

Redirected Walking

Reading: <u>15 Years of Research on Redirected Walking in Immersive Virtual Environments</u>

Slides adapted from Evan Suma Rosenberg's material

Every controller position is still being tracked orange volume is our Primary hard bounds

The Locomotion Problem

VIRTUAL ENVIRONMENT

Redirected Walking

S. Razzaque, Z. Kohn, and M. Whitton. Redirected Walking, Eurographics 2001.

Rotation Gain

VIRTUAL SPACE

PHYSICAL SPACE

Translation Gain

VIRTUAL SPACE

Curvature Gain

PHYSICAL SPACE

Why does redirection work?

Vision tends to dominate over vestibular sensation.

Measuring Detection Thresholds

- Two alternative forced choice task (2AFC)
- User repeatedly presented with a stimulus of varying level and asked to detect it
- Compute pooled probability of response (forced choice, no neutral option)
- Fit a psychometric function (sigmoid)
- Point of subjective equality (PSE) at 50%
- Detection thresholds at 25% and 75%

F. Steinicke, G. Bruder, J. Jerald, H. Frenz, and M. Lappe. Estimation of Detection Thresholds for Redirected Walking Techniques, IEEE TVCG 2010.

Detection Thresholds for Redirected Walking

Rotation Gains 49% amplification 20% dampening

Curvature Gains arc radius >= 20 meters **Translation Gains** 26% upscale 14% downscale

F. Steinicke, G. Bruder, J. Jerald, H. Frenz, and M. Lappe. Estimation of Detection Thresholds for Redirected Walking Techniques, IEEE TVCG 2010.

Discovering Near-Field VR: Stop Motion with a Touch of Light-Fields and a Dash of Redirection, 2015 SIGGRAPH AR/VR Contest Winner

Reorientation Events (Resets)

Reorientation Events (Resets)

T. Grechkin, M. Azmandian, M. Bolas, and E. Suma. Towards Context-Sensitive Reorientation for Real Walking in Virtual Reality, IEEE VR 2015.

Spatial Orientation Experiment

E. Suma, D. Krum, S. Finkelstein, and M. Bolas. Effects of Redirection on Spatial Orientation in Real and Virtual Environments, IEEE 3DUI 2011.

FINISH

Virtual Target (original)

Angular Pointing Error

How does redirection influence the user's real world orientation?

Can we maintain both spatial **reference frames** at the same time?

Angular Pointing Error

Research Questions

• How much redirection can we apply before it becomes **perceptible?**

- Answer: quite a bit!
- How much redirection can we apply before it becomes **noticeable?**
 - Answer: even more!
- How does redirection impact the user experience?
 - spatial cognition
 - user behavior
 - task performance

• **Optimal steering direction** that minimizes # of resets?

Redirected Walking Systems

redirection strategy

How much can we predict the user?

Freedom

Linear Route Branching Pathways

Open World

Static Planning Dynamic Planning Reactive Algorithms

How much can we predict the user?

Freedom

Linear Route Branching Pathways

Open World

Static Planning Dynamic Planning Reactive Algorithms

Reactive Algorithms

Steer to Center (S2C)

Steer to Orbit (S2O)

Push / Pull Reactive (P2R) Algorithm

J. Thomas and E. Suma Rosenberg. A General Reactive Algorithm for Redirected Walking using Artificial Potential Functions, IEEE VR 2019.

P2R Results: Non-Convex Boundaries

P2R Results: Interior Obstacles

How much can we predict the user?

Freedom

Linear Route Branching Pathways

Open World

Static Planning Dynamic Planning Reactive Algorithms

[1] M. Zmuda, J. Wonser, E. Bachmann, and E. Hodgson. Optimizing constrained-environment redirected walking instructions using search techniques, IEEE TVCG 2013.
[2] T. Nescher, Y. Huang, and A. Kunz. Planning Redirection Techniques for Optimal Free Walking Experience Using Model Predictive Control, IEEE 3DUI 2014.

Prediction Graph Generation

M. Azmandian, T. Grechkin, M. Bolas, and E. Suma. Automated path prediction for redirected walking using navigation meshes, IEEE 3DUI 2016.

How much can we predict the user?

Freedom

Linear Route Branching Pathways

Open World

Static Planning Dynamic Planning Reactive Algorithms

Combinatorial Optimization

M. Azmandian. Design and Evaluation of Adaptive Redirected Walking Systems, Ph.D. Thesis, University of Southern California, 2018. IEEE VGTC Virtual Reality Best Dissertation Award Honorable Mention.

Similarity of physical and virtual environments!

How to measure similarity?

- 1) J. Thomas, C. Hutton Pospick, and E. Suma Rosenberg. Towards Physically Interactive Virtual Environments: Reactive Alignment with Redirected Walking, ACM VRST 2020.
- Williams, Niall L., Aniket Bera, and Dinesh Manocha. "Arc: Alignment-based redirection controller for redirected walking in complex environments." IEEE Transactions on Visualization and Computer Graphics 27.5 (2021): 2535-2544.
- 3) Williams, Niall L., Aniket Bera, and Dinesh Manocha. "Redirected walking in static and dynamic scenes using visibility polygons." *IEEE transactions on visualization and computer graphics* 27.11 (2021): 4267-4277.

How to measure similarity?

- 1) J. Thomas, C. Hutton Pospick, and E. Suma Rosenberg. Towards Physically Interactive Virtual Environments: Reactive Alignment with Redirected Walking, ACM VRST 2020.
- 2) Williams, Niall L., Aniket Bera, and Dinesh Manocha. "Arc: Alignment-based redirection controller for redirected walking in complex environments." *IEEE Transactions on Visualization and Computer Graphics* 27.5 (2021): 2535-2544.
- 3) Williams, Niall L., Aniket Bera, and Dinesh Manocha. "Redirected walking in static and dynamic scenes using visibility polygons." *IEEE transactions on visualization and computer graphics* 27.11 (2021): 4267-4277.

How good is it?

How good is it?

ARC S2C APF

- VR locomotion is a path planning problem!
- Robotics community is very good at path planning

Open Motion Planning Library: ompl.kavrakilab.org

- Configuration describes the agent's state in an environment.
- Cobs = configurations that yield a collision
- C_{free} = configurations that don't yield a collision

Virtual Environment

- Perform some reasoning about the environment structure
- Use insights to plan a path more intelligently
- Local similarity is important, so only do reasoning about the local surroundings!
 - Visibility polygon

Distractors for Redirected Walking

- Want to mask the injected rotations & translations
 - Give users something else to focus on
 - Force user to rotate their head

Distractors for Redirected Walking

• Distractor should feel realistic and compelling enough to grab the user's attention

https://youtu.be/96rxBzMK-2w?t=203

https://www.youtube.com/watch?v=Z2ROu_FpJuU

Distractors for Redirected Walking

- How to determine the distractor's behavior/movement?
 - Also motion planning!
 - Consider user's current position in the environments, and the current context

Haptics + Redirected Walking

- Can use haptics to improve the realism and strength of distractors
- Passive haptics is the opposite of redirected walking
 - Can we combine them? Sometimes...

Fig. 1. A view of the virtual environment with the five striped virtual pedestals. A box indicating the size of the real tracked space is superimposed, along with the position of the real pedestal in the center.

Fig. 2. A user touches the one cylindrical object intended to provide haptic feedback. The Styrofoam walls mark the limits of the tracked space.

Williams, Niall L., Aniket Bera, and Dinesh Manocha. "Arc: Alignment-based redirection controller for redirected walking in complex environments." *IEEE Transactions on Visualization and Computer Graphics* 27.5 (2021): 2535-2544.

Kohli, Luv, et al. "Combining passive haptics with redirected walking." *Proceedings of the 2005 international conference on Augmented tele-existence*. 2005.

Multi-User Redirection

Deep Learning for Redirected Walking

Strauss, Ryan R., et al. "A steering algorithm for redirected walking using reinforcement learning." *IEEE transactions* on visualization and computer graphics 26.5 (2020): 1955-1963.

Deep Learning for Redirected Walking

https://www.youtube.com/watch?v=ZZfZ2AC2ec0

Lee, Dong-Yong, Yong-Hun Cho, and In-Kwon Lee. "Real-time optimal planning for redirected walking using deep qlearning." 2019 IEEE Conference on Virtual Reality and 3D User Interfaces (VR). IEEE, 2019.