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9 Oracles

9.1 References

The discussion of (classical) oracles and results relative to oracles are in most standard references on classical
complexity theory. The Deutsch-Jozsa algorithm and a basic discussion of quantum oracles are both standard
quantum textbook material, for instance in Nielsen and Chuang, Quantum Computation and Quantum
Information.

9.2 Generalities about oracles

An oracle is complexity-speak for a black box that computes a function but you have no idea what is going
on inside. Oracles have two primary applications in quantum complexity. One of them is the study of oracles
in their own right, through the study of query complexity, which is the number of times you need to query
the oracle to determine some property of the oracle. Query complexity is a nice thing to study because
it is possible to actually prove bounds on query complexity in many cases, letting us determine the actual
complexity of many problems. The other application of oracles is to study regular complexity by looking at
relationships between regular complexity classes which have access to oracles. We’ll discuss both applications
of oracles to some degree, but we will start off with query complexity.

First, we need to note that there is a distinction between classical and quantum oracles.

Definition 1. A classical oracle O(x) takes a query x and gives an output, often 1 bit. There is a corre-
sponding quantum oracle O which acts on a query state |ψ〉 =

∑
x αx|x〉 and an ancilla qubit |c〉 and does a

controlled-O operation:

O|ψ〉|c〉 =
∑
x

αx|x〉|c+O(x)〉. (1)

A classical oracle is a function from n bits to 1 bit (or more), whereas a quantum oracle is a unitary
operation on n+1 qubits, but one that corresponds to the reversible version of the classical oracle applied to
superpositions. Sometimes people also talk about more general versions of quantum oracles, unitary oracles,
which are general black-box unitary operations not necessarily of the form above, so there is no corresponding
classical oracle.

Definition 2. We can think of a classical oracle and the corresponding quantum oracle as a long bit string,
with the ith bit of the string being the value O(i). Let f(O) be some function of the oracle (thought of as
a bit string). The classical query complexity D(f) is the minimum number of classical oracle calls needed
by a deterministic classical algorithm with access to the oracle O to compute f(O). The randomized query
complexity R(f) is the minimum number of classical oracle calls needed by a randomized classical algorithm
with access to the oracle O to compute f(O) with probability at least 2/3. The quantum query complexity
Q(f) is the minimum number of quantum oracle calls needed by a quantum algorithm with access to the
oracle O to compute f(O) with probability at least 2/3. In some cases, we have a promise on the oracle,
which means the oracles are drawn from a subset of possible bit strings.
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The query complexities D(f), R(f), and Q(f) in some sense capture the difficulty of computing the
function f(O), but note that the query complexity makes no restriction on the number of qubits or gates
used other than oracle calls. In many cases, there are algorithms known for which the non-oracle resources
used are comparable or less than the number of queries needed, but not always. In particular, for the
non-abelian hidden subgroup problem, the quantum query complexity is polynomial, but the only known
algorithms still use exponentially many gates.

Nevertheless, in many cases, oracle algorithms can be translated into algorithms of similar efficiency when
the black box is replaced by an explicitly computable function. Thus, study of query complexity can help give
us find algorithms. Lower bounds on query complexity can also give us insight into potential non-black-box
algorithms, in that they tell us that if there is an algorithm that does better than the query complexity, it
must use some structure in the explicit function that is not present or not accessible in the oracle.

A study of quantum query complexity generally involves 4 pieces: First, an upper bound on the classical
deterministic and/or randomized query complexity, generally in the form of a classical algorithm to determine
the function. Whether we are primarily interested in the deterministic or randomized complexity depends on
the problem. Second, a lower bound on the classical query complexity showing that this algorithm is the best
achievable. Third, an upper bound on the quantum query complexity, in the form of a quantum algorithm to
compute the function. We are usually (but not always) interested in problems with a quantum speedup, in
which case we want the quantum upper bound to be lower than the classical lower bound. Finally, we also
would like a lower bound on the quantum query complexity, to show that the quantum algorithm is the best
achievable.

In many cases, one or more of these will be trivial. However, if some are unknown, then that means
we don’t fully understand the problem. For instance, if a classical lower bound is known but the upper
bound is missing, that may mean that the classical lower bound should actually be higher; whereas if the
classical upper bound is known, but the lower bound is missing, that means there could potentially be a
better classical algorithm, which in turn means we can’t be sure that the problem does offer a quantum
speedup. Not infrequently, though, we can actually prove (with no complexity assumptions) that all four of
these bounds have specific values and with the upper and lower bounds matching.

Note that Q(f) ≤ R(f) ≤ D(f) because any deterministic algorithm can be performed as a “randomized”
algorithm that doesn’t make use of any random bits, and any randomized algorithm can be simulated on a
quantum system using H|0〉 = |+〉 states as random coins. If there are N possible query values (i.e., x is
a log2N bit number), then D(f) ≤ N since we can learn the whole oracle by making N queries and then
compute the function f from those values.

9.3 Deutsch-Jozsa Algorithm

The first example of quantum query complexity is always the Deutsch-Jozsa problem. In this problem, we
are promised that the oracle O : Zn

2 → Z2 is either constant (i.e., O(x) = O(y) for all x, y) or balanced
(|{x s.t. O(x) = 0}| = |{x s.t. O(x) = 1}|). Our goal is to determine which with 100% probability.

First we analyze the classical upper and lower bounds. We are going to look first atD(f), the deterministic
classical query complexity. Certainly there is an algorithm that uses 2n−1 + 1 queries: Perform queries for
that many values of x, say x = 0, 1, 2, . . . , 2n−1. If they are all the same, return “constant;” otherwise return
“balanced.” If the oracle is balanced, at most 2n−1 entries can can have the same value, so the algorithm
will return the correct answer, and if it is constant, all entries will indeed be the same and therefore the
algorithm is again correct.

Claim 1. To get the right answer, a deterministic classical algorithm needs at least 2n−1 + 1 queries in the
worst case.

Proof. Suppose we have an algorithm that makes only 2n−1 queries. Let the output of the first query x0
be a. Based on that, the algorithm decides to make a second query x1, and suppose that the output of
that query is also a. There are certainly oracles which have O(x0) = O(x1) = a, so this is a possibility.
The algorithm continues deciding on queries xi for i < 2n−1, and suppose that all of the queries return a.
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There exists a constant oracle O1 for which O(x) = a for all x that is consistent with all of these queries.
There is also a balanced oracle O2 consistent with all of these queries: O(xi) = a for i = 0, . . . , 2n−1 − 1
and O(y) = a⊕ 1 for y 6= xi for any i. This algorithm must pick one of O1 and O2 and therefore will fail if
presented with the other oracle.

These two arguments together show that D(f) = 2n−1 + 1 for the Deutsch-Jozsa problem.
Now let us look at the quantum complexity. First, the upper bound: There is a quantum algorithm to

solve this problem with just 1 quantum query:
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The last qubit starts in the state |−〉 = |0〉−|1〉. After the measurement, we do classical post-processing to
determine the output: If the measurement result is all 0, output “constant”. Otherwise, output “balanced”.

To see that this works, let us follow the state of the system at each step:

1. |00 . . . 0〉|−〉

2. (
∑

x |x〉)|−〉

3.
∑

x(−1)O(x)|x〉|−〉

At this point, what happens next depends on if it is constant or balanced.

• Constant: The state pre-Hadamards is ±
∑

x |x〉|0〉, so the Hadamards give ±|00 . . . 0〉|0〉.

• Balanced: Let |ψ〉 =
∑

x |x〉 and |φ〉 =
∑

x(−1)O(x)|x〉. Then 〈ψ|φ〉 =
∑

x(−1)O(x) = 0 since there
are as many +1 terms as −1 terms. But H⊗n is unitary and H⊗n|ψ〉 = |00 . . . 0〉. Thus, H⊗n|φ〉 is
orthogonal to |00 . . . 0〉, which means the measurement outcome will always have at least one 1 in it.

Therefore, the quantum query complexity Q(f) ≤ 1. But we know that Q(f) 6= 0, since it is not possible
to determine if the oracle is constant or balanced without looking at it at all, so we find Q(f) = 1.

So this is pretty good: We have a nice separation between Q(f) = 1 and D(f) = 2n−1+1. Unfortunately,
the separation is not so impressive if we compare to R(f), the classical randomized query complexity: If we
choose random queries, if the function is constant, the answer will always be the same, but if the function is
balanced, the odds are good we will rapidly get a different answer. So here is a randomized algorithm: Make r
queries to random values of x. If all answers are the same, return “constant.” Otherwise, return “balanced.”
When the function is balanced, the probability that each additional query is different from the first one is
1/2, and all are independent. (We can increase this slightly by making sure we don’t repeat queries; then
the probability drifts slightly above 1/2 because we have more unused values that are different to the first
query than ones that are the same.) Therefore, with r queries, the chance that we see a different response
is 1 − 2−(r−1). To get the success probability above 2/3, we only need r = 3 queries. Thus, R(f) ≤ 3. We
can’t do it with 1 query (since any response we could get is consistent with either type of function), and with
2 queries, there is still at least a probability 2n−1/(2n − 1) that the two responses are the same even with
a balanced function, in which case we cannot distinguish between constant and balanced. Thus, R(f) = 3.
This means that there is only. a constant separation between Q(f) and R(f).

3



9.4 Complexity classes relative to an oracle

Nevertheless, this result lets us say something meaningful about complexity classes. We do this by switching
to the question of oracle separations, so let us first discuss what this means.

Definition 3. A language O can be interpreted as an oracle, or really a famiy of oracles, which outputs
O(x) = 1 if x ∈ O and O(x) = 0 if x 6∈ O. We can define a classical or quantum circuit or Turing machine
(deterministic, probabilistic, or non-deterministic) with oracle access to O as one which has the standard
capabilities plus the extra capability to make oracle queries to O as a single computational step. A complexity
class C relative to an oracle O is written CO and indicates a class defined as usual but using circuits or
machines with oracle access to O.

Thus, PO consists of problems solved by uniform polynomial size circuits that can query O and get an
answer in 1 step, and BQPO consists of problems solved with bounded error by uniform polynomial size
quantum circuits that can query the quantum oracle O and get an answer in 1 step. Essentially we can think
of classes relative to oracle O as living in some parallel universe in which there is some fundamental gate
that solves O.

For instance, imagine that some extinct alien civilization left behind lots of black boxes with advanced
technology that we don’t understand, but we do know how to send information x into them and get a single
bit output O(x). What can we do with computers that incorporate these alien black boxes? If we are using
deterministic classical computers, we get PO; if quantum computers, we get BQPO.

The oracle O can in principle be anything. If it is something weak, then working relative to O may not
change anything. For instance, if O ∈ P, then PO = P. Why? Because O ∈ P, there exists an algorithm A
with running time f(|x|), f = O(poly(|x|)), that decides O. If we have a circuit of size g(|x|) using O, we
can substitute A for O and get the same behavior. The size of the circuit has increased, since the 1-step O
is replaced by the f(|x|) steps for A, but the total size of the modified circuit is at most f(|x|)g(|x|), and
if g(|x|) = O(poly(|x|)), then so is this product. Therefore, any language decided in polynomial time by a
circuit with oracle access to O can also be decided in polynomial time by a circuit with no access to O. This
result is usually written as PP = P since it holds for any language in P.

Similarly, BQPBQP = BQP using essentially the same argument. In the case of BQP, we have to be a bit
careful because the modified algorithm can potentially fail both because the original oracle algorithm can
fail (with probability at most 1/3) but because each of the algorithms subsituting for O can fail as well. We
can solve this problem by amplifying the success probability of all the subroutines through repetition to a
sufficiently high value that the overall success probability of the modified algorithm remains at least 2/3.

We can also have crazy, powerful oracles that can’t exist in reality, like an oracle for the halting problem.
That’s OK; oracles are not necessarily supposed to represent the real world. They just provide us an avenue
for studying the relationships between complexity classes. Many complexity-theoretic techniques relativize,
meaning whatever relationship they prove between complexity classes still holds when both classes are taken
relative to some oracle. As a very simple example, we know that P ⊆ BQP because any classical circuit can
be implemented as a quantum circuit. This same argument shows that PO ⊆ BQPO.

One advantage of thinking about classes relative to oracles is that not infrequently, we can find an oracle
O such that we can prove a separation between complexity classes relative to O. In other cases, we can find
an oracle O′ such that we can prove that two complexity classes are equal relative to O′. In fact, it is fairly
common that we can do both: prove that the classes are different relative to some O and that they are the

same relative to O′. For instance, there exist oracles O and O′ such that PO 6= NPO and PO′
= NPO′

. This
might make it seem this was all a futile exercise, but we have actually learned something important: If we
want to prove a definitive relationship between these two classes, it will need to use a technique that does
not relativize. It’s just that . . . we don’t know too many such techniques. But we do know some, and many
of the most famous complexity theory results (including ones we’ll discuss in this class) don’t relativize.

With those caveats in mind, let’s see how the Deutsch-Jozsa algorithm implies an oracle separation
between P and BQP. Consider generating a language O (which will be our oracle) using the following
procedure: For each value of n, choose a random bit b(n). If b(n) = 0, then choose a random constant
function f(x) for |x| = n; if b(n) = 1, choose a random balanced function f(x) for |x| = n. Then O includes
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those x with |x| = n and f(x) = 1. Now consider the language B which consists of 1n for any n such that
b(n) = 1.

Claim 2. B 6∈ PO but B ∈ BQPO.

Proof. Given instance 1n of B, to decide it, a circuit (classical or quantum) needs to determine if O is
constant or balanced on inputs of size n. A call to O does exactly what an oracle query does in the Deutsch-
Jozsa problem. A quantum circuit can do it with one call to O and a linear number of standard quantum
gates. A classical circuit requires at least 2n−1 + 1 calls to O, and in particular, no polynomial size classical
deterministic circuit can decide B.
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