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6 Clifford group

For the Clifford group, see D. Gottesman, “The Heisenberg Representation of Quantum Computers,” quant-
ph/9807006 and Aaronson and Gottesman, “Improved Simulation of Stabilizer Circuits,” quant-ph/0406196.

Correction from earlier: If you want to define PSPACE using circuits, you need something stronger than
a polynomial time Turing machine to generate the circuit. (Since the circuits for PSPACE are exponential
in size, polynomial time is not enough to output them.) Instead, we say that a Turing machine can output
the ith gate in the circuit in polynomial time, along with the other required circuit parameters such as its
size.

OK, what about this set: G = {H,CNOT,Rπ/4}. If we replace Rπ/4 by Rπ/8 or CNOT by Tof , this is
universal. But what about this gate set itself? What is its computational power?

The group generated by these gates is a finite group known as the Clifford group. Note that these gates
can generate entangled states such as a Bell state |00〉+ |11〉 or a GHZ state |000〉+ |111〉. The group is also
of practical importance since it is all that is needed to do encoding and error correction on the large class
of stabilizer quantum error-correcting codes. Nevertheless, this gate set is not just not universal, but can
actually be efficiently simulated on a classical computer:

Theorem 1. There is a polynomial time classical algorithm such that, for any quantum circuit consisting of
qubits initialized in the state |0〉, gates from the Clifford group, and ending with standard basis measurements
of all qubits, the algorithm calculates the conditional probability of a measurement result, conditioned on the
outcome of some or all other qubits.

This is what is known as a strong simulation (and an exact one, whereas one might have an approximate
simulation in some cases). A weak simulation is where the simulation only solves the sampling problem, i.e.,
generates outcomes according to the correct (or approximately correct) probability distribution.

Proof. The main insight needed for this theorem is that the gates in the Clifford group are exactly those
which conjugate the Pauli group into itself. The Pauli group is consists of tensor products of the Pauli
matrices

I =

(
1 0
0 1

)
, X =

(
0 1
1 0

)
, Y =

(
0 −i
i 0

)
, Z =

(
1 0
0 −1

)
(1)

with overall phase ±1,±i. For instance, HXH† = Z, HZH† = X and CNOT (X ⊗ I)CNOT † = X ⊗X.
We then note that the initial state of all n qubits in the state |0〉 is the +1 eigenstate of the Paulis

M1 = Z1, M2 = Z2, . . . , Mn = Zn (here Zi means “Z acting on qubit i”), and is the unique state (up
to global phase) with that property. We could thus equally well describe the initial state by listing the n
operators M1, . . . ,Mn (generators of the stabilizer of the state). When we perform a gate U from the Clifford
group, the state changes from |ψ〉 to U |ψ〉, and if it was a +1 eigenstate of M before, then

(UMU†)U |ψ〉 = UM |ψ〉 = U |ψ〉. (2)

That is, the state U |ψ〉 is a +1 eigenstate of UMU†. Thus, if the state of the n-qubits is a +1 eigenstate of
M1, . . . ,Mn before the gate, after the gate it is the +1 eigenstate of UM1U

†, . . . , UMnU
† and vice-versa. If

it is the unique eigenstate before the gate, it is also the unique eigenstate after the gate.

1



The upshot is that we can uniquely specify the state throughout the circuit by updating the stabilizer:
Whenever we perform a gate U , replace Mi with UMiU

†. When U is a general unitary, this might be a
complicated thing, but if U is in the Clifford group and Mi is in the Pauli group, then UMiU

† is also in the
Pauli group, and therefore can be specified using just 2n+2 bits: 2 bits for each of the n Paulis in the tensor
product and 2 more for the overall phase. The full description of the state thus requires only O(n2) bits.
Updating each Mi takes a constant time, since the only bits that need to be changed are those specifying
the Paulis on the qubits acted on by the gate plus the bits specifying the global phase. Thus, simulating a
single Clifford group gate takes time O(n).

The measurement at the end is a little trickier. Measuring qubit i in the standard basis corresponds to
measuring the eigenvalue of Zi. If Zi or −Zi is one of our generators Mj , then this is straightforward to
compute, since if Mj = Zi, the outcome for measuring qubit i will always be 0 (since the +1 eigenstate of
Zi is |0〉) and if Mj = −Zi, the outcome for measuring qubit i will always be 1 (since the state is a +1
eigenstate of −Zi, which means it is a −1 eigenstate of Zi, namely |1〉). Also note that it is not possible that
±iZi is one of the generators Mj , since the state is a +1 eigenstate of Mj and ±iZi has eigenvalues ±i.

But what if Zi is not equal to a generator? One possibility is that ±Zi is equal to a product of generators

±Zi =

n∏
j=1

M
bj
j , (3)

with each bj a bit. If Zi satisfies this equation, then the state is a +1 eigenstate of Zi as well:

ZI |ψ〉 =

n∏
j=1

M
bj
j |ψ〉 = |ψ〉, (4)

since |ψ〉 is a +1 eigenstate of each Mj . The measurement outcome will then be 0. SImilarly, if −Zi satisfies
(3), then the state is a −1 eigenstate of Zi and the measurement outcome will always be 1.

We can find out if (3) holds by doing linear algebra. In particular, suppose we ignore the global phase
for the moment and represent each Mj by a 2n-bit vector (x|z). If xk is the kth bit of x and zk is the kth
bit of z, then the tensor factor Pauli of Mj acting on the kth qubit is

• I if (xk, zk) = (0, 0),

• X if (xk, zk) = (1, 0),

• Y if (xk, zk) = (1, 1),

• Z if (xk, zk) = (0, 1).

Note that if (x|z) is the binary vector corresponding to M and (x′|z′) is the binary vector corresponding to
M ′, then (x + x′|z + z′) is the binary vector corresponding to MM ′.

This means that (3) holds iff

(0|ei) =

n∑
j=1

bj(xj |zj). (5)

Here, ei is the vector which is 0 except in the ith coordinate, which is 1, and (xj |zj) is the binary vector
corresponding to Mj . This equation can be rewritten as

(0|ei)T = MbT , (6)

where b is the row vector of the bj ’s and M is the 2n× n matrix with columns equal to the (xj |zj) vectors.
This is a system of linear equations over the binary field and can be solved by standard techniques, such

as Gaussian elimination. If it has a solution, we find the values of bj . This procedure also tells us if (3) does
not hold.
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Note, however, that we are not quite done with this case. We have found the bj ’s but we do not yet know
whether the measurement outcome is 0 or 1 because we dropped the global phase for this calculation. Now

we must restore it, computing
∏
M

bj
j in the Pauli group to see if we get Zi or −Zi.

What about if (3) does not hold? Actually, there is a shortcut we can use to determine that. Note that
the initial generators Mi = Zi all commute with each other under multiplication, and when we conjugate
them by U that is still true:

(UMiU
†)(UMjU

†) = UMiMjU
† = UMjMiU

† = (UMjU
†)(UMiU

†). (7)

When we take the binary vector representations of the initial Mi = Zi, the vectors we get are all linearly
independent. This remains true after performing Clifford group gates because the gates are invertible; if P
is a product of the UMiU

†s, then U†PU is the same product of the Mi’s.
Thus, the Mi’s at all times are independent, commuting Pauli operators. It turns out that we can have

at most n independent commuting Pauli operators on n qubits.

Claim 1. N commutes with every Mi iff ±N is a product of some Mi’s.

Proof of claim. Certainly, if ±N is a product of Mi’s, then it commutes with all of them, since they all
commute with each other.

The forward direction can again be seen as a consequence of linear algebra. Let (x|z) be the binary
vector corresponding to M and let (x′|z′) be the binary vector corresponding to M ′. Then we can determine
by direct calculation that M and M ′ commute iff

x · z′ ⊕ z · x′ = 0. (8)

The commutation of Paulis corresponds to a symplectic product in the binary vector space. In particular,
if M is the matrix whose columns are the binary vectors corresponding to Mi, then N with binary vector
(x|z) commutes with all of the Mi’s iff

(z|x)M = 0. (9)

(Note here that the z and x terms in the vector are switched due to the symplectic product.) This means
that the vector (x|z) is again a solution to a set of linear equations. But since the Mi’s are all independent,
the matrix M has maximum rank n. That means that the dimension of the solution space is n (as a binary
vector space). But the columns of M , the vectors corresponding to Mi, are solutions already, since the Mi’s
commute with each other, and there are n of them. They are linearly independent, so they span the solution
space and any vector that solves (9) is a sum of the vectors corresponding to Mi. This, in turn, means that
±N is a product of the Mi’s.

So the only remaining case is when Zi fails to commute with one or more of the Mj ’s. Elements of
the Pauli group either commute or anticommute, PQ = −QP . Therefore, there must be some j such that
ZiMj = −MjZi. In this case, the measurement outcome must be a random bit.

To see this, note that the projector onto the ±1 eigenspace of Zi is (I ± Zi)/2. This means that the
probability of getting the outcome 0 to when measuring the ith bit of the state |ψ〉 is

1

2
〈ψ|(I + Zi)|ψ〉. (10)

But if |ψ〉 is a +1 eigenstate of Mj and Mj anticommutes with Zi, we have

1

2
〈ψ|(I + Zi)|ψ〉 =

1

2
〈ψ|(I + Zi)Mj |ψ〉 =

1

2
〈ψ|Mj(I − Zi)|ψ〉 =

1

2
〈ψ|(I − Zi)|ψ〉, (11)

which is the probability of getting outcome 1. Thus, outcome 0 and outcome 1 both have probability 1/2.
If we are only measuring a single qubit, we can stop here. But that won’t let us calculate conditional

probabilities. To go further, we want to figure out the residual state of the remaining qubits after we measure
one of them. We can do so by noting that if we measure qubit i and get outcome 0, the overall state is
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now 1√
2
(I + Zi)|ψ〉, the projector onto the +1 eigenspace of Zi, renormalized to take into account that the

probability of this outcome is 1/2. We won’t bother to track the normalization from now on, since it is
automatic.

We can update the stabilizer generators to take the measurement into account. Note that if Mk commutes
with Zi, then the state is still a +1 eigenstate of Mk:

Mk(I + Zi)|ψ〉 = (I + Zi)Mk|ψ〉 = (I + Zi)|ψ〉. (12)

The state is not still an eigenstate of Mj , which anticommuted with Zi, and any other Mk that anticommute
with Zi have a similar problem. However, note that before the measurement, if the state is a +1 eigenstate
of Mj and Mk, then it is also a +1 eigenstate of MjMk, and if Mj and Mk both anticommute with Zi, then
MjMk commutes with Zi:

Zi(MjMk) = −MjZiMk = +(MjMk)Zi. (13)

Therefore, after the measurement, the state is a +1 eigenstate of MjMk.
We therefore have the following algorithm to compute a new set {M1, . . . ,Mn} for which the post-

measurement state is a +1 eigenstate:

1. Find j such that Mj anticommutes with Zi

2. Run through all k = 1, . . . , n, k 6= j. If Mk commutes with Zi, leave it. If Mk anticommutes with Zi,
replace it by MjMk.

3. Replace Mj by Zi if the measurement outcome was 0 and by −Zi if the measurement outcome was 1.

It is not hard to see that the resulting new set of Mi’s all commute with each other and are independent.
We therefore have the following algorithm to determine conditional probabilities of measurements. Sup-

pose we want to find the probability of measuring 0 on qubit d conditioned on having the outcomes
c1, . . . , cd−1 on qubits 1 through d− 1. (This is WLOG since we can relabel the qubit numbers as needed.)

1. For qubit i running from 1 to d− 1:

(a) Determine if Zi commutes with all Mj .

(b) If Zi and all Mj commute, solve (6) to find the expansion of ±Zi as a product of the Mj ’s and
then determine if the outcome of measuring Zi should be 0 or 1. If the result matches ci, then
continue; otherwise, this condition is not possible, so halt and return that result.

(c) If Zi anticommutes with some Mj , update that stabilizer as above assuming that the (random)
measurement outcome is ci.

2. Determine if Zd commutes with all Mj

3. If Zd and all Mj commute, solve (6) to find the expansion of ±Zd as a product of the Mj ’s and then
determine if the outcome of measuring Zd is 0 or 1. If the outcome is 0, return probability 1; if the
outcome is 1, return probability 0.

4. If Zi anticommutes with some Mj , return probability 1/2.

Solving the systems of linear equations by Gaussian elimination takes timeO(n3), so that is the complexity
of this algorithm. By tracking some additional information, we can speed this up to an algorithm taking
time O(n2).

Note that the conditional probability of getting 0 on a qubit is always 0, 1, or 1/2 (or the conditional
cannot occur). This is a consequence of the special structure of the Clifford group.
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