# Problem Set \#4 

CMSC 858L
Instructor: Daniel Gottesman
Due on Gradescope Apr. 6, 2023, noon

The late deadline to turn the problem set in without penalty is Apr. 9, 2023, noon.
Problem \#1. Adversary Bounds (40 points)
a) (10 point) When $f$ is a non-constant symmetric total function, let $f_{k}=f(x)$ for some $x$ of weight $k$ (all give the same value),

$$
\begin{align*}
& \Gamma(f)=\min \left\{|2 k-N+1| \text { s.t. } f_{k} \neq f_{k+1}\right\}  \tag{1}\\
& \Upsilon(f)=\max \left\{\sqrt{(k+1)(N-k)} \text { s.t. } f_{k} \neq f_{k+1}\right\} . \tag{2}
\end{align*}
$$

Recall that in class we saw results using the polynomial method to lower bound the query complexity of $f$ as $\Omega(\sqrt{N(N-\Gamma(f))})$. Show, using results about the adversary method, that the query complexity of $f$ is at least $\Omega(\Upsilon(f))$.
b) (10 points) Prove that the two bounds from part a give the same value (up to constant factors).
c) (10 points) Let

$$
\begin{equation*}
g_{a}\left(X_{0}, \ldots, X_{N-1}\right)=X_{a \sqrt{N}} \text { OR } X_{a \sqrt{N}+1} \text { OR } \ldots \text { OR } X_{(a+1) \sqrt{N}-1} \tag{3}
\end{equation*}
$$

(that is, the OR of a block of $\sqrt{N}$ variables), and let

$$
\begin{equation*}
f\left(X_{0} \ldots, X_{N-1}\right)=\oplus_{a=0}^{\sqrt{N}-1} g_{a}\left(X_{0}, \ldots, X_{N-1}\right) \tag{4}
\end{equation*}
$$

(that is, the XOR or parity of the different blocks). Using the adversary method, find a lower bound on the query complexity.
d) (10 points) Find an upper bound on the query complexity of the function from part c.

Note: You should be able to match the upper and lower bounds in parts c and d, up to polylog factors.

## Problem \#2. LOCAL HAMILTONIAN variants ( 60 points)

For this problem, all languages refer to instances of the form $(H, E, \Delta)$, with $H$ a 5 -local Hermitian operator, $\Delta$ polynomially small, and all coefficients of appropriately bounded accuracy. You may use any results we discussed in class, even if we did not prove them.

Remember that a problem is QMA-complete if it is QMA-hard and in QMA. Be sure the address both parts in your answers.
a) (15 points) Prove that the following problem is QMA-complete: Given $(H, E, \Delta)$, is the largest eigenvalue of $H$ greater than $E$ ? You are promised that the largest eigenvalue of $H$ is either greater than $E$ or less than $E-\Delta$.
b) (15 points) Prove that the following problem is QMA-complete: Given $(H, E, \Delta)$, is the second-smallest eigenvalue of $H$ less than $E$ ? You are promised that the second-smallest eigenvalue of $H$ is either less than $E$ or greater than $E+\Delta$.
c) (15 points) Prove that the following problem is in QMA: Given $(H, E, \Delta)$, does there exist an eigenvalue of $H$ between $E-\Delta$ and $E+\Delta$ ? You are promised that there are no eigenvalues in the ranges $E-2 \Delta$ to $E-\Delta$ or $E+\Delta$ to $E+2 \Delta$.
Note: Changed from showing it is QMA-complete to just showing that it is QMA.
d) (15 points) Prove that the following problem is QMA-hard: Given $(H, E, \Delta)$, does the ground state $|\psi\rangle$ of $H$ have the property that $\langle\psi| Z_{1}|\psi\rangle \leq E$ ? Here $Z_{1}$ is the $Z$ operator on the first qubit of $|\psi\rangle$. You are promised that all ground states of $H$ satisfy either $\langle\psi| Z_{1}|\psi\rangle \leq E$ or $\langle\psi| Z_{1}|\psi\rangle \geq E+\Delta$.
What is the difficulty in showing that this problem is in QMA?
Note: Changed from unique ground state.

