorithm still gives
the correct answer when implemented in this way.

Thus, there is a PSPACE algorithm that can correctly decide any language in QIP.
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