Announcements

- Final exam is on May 11 10:30 am — 12:30 pm
- In person, closed book/notes
Contact me

- CMSC416: If you are an undergrad interested in participating in International Student Cluster Competitions
- bhatele@cs.umd.edu
Molecular Dynamics
Molecular Dynamics

• Calculate trajectories of atoms and molecules by solving Newton’s equations of motions
Molecular Dynamics

- Calculate trajectories of atoms and molecules by solving Newton’s equations of motions

- Force calculations
 - Bonded interactions: bonds, angles, dihedrals
 - Non-bonded interactions: van der Waal’s and electrostatic forces
Molecular Dynamics

- Calculate trajectories of atoms and molecules by solving Newton’s equations of motions
- Force calculations
 - Bonded interactions: bonds, angles, dihedrals
 - Non-bonded interactions: van der Waal’s and electrostatic forces
- Number of atoms: thousands to millions
Molecular Dynamics

- Calculate trajectories of atoms and molecules by solving Newton’s equations of motions

- Force calculations
 - Bonded interactions: bonds, angles, dihedrals
 - Non-bonded interactions: van der Waal’s and electrostatic forces

- Number of atoms: thousands to millions

- Simulation step: ~1 femtosecond (10^{-15} s)
Molecular Dynamics

- Calculate trajectories of atoms and molecules by solving Newton’s equations of motions
- Force calculations
 - Bonded interactions: bonds, angles, dihedrals
 - Non-bonded interactions: van der Waal’s and electrostatic forces
- Number of atoms: thousands to millions
- Simulation step: ~1 femtosecond (10^{-15} s)
- Used for drug design, materials design
Sequential Algorithm

- At every step, calculate forces on each atom
 - Calculate bonded and short-range forces every step
 - Calculate long-range non-bonded forces every few time steps (using PME or P3M etc.)
- Particle mesh Ewald (PME) summation:
 - Calculate long-range interactions in Fourier space
- Calculate velocities and new positions
- Repeat …
Traditional approaches to parallelization
Traditional approaches to parallelization

- Atom decomposition:
 - Partition the atoms across processes
Traditional approaches to parallelization

• Atom decomposition:
 • Partition the atoms across processes

• Force decomposition:
 • Distribute the force matrix to processes
 • Matrix is sparse and non-uniform
Traditional approaches to parallelization

- **Atom decomposition:**
 - Partition the atoms across processes

- **Force decomposition:**
 - Distribute the force matrix to processes
 - Matrix is sparse and non-uniform

- **Spatial decomposition:**
 - Assign a region of the 3D simulation space to each process
Hybrid parallelization

- Hybrid of spatial and force decomposition
- Decouple assignment of data and work to processes
- Distribute both atoms and the force calculations to different processes
Neutral territory (NT) methods

- Desmond’s mid-point method

SC23 Test-of-time award:

Particle mesh Ewald

- Replace direct force calculations by:
 - Calculate short-range forces in real space
 - Calculate long-range forces in Fourier space
- Create a 3D mesh/grid representing charge densities of atoms
 - Compute a 3D Fast Fourier Transform (FFT)
- FFT computes the discrete Fourier transform (DFT) or inverse DFT
 - Reduces the complexity from $O(N^2)$ to $O(N \log N)$
Parallelization of PME (3D FFT)
Parallelization of PME (3D FFT)

- Bring all the data to one process
Parallelization of PME (3D FFT)

- Bring all the data to one process
- 1D or slab decomposition
Parallelization of PME (3D FFT)

- 2D or pencil decomposition
Measles killed 200,000 in 2020 alone!

LARGE MEASLES OUTBREAKS
The epidemic in the Democratic Republic of the Congo is the largest single-country outbreak for decades.

- **Ukraine** (2017–20)
 - >1,500,000 cases
 - >41 deaths
- **Democratic Republic of the Congo** (2019–20)
 - 346,158 cases
 - 841 deaths
- **Madagascar** (2018–20)
 - 244,675 cases
 - >1,000 deaths

Data from March 2020.
*Suspected, not yet officially reported to WHO.

https://www.nature.com/articles/d41586-020-01011-6

Predictions say that 1.66 million people died of tuberculosis in 2020

TERRIBLE TOLL
By the end of July 2020, there had been 646,949 COVID-19 deaths worldwide. In the 32 countries and 4 major cities with relevant data, there were more excess deaths than COVID-19 deaths, suggesting that some COVID-19 deaths are misclassified or that other causes of death have also risen.

- **Deaths attributed to COVID-19**
- **Excess deaths**

- 32 countries and 4 major cities
 - 413,041*
 - 593,344
- **Worldwide**
 - 646,949

*Cumulative deaths from outbreak onset to latest available data, as of 18 August 2020.

In August 2003, a heatwave in Europe caused 44,878 excess deaths.

The global total of excess deaths is probably much higher than the number of COVID-19 deaths.

https://www.nature.com/articles/d41586-020-02497-w

Abhinav Bhatele (CMSC416 / CMSC616)
Measles killed 200,000 in 2020 alone!

LARGE MEASLES OUTBREAKS
The epidemic in the Democratic Republic of the Congo is the largest single nation outbreak for decades.

- Ukraine (2017-20): >115,000 cases, >41 deaths
- Democratic Republic of the Congo (2019-20): 346,058 cases*, 8,534 deaths
- Madagascar (2018-20): 244,675 cases, >1,000 deaths

Predictions say that 1.66 million people died of tuberculosis in 2020

TERRIBLE TOLL
By the end of July 2020, there had been 646,949 COVID-19 deaths worldwide. In the 32 countries and 4 major cities with relevant data, there were more excess deaths than COVID-19 deaths, suggesting that some COVID-19 deaths are misclassified or that other causes of death have also risen.

- Deaths attributed to COVID-19
- Excess deaths

32 countries and 4 major cities
- World: 646,949

In August 2003, a heatwave in Europe caused 44,878 excess deaths.

Data from March 2020.
*Suspected, not yet officially reported to WHO.

https://www.nature.com/articles/d41586-020-01011-6
https://www.nature.com/articles/d41586-020-02497-w

Abhinav Bhatele (CMSC416 / CMSC616)
Societal challenge

• Controlling the spread of infectious diseases is important

• Computational and mathematical modeling of epidemics important to assist governments in responding to outbreaks

• Made challenging due to:
 • increased and denser urbanization
 • increased local and global travel
 • increasingly immuno-compromised population
Approach: individual-based simulation

- Agent-based modeling to simulate epidemic diffusion
- Models agents (people) and interactions between them
- People interact when they visit the same location at the same time
- These “interactions” between pairs of people are represented as “visits” to locations
- Use a bi-partite graph of people and locations or a people-people interactivity graph
Serial algorithm

• At each timestep (typically a day):
 • Determine which people visit which locations
 • “Send” people to those locations
 • At each location “interactions” happen and transmission happens
 • Update people’s states at the end of the day and continue

• Interventions (vaccinations, school closures) can be added on certain days to change people’s susceptibility, movements etc.
Combination of network theory and discrete-event simulations

- Hybrid time-stepped and discrete-event simulation
Combination of network theory and discrete-event simulations

- Hybrid time-stepped and discrete-event simulation

Contact model at each location

Combination of network theory and discrete-event simulations

• Hybrid time-stepped and discrete-event simulation
Combination of network theory and discrete-event simulations

- Hybrid time-stepped and discrete-event simulation
Combination of network theory and discrete-event simulations

- Hybrid time-stepped and discrete-event simulation

```python
while d < num_days:
    for each person:
        Send visit messages to locations
    for each location:
        Process all visit messages
        Run discrete event simulation
        Send interaction messages
    for each person:
        Process interactions
        Update disease state
```

Contact model at each location

Model for human transmission

Disease model for each person

Parallel simulation is challenging

- Size and scale of the social contact network (6 billion agents for a global simulation)
 - Unstructured networks and complicated dependencies lead to high communication cost
- Individuals and their behaviors are not identical
- Co-evolving epidemics, public policies and agent behaviors make it impossible to apply standard model reduction techniques
Parallel implementation: Loimos

- All the people and locations are distributed among all processes
- DES computation can be done locally in parallel
- Communication when sending visit and infection messages
- Uses Charm++, a message-driven model
Application software stack

- Parallel programming model / runtime:
 - MPI, OpenMP, Charm++, CUDA, …

- Libraries
 - Data and visualization libraries (mesh management, simulation output)
 - I/O libraries
 - Math/numerical libraries
 - Graph partitioning, load balancing …
Why use libraries?

- No need to reinvent the wheel
 - Libraries are highly optimized, have fewer bugs
- Avoids significant effort to write, optimize and maintain code
- Makes code more portable
Popular Libraries

- **Data/visualization and I/O libraries**
 - I/O: HDF5, pNetCDF, ADIOS

- **Numerical libraries:**
 - Fast Fourier transforms: FFTW
 - Dense linear algebra: BLAS, LAPACK, Intel MKL
 - Solvers for sparse systems: Hypre, PETSc, Trilinos

- **Graph partitioning/load balancing:**
 - METIS, Scotch, Zoltan, Chaco

https://events.prace-ri.eu/event/176/contributions/38/attachments/154/305/HPC_libraries.pdf
Domain-specific languages/frameworks

- Structured grids: SAMRAI, Chombo, AMReX
- Unstructured grids: MFEM, Quinoa
The *n*-body problem

- Simulate the motion of celestial objects interacting with one another due to gravitational forces

- Naive algorithm: $O(n^2)$
 - Every body calculates forces pair-wise with every other body (particle)

Data distribution in n-body problems

- Naive approach: Assign n/p particles to each process
- Other approaches?
Data distribution in n-body problems

- Naive approach: Assign n/p particles to each process
- Other approaches?

Space-filling curves

http://datagenetics.com/blog/march222013/
https://en.wikipedia.org/wiki/Z-order_curve
Data distribution in n-body problems

- Naive approach: Assign n/p particles to each process
- Other approaches?

Space-filling curves

http://datagenetics.com/blog/march222013/
https://en.wikipedia.org/wiki/Z-order_curve
Data distribution in \(n \)-body problems

- Naive approach: Assign \(n/p \) particles to each process
- Other approaches?

Space-filling curves

http://datagenetics.com/blog/march22013/
https://en.wikipedia.org/wiki/Z-order_curve

Data distribution in n-body problems

• Let us consider a two-dimensional space with bodies/particles in it
Data distribution in n-body problems

- Let us consider a two-dimensional space with bodies/particles in it
Data distribution in n-body problems

- Let us consider a two-dimensional space with bodies/particles in it
Different parallelization methods

- Tree codes: Barnes-Hut simulations
- Fast multipole methods (FMM): Greengard and Rokhlin
- Particle mesh methods
- Particle-particle particle-mesh (P³M) methods
Barnes-Hut simulation

- Represent the space containing the particles as an oct-tree
- Pairwise force calculations for nearby particles
- For tree nodes that are sufficiently far away, approximate the particles in the node by a single large particle at the center of mass
- $O(N \log N)$ algorithm

Fast multipole methods

- Use multipole expansion for distant particles
- Takes advantage of the fact that for nearby particles, multipole-expanded forces from distant particles are similar
- Reduces the time complexity further to $O(n)$
Particle-particle particle-mesh methods

- Explicit calculation of forces on nearby particles
- Fourier-based Ewald summation for calculating potentials on a grid
- Smoothed particle hydrodynamics