Problem Set #1

CMSC &58L
Instructor: Daniel Gottesman

Due on Gradescope Feb. 16, 2023, noon

The late deadline to turn the problem set in without penalty is Feb. 19, 2023, noon.

Problem #1. Different error cutoffs (50 pts.)
Define BPP, the same way as BPP, but with an error cutoff of 1/2+ € instead of 2/3. That is, for BPP,,

1. If x € L, then Prob(A(x) =1) > 1/2 + €.
2. If ¢ & L, then Prob(A(z) =0) > 1/2+e.

In this problem, we will consider € to be a function of |z|, although in part a, it is a constant function.

Results in this problem should be unconditional (that is, not depending on additional complexity-theoretic
assumptions, such as the assumption that P = BPP.

Hint: For parts of this problem, you may want to consider that a randomized algorithm can be thought
of as a deterministic algorithm that reads from a pre-determined string of uniformly random bits as well as
from its usual input.

You may also want to use some statistical tail bounds. If you are not very familiar with these, let
me suggest Hoeffding’s inequality: When Xi,..., X,, are independent random variables with values in the
interval [a, b], let X be their sum and let p be the mean value of X. Then V4§ > 0,
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a) (10 pts.) Prove that for any constant ¢, 0 < € < 1/2, BPP. = BPP.

(
b) (10 pts.) Prove that if e = 1/f(|x|), with f(|z|) = O(poly(|z|)), then BPP, = BPP.
( ) Prove that if ¢ = 271%| then BPP. C PSPACE.

c) (15 pts.

)
)
)
d)

(15 pts.) Find a value for € (which again will be a function of |z|) such that you can prove that
BPP. =P.

Problem #2. Variations of BQP(50 pts.)

The purpose of this problem is to study variations in the definition of BQP. In order to avoid having
to deal with Turing machines, we will instead consider the circuits for BQP to be given as the output of
another circuit.

In this problem “with no input” means that the circuit starts with all bits or qubits in a standard state
(typically 0 or |0)).

Let G¢ be a family of classical circuits of size O(poly(n)) with no input that outputs a family of quantum
circuits Q¢ that take an input  and output a single bit (after measurement) with outcome 1 with probability
P¢. Let S¢ be the set of quantum circuit families that can be generated in this way.

Note that since the circuit G¢ has polynomial size, the output circuit Q¢ must as well.



a)

(25 pts.) Let G2 be a family of quantum circuits of size O(poly(n)) with no input that outputs a family
of quantum circuits Q% that take an input « and output a single bit (after measurement) with outcome
1 with probability PZ. Show that for any such family ¢, there exists a quantum circuit family in S°¢
with PS = PJ.

Note: This fact is the main idea in showing that if you define BQP by referring to circuits generated
uniformly by a quantum Turing machine rather than a classical Turing machine, the class doesn’t
change.

(25 pts.) Let GY(x) be a family of classical circuits of size O(poly(n)) with input x such that |z| = n
and that output a quantum circuit Q0 that depends on  but takes no input. The circuit Q% outputs a
single bit with outcome 1 with probability P?. Show that the set of probability distributions P? that
can be generated this way is the same as the set of probability distributions PS that are the outcome
probabilities for some quantum circuit family in S°¢.

Note: The point here is that we have a choice between defining BQP circuits as taking a classical
input for the instance and defining the class to consist of quantum circuits with no input but that are
designed with the specific instance in mind. In either case, we get the same complexity class.



