CMSC 858L: Quantum Complexity

Instructor: Daniel Gottesman

Spring 2023

4 QMA, PSPACE, and universal quantum circuits
41 QMA

To define a quantum analog of NP, we need to both handle the random aspect of quantum measurement
and to convert everything to quantum states and circuits. The solution to add randomness is essentially
the same as for BPP and BQP: Namely, use a checking circuit with a probability 2/3 of giving the correct
answer. When we do this for a classical complexity class, we get a class known as MA, for “Merlin-Arthur.”
This class comes with a story attached to it: Arthur is a king, intelligent but merely mortal. He can do any
polynomial-time computation. However, he has an advisor Merlin, a powerful wizard who can perform any
computation. Unfortunately, Merlin can be a bit tricky and Arthur does not trust him, so he insists that
whenever Merlin gives him an answer to any question that Merlin be able to prove that the answer is true.
For instance, Arthur could ask Merlin “Is this Boolean formula satisfiable?” If Merlin answers “yes,” then
he can follow that up with a proof by giving a satisfying assignment for the formula and Arthur can then
check that using his own computational abilities. This certainly allows Merlin to convince Arthur of the
“yes” answer for any language in NP. However, Arthur is also satisfied with a statistical proof, so we allow
the checking algorithm to be randomized, giving the potentially slightly larger class MA.

Making MA quantum (giving QMA, “quantum Merlin-Arthur”) is actually a bit more challenging because
there is a choice we have to make: We have two classical things in the definition of NP: A classical checking
circuit and a classical witness. Which of these should we make quantum? Making just the witness quantum
doesn’t make sense since there is no way for the classical circuit to interact with it in a quantum way, so we
should at least make the checking circuit quantum.

But should we allow the witness to be a quantum state or leave it as a classical bit string? These give
what apparently two different complexity classes, QMA and QCMA.

Definition 1. Fiz a particular efficiently computable approzimately universal gate set G. Let QCMA be the
set of languages L such that there exists a uniform family of polynomial-size quantum circuits Qy m (with
gates drawn from G) that takes two inputs (x,w) with the following properties: For any instance x,

1. If v € L, then exists w, with |w,| = O(poly(|z[)) and Prob(Mg,, . (|7) ® |w)) =1) > 2/3.
2. If x & L, then for any w, with [w,| = O(poly(|z[)), Prob(Mg,,, ... (|z) ® |wz)) = 0) > 2/3.
In the first case, w, is the witness for z € L.

Definition 2. Fiz a particular efficiently computable approximately universal gate set G. Let QMA be the
set of languages L such that there exists a uniform family of polynomial-size quantum circuits Qyp m (with
gates drawn from G) that takes two inputs (x,|v)) with the following properties: For any instance x,

1. Ifz € L, then exists an n-qubit state [¢), with n = O(poly(|z])) and Prob(Mg,,, . (|z) ® [¢).) =1) >
2/3.

2. If x € L, then for any n-qubit state |¢), with n = O(poly(|z[)), Prob(Mgq,,, ,(|z) ® [¢).) = 0) > 2/3.

In the first case, w, is the witness for x € L.

We will discuss these two classes again later. QMA is usually considered the important one, the most
natural quantum analog of NP. One thing that is worth noting right now is that as far as we know, all the
QMA-complete problems must be promise problems because of the requirement that the probability is at
least 2/3 of either accepting or rejecting the witness. Certainly, the most natural complete problems we
know don’t have this probability separation without a restriction on the possible instances. Without the
promise, they are generally QMA-hard instead.

4.2 PSPACE

Going to still larger complexity classes, we get PSPACE. PSPACE is the class of decision problems that can
solved in polynomial space on a Turing machine. PSPACE is a large complexity class because we can run
very long algorithms which use only a modest amount of space and then erase it and use it again.

Definition 3. Let PSPACE be the set of languages that can be decided by a Turing machine using O(poly(|z|))
space for instance x.

We could also define it as languages decided by circuit families which use a polynomial number of bits;
however, we would have to use a broader definition of “uniform,” to allow circuits generated by a Turing
machine in polynomial time. This is because a Turing machine using only logarithmic space can’t generate
exponential-size circuits. Similarly, any PSPACE algorithm will halt in at most exponential time.

Theorem 1. Let A be an algorithm that uses f(|z|) space on input |z|. Then A on input |x| either halts or
repeats itself after a time at most 20 (121)

Proof. Consider the state of the Turing machine tape (the whole tape that is used, not just one cell) at time
i. If there are A different symbols in ¥, then there are total of Af(*D different possible states of the tape.
There are also | K| head states and O(f(|z|) + |z|) head locations (conceivably there could be some blank
spots on the tape between the input and the part that is used, but there have to be a limited amount of
them or the algorithm would never start writing again), for a total of O((f(|z|) + |z|)|K|AT(2D) = 20(f (=)
different possible states of tape plus head.

The action of the Turing machine is completely determined by the state of the tape and the head. In
particular, if it repeats the same tape state and the same head state, it will repeat the next time step and
so on, looping. Since there are only 29/ (121)) possible different states given the amount of space used by the
algorithm, it must either halt or repeat itself after this time. O

PSPACE contains all of the complexity classes we have talked about so far (except for P/poly which is a
bit of a special case). Here is a quick proof sketch that BQP C PSPACE. The proof that QMA C PSPACE
is a bit more involved and we will get back to it later.

Proof that BQP C PSPACE. A quantum circuit can be simulated on a classical circuit by multiplying out
the 2™ x 2™ matrices given by the quantum gates. This takes exponential time and naively takes exponential
space. However, we can reduce this to exponential time and polynomial space.

Claim 1. We can calculate any single matriz element using only polynomial space:

Proof of claim.

n n—1
@lJuilby =" > [Wolaeo [[Wileir.e:Unlen s (1)
1=0 COyereyCn—1 =1

Each term in this sum is a product of polynomially many terms so can be computed using polynomial time
and space. We can step through the value of the n-tuple (co, ..., c,—1) and keep a running total for the sum
while doing so, discarding any previous partial sum. At any given time, then, we only need to keep track of
the n-tuple (which requires linear space) and the current value of the sum (which requires polynomial space
to keep track of with adequate precision). Thus, the whole sum can be computed in polynomial space. [

A single matrix element doesn’t tell us the probability of getting outcome 1 when the first qubit is
measured, but we can compute

n

Prob(outcome 1) = > |(a| [JUilb)I? (2)
a=lajas...am 1=0

(where |b) is the initial state of the computation), the total probability over all outcomes with 1 in the first

qubit. Each term in the sum is computable with polynomial space by the claim, and again we can keep a

running total of the sum with polynomial space. O

You might expect that at this point, we should be introducing another complexity class of problems
that can be solved by quanutm algorithms that use only polynomial space, but it turns out that quantum
algorithms with polynomial space give the same complexity class as classical algorithms with polynomial
space. We will (probably) return to this when we talk about PSPACE at more length.

4.3 Quantum Mechanics and Quantum Gates

This is intended to be a quick review of the quantum formalism and the quantum gates we will be using.
(Pure) quantum states are vectors in a complex Hilbert space. We write them with angle brackets called
kets. General pure are usually labelled with Greek letters, particularly ¢ and ¢, and can be expanded in a
standard basis labelled by bit strings: e.g.,

[9) = al00) + 5101} +[10) + 8]11) 3)
|¢) = al00) 4 bJ01) 4 ¢|10) + d|11) (4)

The inner product of two quantum states is written using bras and kets: e.g.,
(1) = a*a + b°B + ¢y + d°. (5)

Here, the star indicates complex conjugation. In principle, quantum states need to be normalized (|¢) = 1,
but we often don’t bother to do this explicitly. One place where it is important to do so is when measuring; a
measurement in the standard basis has a probabilistic result, giving outcome a with probability equal to the
absolute value squared of the component of a, e.g., the probability of getting outcome 00 if we measure |¢))
above in the standard basis for both qubits is |a|?. The normalization then ensures that the total probability
sums to 1.

Quantum gates are unitary operations UUT = I (which ensures they preserve the inner product and there-
fore total probability). Here { represents the Hermitian adjoint, which is the complex conjugate transpose
of the matrix representation. Standard example quantum gates are

1 /1 1
H= 7 <1 _1> Hadamard (6)
e 0
Ry = 0 Phase gate (7)
0 e
10 00
01 00
CNOT = 00 0 1 Controlled-NOT (8)
0010
Another example gate is the Toffoli gate:
Tofla,b,c) =|a,b,c® ab). (9)

Technically, quantum states are vectors in a projective Hilbert space, because they are only defined up to
a global phase (i.e., one that applies equally to all states). Note that changing by a global phase does not
affect the probability of a measurement outcome.

We will be using some additional more advanced properties of quantum states, but this should get you
started. And if this material is unfamiliar, you should review it.

4.4 Universal Quantum Circuits

Recall:
Definition 4. Let G be a set of quantum gates acting on a bounded number of qubits (usually either 2 or 3).

e G is a universal set of gates if for any unitary U, there exists a circuit (of any size) containing gates
from G that realizes the transformation U.

e G is approximately universal if, for any unitary U and any error €, there exists a circuit composed of
gates from G that realizes a unitary Ue such that ||U — Ue||sup < €.

The standard example of a universal set of gates is G = {single-qubit gates, CNOT}. Two standard
examples of approximately universal sets of gates are G = {H, R, /s, CNOT} and {H, R4, Tof}. Here
CNOT is the controlled-NOT, H is the Hadamard transform, Ry is the diagonal phase gate Ry|0) = e¢~*?|0),
Ry|1) = €|1), and Tof is the 3-qubit Toffoli gate (also called the controlled-controlled-NOT). (Often, R /4
is called S and R, g is called T'.)

One advantage of dealing with approximately universal gate sets is that we can now use a finite gate
set. Note that a finite gate set can only ever be approximately universal and not exactly universal, since the
number of circuits with a finite gate set is countable whereas the set of all unitaries is uncountable.

We said earlier that the definition of BQP doesn’t depend on which universal gate set we pick. This is a
consequence of the Solovay-Kitaev theorem, which says that any approximately universal gate set can not
just approximate any unitary to any desired accuracy € > 0, but can do so with a number of gates that is
only polylogarithmic in 1/e. Moreover, it is constructive.

Theorem 2 (Solovay-Kitaev). Let G be a universal set of gates. Then for any unitary V in a fized
Hilbert-space dimension D, there exists a classical algorithm to find, for any € > 0, a quantum circuit
of size O(poly(log(1/¢))) which realizes U, such that |V — Ue|| < €. The classical algorithm runs in time
O(poly(log(1/e€))) as well.

The original version of the Solovay-Kitaev theorem requires that G is closed under inverses, but there is
a recent improvement that removes that requirement. It is also worth noting that certain gate sets (such
as {H, Rr/s}) can achieve this approximation more efficiently (i.e., with a lower exponent of the logarithm)
than the general case.

