Problem Set #3

CMSC 858L Instructor: Daniel Gottesman

Due on Gradescope Mar. 16, 2023, noon

The late deadline to turn the problem set in without penalty is Mar. 19, 2023, noon.

Problem #1. Phase vs. Bit Flip Oracles (25 pts.)

In class, we have seen two different ways to convert a classical oracle O(x) into a quantum one. (In this problem, restrict attention to oracles with a one-bit output.) The "standard" answer is the *bit flip oracle* $O_b|x\rangle|c\rangle = |x\rangle|c \oplus O(x)\rangle$. The *phase oracle* is $O_p|x\rangle = (-1)^{O(x)}|x\rangle$ is simpler since it doesn't require an ancilla. We saw in class that you can implement O_p given one use of O_b by using the ancilla $|-\rangle = |0\rangle - |1\rangle$. In this problem, we will investigate the opposite direction.

- a) (10 pts.) Show that with any number of queries to O_p , it is not possible to distinguish O(x) from its complement \overline{O} , for which $\overline{O}(x) = 1 \oplus O(x)$.
- b) (15 pts.) Assume we know that O(00...0) = 1. Find a way to implement O_b using one query to O_p .

Problem #2. Query Complexity Problems (75 pts.)

A marked element for an oracle O is an input x such that O(x) = 1.

a) (25 pts.) Consider the following problem: Given an oracle O with N possible inputs, return 1 if there are either 0 or exactly 2 marked elements; otherwise return 0.

Find an algorithm to solve this problem using $O(\sqrt{N})$ queries. Then use the method of polynomials to prove that the query complexity is $\Omega(\sqrt{N})$.

b) (25 pts.) Consider the following problem: Given an oracle O with N possible inputs (N a multiple of 4), return 1 if there are at most N/4 marked elements and 0 otherwise. Note that the threshold N/4 is sharp: If there are N/4 marked elements, the algorithm should return 1 with probability at least 2/3, and if there are N/4 + 1 marked elements, the algorithm should return 0 with probability at least 2/3.

Find the quantum query complexity (upper and lower bounds, up to a constant factor) of this problem.

c) (25 pts.) Consider the following problem: Given an oracle O(x, y) which takes two inputs, each with N possible values. There exist x_0 and y_0 such that O(x, y) = 1 iff exactly one of $x = x_0, y = y_0$, otherwise O(x, y) = 0. That is, $O(x_0, y) = 1$ if $y \neq y_0$, $O(x, y_0) = 1$ if $x \neq x_0$, O(x, y) = 0 if $x \neq x_0, y \neq y_0$, and $O(x_0, y_0) = 0$. The algorithm should return (x_0, y_0) .

Find an algorithm to solve this problem using $O(\sqrt{N})$ queries. Then prove that the query complexity is $\Omega(\sqrt{N})$.

Hint: There are probably many ways to prove a lower bound, but my solution involves a reduction.