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5 Lecture 5: Solovay-Kitaev Theorem, non-universal gate sets

For a proof of the Solovay-Kitaev theorem, see Ch. 8 of Kitaev, Shen, and Vyalyi, Classical and Quantum
Computation or Appendix 3 of Nielsen and Chuang, Quantum Computation and Quantum Information. The
inverse-free Solovay-Kitaev theorem is Bouland and Giurgica-Tiron, “Efficient Universal Quantum Compi-
lation: An Inverse-free Solovay-Kitaev Algorithm,” arXiv:2112.02040 [quant-ph].

5.1 Solovay-Kitaev

Theorem 1 (Solovay-Kitaev). Let G be a universal set of gates. Then for any unitary V in a fixed
Hilbert-space dimension D, there exists a classical algorithm to find, for any ε > 0, a quantum circuit
of size O(poly(log(1/ε))) which realizes Uε such that ‖V − Uε‖ < ε. The classical algorithm runs in time
O(poly(log(1/ε))) as well.

The original version of the Solovay-Kitaev theorem requires that G is closed under inverses, but there is
a recent improvement that removes that requirement. It is also worth noting that certain gate sets (such
as {H,Rπ/8}) can achieve this approximation more efficiently (i.e., with a lower exponent of the logarithm)
than the general case.

Also, very importantly, we are fixing the Hilbert space dimension. While the theorem works for any
dimension, the number of gates needed is certainly exponential in the number of qubits. The algorithm is
only efficient in the accuracy needed.

Proof sketch. The first step of the proof is to get a very rough approximation, with a constant degree of
accuracy ε0. We can discover how to do this by simply trying out all the possible circuits up to a certain
(constant) size. There are a constant number of such circuits. Because the gate set is universal, eventually
we will get ε0-close to every unitary. The size of circuit needed to do this will be dependent on the exact
gate set, but it is independent of the eventual target accuracy ε, which hasn’t shown up yet.

An ε-net S for a subset B ⊆ SU(D) is a set such that for all V ∈ B, ∃U ∈ S such that ‖U−V ‖ < ε. (Here
SU(D) is the special unitary group of dimension D, the set of all D×D unitary matrices of determinant 1;
unitaries always have determinant with absolute value 1, so any unitary is related to an element of SU(D)
up to a global phase, which is physically irrelevant.) So this first stage of the proof is to create an ε0-net for
SU(D).

Given the target V for the theorem, we can therefore pick a U0 from the ε0-net such that ‖V −U0‖ < ε0.
Let V1 = V U−10 . Then

‖V1 − I‖ = ‖(V − U0)U−10 ‖ = ‖V − U0‖ < ε0 (1)

since the distance measures we are likely to use are invariant under unitary rotations.
Our next task is to find a good approximation U1 to V1. Suppose ‖V1 − U1‖ < ε1 < ε0. Then

‖V − U1U0‖ = ‖V1U0 − U1U0‖ = ‖V1 − U1‖ < ε1, (2)

again using invariance of the distance under unitaries, so we have found a better approximation to V . We
keep doing this with smaller and smaller εi to find the desired circuit.
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So how to do we find this better approximation? Suppose we have an εi-net Si in a ball of radius δi
around the identity. We want to use this to find a εi+1-net Si+1 in a ball of radius δi+1 around the identity,
with εi+1 < εi and δi+1 < δi.

In the case of unitaries, we write U = eiηH ≈ I+ iηH, where H is Hermitian (i.e., H = H†) and traceless
(TrH = 0). Suppose we have U1 = e−iηH1 and U2 = e−iηH2 . By the Baker-Campbell-Hausdorff lemma,

U1U2 = e−iη(H1+H2)−η2[H1,H2]/2+O(η3), (3)

with [H1, H2] = H1H2 −H2H1. In particular, when η is small, we can reasonably approximate the product

U1U2 = e−iη(H1+H2)+O(η2), whereas the group commutator

U1U2U
†
1U
†
2 = e−η

2[H1,H2]+O(η3). (4)

Lemma 1. The set of unitaries U1U2U
†
1U
†
2 where U1 and U2 are arbitrary elements of Si form an O(εiδi)-net

in a ball of radius O(δ2i ) provided εi < δi and εi = Ω(δ2i ).

Proof of lemma. Suppose we have an element W in a ball of radius O(δ2i ). Then we can write W = e−iδ
2
iH

and pick traceless Hermitian H1, H2 such that δ2iH = −i[δiH1, δiH2] + O(δ3i ). (This is not obvious, but
follows from properties of the Lie algebra for SU(D).). Since e−iδiH1 and e−iδiH2 are in a ball of radius δi
around the identity, we can approximate them with elements of Si U1 and U2. We have Uj = e−iδiH

′
j , with

H ′j = Hj +O(εi) (j = 1, 2). Then

U1U2U
†
1U
†
2 = e−δ

2
i [H

′
1,H

′
2]+O(δ3i ) (5)

= e−δ
2
i [H1,H2]+O(εiδi)+O(δ3i ) (6)

= e−iδ
2
iH+O(εiδi)+O(δ3i ) (7)

= W +O(εiδi) +O(δ3i ). (8)

When εi = Ω(δ2i ), we therefore have an approximation of W to an accuracy O(εiδi).

It’s actually possible to get a somewhat tighter error bound for εi than in this lemma due to cancellations
in the commutator. Unfortunately, the net does not cover enough area for our purposes, so we need to
expand it to cover a larger ball using the same approximation technique we are planning to use for V (shift
to near I and then approximate).

Putting all of these components together, we can get finer and finer nets with εi = O(εci−1) for some

constant c, so εi = O(εc
i

0 ). Each net uses more gates, however, by a constant factor d. To achieve the desired
approximation ε, then, we need to have ci = log ε/ log ε0 = O(log(1/ε)) (since ε0 < 1) and a total number of
gates

di = O(log(1/ε)log d/ log c) = O(poly(log(1/ε))). (9)

The standard approach gives c = 3/2 and d = 5, so the exponent is about 4, but this can be tightened.

One immediate consequence of the Solovay-Kitaev theorem is that if we have two different universal
gates, we can convert a circuit written using one such gate set to the other one with minimal overhead. In
particular, suppose CG is a circuit of size T using gates from gate set G. In order to rewrite this circuit
using gates from gate set H, we should replace each gate in CG with an approximation from H. We need
an accuracy ε = O(1/T ) so that the approximate circuit is close enough to the original. Therefore, each
gate from G gets replaced with O(poly log(T )) gates from H. Since the gates from G act on a bounded
number of qubits, we don’t have to worry about the dimension factors in this approximation. The new
circuit thus has O(Tpoly log T ) gates, which is certainly polynomial in T . While the polylogarithmic scaling
of Solovay-Kitaev is not necessary for defining BQP (polynomial in 1/ε would have sufficed), it is necessary
for getting meaningful polynomial speedups, such as Grover’s algorithm, from a quantum computer.
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5.2 Non-Universal Gate Sets

The standard example of a universal set of gates is G = {single-qubit gates, CNOT}. Two standard examples
of approximately universal sets of gates are G = {H,Rπ/8, CNOT} and {H,Rπ/4, T of}. Here CNOT is the

controlled-NOT, H is the Hadamard transform, Rθ is the diagonal phase gate Rθ|0〉 = e−iθ|0〉, Rθ|1〉 = eiθ|1〉,
and Tof is the 3-qubit Toffoli gate (also called the controlled-controlled-NOT). (Often, Rπ/4 is called S and
Rπ/8 is called T .)

What if instead of a universal gate set, we take some non-universal gate set? There are a lot of different
choices, and now they are not all equivalent. So let us think about polynomial-size quantum circuits built
from some different sets G which are not universal. It turns out that there are a lot of different variations
and even small changes in the rules can produce different results. For the moment, let us assume that we
always initialize the circuit with states in the standard basis, measure at the end of the computation in the
standard basis, and do not allow intermediate measurements.

As a first example, consider the gate set G = {X,CNOT, Tof}. What complexity class do we get from
polynomial circuits with this gate set?

Answer: P! These are all classical gates and indeed, they form a universal set of reversible classical gates.
Since every classical computation can be converted to a reversible computation, this allows everything in P.
Note that we don’t even have any way to introduce randomness, so we have P, not BPP. But if we allowed
some qubits to be initialized in the state |+〉 = |0〉+|1〉, then we could use those as random bits and we would
get BPP. (This is a simple example of what I mean when I say that small rule changes can give different
results.)
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