
CMSC 858L: Quantum Complexity

Instructor: Daniel Gottesman

Spring 2023

3 Lecture 3: BQP and NP

Correction: In the definition of space-bounded complexity, the amount of space used should not count the
input or output. E.g., we can use a 3-tape Turing machine, of which the first tape is read-only (the input)
and the third tape is write-only (the output). Then only the space used on the second tape is relevant.
For decision problems, this makes no real difference, since the answer is just a bit, but functional problems
— like determining what is a uniform family of circuits — it potentially matters a lot, since otherwise you
would require space at least equal to the size of the output.

3.1 BQP

BQP is the central quantum complexity class, the class which captures what we mean by something that can
be efficiently solved on a quantum computer (at least for decision problems). Because quantum measurement
is random, we have to apply the same kind of definition as for probabilistic classical algorithms.

There is an additional complication in that we need to specify what kinds of quantum circuits we allow.
First, there is a question of how it interfaces with the classical input, the instance x. I will assume the
quantum circuit itself depends only on |x| and the exact instance is provided as input in a basis state at the
start of the circuit.

Definition 1. If Q(|ψ〉) is a quantum circuit with input |ψ〉, let MQ(|{ψ〉) be the random variable produced
by running the circuit on the input |ψ〉 and measuring the first qubit at the end of the circuit.

Then there is the question of what gates to allow. It would be natural to allow any universal set
of quantum gates of bounded size. However, this is a definition that would allow us to sneak in extra
computational power. For instance, imagine we have a gate Rφ for arbitrary φ that does a phase rotation by
φ: Rφ|0〉 = |0〉, Rφ|1〉 = eiφ|1〉. This is fine as far as it goes, but what if φ is an uncomputable number? By
applying Rφ many times in a phase estimation algorithm, we would be able to find φ to arbitrary precision
(given enough time), and calculate this uncomputable number. To disallow tricks like this, we should restrict
attention to gates that are themselves efficiently computable.

Definition 2. Let G be a set of quantum gates acting on a bounded number of qubits (usually either 2 or 3).
We say that G is a universal set of gates if for any unitary U , there exists a circuit (of any size) containing
gates from G that realizes the transformation U . G is approximately universal if, for any unitary U and any
error ε, there exists a circuit composed of gates from G that realizes a unitary Uε such that ‖U −Uε‖sup < ε.
G is efficiently computable if every matrix element of every member of G can be computed to accuracy ε in
a time O(poly(log 1/ε)) (on a classical computer).

In other words, a universal set of gates can exactly reproduce any unitary, whereas an approximately
universal set can be merely get close to any unitary.

We will discuss the ins and outs of universal and non-universal sets of gates in more detail once we are
done definining the major complexity classes. For now, just notice that any (exactly) universal gate set must
be infinite (since finite products of them give arbitary unitaries) and cannot be efficiently computable (since

1

there exist some unitaries, as discussed above, that are not; and if the gate set can exactly reproduce one of
them, it must also contain some noncomputable gates).

With these considerations, we therefore define BQP as follows:

Definition 3. Fix a particular efficiently computable approximately universal gate set G. Let BQP be the
set of languages L such that there exists a uniform family of polynomial-size quantum circuits Qn with the
following properties: For any instance x,

1. The circuit Q|x| is composed of gates from G.

2. If x ∈ L, then Prob(MQ|x|(|x〉) = 1) ≥ 2/3.

3. If x 6∈ L, then Prob(MQ|x|(|x〉) = 0) ≥ 2/3.

“BQP” stands for “bounded quantum polynomial.” Different gate sets G satisfying the conditions all
define the same class BQP, as we will discuss later.

What if we use a quantum Turing machine to generate the BQP circuits? This gives the same class,
as you will see on the problem set (although with a slightly different definition since I don’t want to define
quantum Turing machines).

3.2 NP

“NP” stands for “non-deterministic polynomial.” The original definition is in terms of a non-deterministic
Turing machine, which is a Turing machine that has a choice of possible transitions and can choose the “best”
one. However, there is also a straightforward and more understandable definition in terms of checking the
answer to the computation.

The idea is that for each yes instance x there is a “witness” wx which proves that x ∈ L and an efficient
algorithm to check that the witness is correct. In particular, we have the following definition:

Definition 4. Let NP be the set of languages L such that there exists a uniform family of polynomial-size
circuits Cn,m that takes two inputs (x,w) with the following properties: For any instance x,

1. If x ∈ L, then exists wx with |wx| = O(poly(|x|)) and C|x|,|wx|(x,wx) = 1.

2. If x 6∈ L, then for any wx with |wx| = O(poly(|x|)), C|x|,|wx|(x,wx) = 0.

In the first case, wx is the witness for x ∈ L.

That is, C is the checking algorithm, and if x ∈ L, then there exists some witness which will be accepted
by the checking algorithm, whereas if x 6∈ L, than any possible witness will be rejected.

Example 1. 3-SAT is a language defined by Boolean expressions that can be satisfied. The Boolean expres-
sions we consider are the AND (∧) of clauses, each of which involves the OR (∨) of 3 Boolean variables
(True/False valued) or their negations (written here with a line over the variable). (It is 3 variables because
we are considering 3-SAT; k-SAT would involve k variables per clause.) The same variable can be repeated
in a clause. For instance, the following are valid clauses:

x0 ∨ x5 ∨ x7 (1)

x1 ∨ x3 ∨ x4 (2)

x2 ∨ x2 ∨ x6 (3)

x1 ∨ x1 ∨ x8 (4)

So, for instance, the first clause evaluates to True if one or more of x0, x5, x7 is True. The last clause above
always evaluates to True, since either x1 is True or x1 is True.

2

Then the Boolean expression is formed from these clauses by taking the AND: e.g.,

(x0 ∨ x5 ∨ x7) ∧ (x1 ∨ x3 ∨ x4) ∧ (x2 ∨ x2 ∨ x6) ∧ (x1 ∨ x1 ∨ x8). (5)

This evaluates to True iff all the individual clauses making it up are True. So, for instance, if all the variables
x0 through x8 are True, then this particular expression is True, but if x1 is False and all other variables are
True, the overall expression is False since the second clause is False.

A Boolean expression B ∈ 3-SAT if there exists a truth assignment xi to the variables of B such that
B(x0, . . . , xn) = True.

Then 3-SAT is in NP: If B ∈ 3-SAT, let the witness wB be a satisfying truth assignment (x0, . . . , xn). The
checking circuit evaluates B on the truth assignment. This checking circuit clearly runs in polynomial time
and when we have a valid truth assignment, the checking circuit accepts. On the other hand, if B 6∈ 3-SAT,
then for any witness (any truth assignment), evaluating B on that truth assignment gives False, and the
witness is rejected.

Note that there is an inherent asymmetry to the definition of NP: When x ∈ L, we can prove that and
efficiently verify that the proof is correct, even though it might be hard to find the proof (i.e., the witness)
efficiently. However, if x 6∈ L, we can’t easily prove that this is true. Any witness we try will fail, of course,
but we can’t be sure that we didn’t just make a bad choice of witness and that there isn’t another witness
that would work.

Note also that P ⊆ NP since we can just let the witness be empty and the checking circuit equal to the
algorithm to find the answer given the instance x.

There is another class called co-NP, which is basically the same as NP except that the witness exists
when x 6∈ L and there is no witness when x ∈ L. It is believed that NP 6= co-NP. Factoring and graph
isomorphism are examples of problems in NP ∩ co-NP.

3.3 Reductions and NP-completeness

It is a famous open problem to show that P = NP. One approach to studying this problem is to look at the
hardest problems in NP. What does that mean?

For some pairs of problems, it is difficult to say and may not be meaningful to say that one is harder than
the other, but sometimes it is clearly sensible to say that. In particular, if solving problem A automatically
gives us a soltuion to problem B as well, then it makes sense to say that A is at least as hard as B. This
the underlying notion of reduction.

Definition 5. Language L reduces to language M if exists a polynomial-time computable function f(x) such
that for any instance x of L:

1. f(x) is an instance of M ,

2. If x ∈ L, then f(x) ∈M ,

3. If x 6∈ L, then f(x) 6∈ f(M).

There are a variety of different notions of reduction, but they all share a basic property with this definition:
If we have an algorithm to decide M , we can combine it with the reduction to get an algorithm to decide
L as well. In particular, given any instance x for L, we convert it to an instance of M using f and then
determine whether f(x) ∈ M . Whatever the answer, we know it is the same as the answer to the original
question : Is x ∈ L?

This lets us define a sensible partial order on problems with M “harder than” L if L reduces to M and
L and M of equal hardness if they reduce to each other.

Remarkably, there are some problems which we can prove to be harder than any other problem in NP,
in the sense that any NP problem can be reduced to one of them. Problems with this property are called
“NP-complete.”

3

Definition 6. Let C be a complexity class. A language L is C-hard if for any M ∈ C, M reduces to L. A
language L is C-complete if L is in C and L is C-hard.

Example 2. An example of an NP-complete problem is 3-SAT. To see how this works, let us consider an
arbitrary NP problem M and see how to reduce it to 3-SAT. Since M ∈ NP, there exists a family Cn of
polynomial-size checking circuits for M .

Now, a classical circuit is just a sequence of gates, say AND, OR, and NOT, connected by wires. AND
and OR takes two inputs and one output; NOT takes one input and one output. Suppose we assign a new
variable yj to each wire. Then the basic gates express a relationship between the variables corresponding to
their inputs and outputs. For instance, a NOT gate with input y and output y′ expresses

(y ∧ y′) ∨ (y ∧ y′) = (y ∨ y′) ∧ (y ∨ y′). (6)

This is a Boolean formula of the form needed for 3-SAT (adding an extra redundant variable to the two
clauses). Similarly for AND and OR.

By combining all the Boolean formulas for all the gates in the circuit Cn, we get a Boolean formula for
which any satisfying assignment of variables is equivalent to a “history” of the circuit, giving truth values
for the variables on the wires as they evolve under the gates of the circuit. However, this property doesn’t
constrain the input or output to the circuit. We can constrain some of the inputs to the circuit (corresponding
to any ancilla bits or to the inputs for the instance we care about) by adding clauses which are true only
when those bits have the desired values.

Now suppose we add one more clause. If xf is the variable corresponding to the output wire of the
circuit, add the clause xf ∧xf ∧xf . With the extra clause, the Boolean formula f(x) (when x is the original
instance) is satisfied iff we have a set of possible input variables and a valid history of the circuit such that
the output of the circuit is True (or 1). That is, the Boolean formula is satisfied exactly in those cases where
the corresponding circuit input is accepted by the circuit Cn.

The input in this case is the witness for the instance x, so the Boolean formula is satisfied iff there is a
witness that is accepted by the checking circuit. That is, f(x) ∈ 3-SAT iff x ∈ M . We have reduced M to
3-SAT.

The argument in the example shows the following theorem:

Theorem 1 (Cook-Levin). 3-SAT is NP-complete.

There are many more NP-complete problems.
One significance of NP-completeness is that it offers a potential route to prove that P = NP: Simply

find a polynomial-time algorithm for any NP-complete problem L. Since any other NP problem can be
reduced to L, that automatically gives us an efficient algorithm for every language in NP. NP-completeness
also helps us understand the relationships of complexity classes by distinguishing the hardest problems in
NPfrom easier problems that are not NP-complete and therefore sometimes sit in lower complexity classes
(such as NP ∩ co-NP).

4

