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to 3D Graphics
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These are all geometrically perfect spheres! ->

“High-level”?

● CMSC 427 –  Introduction to Computer Graphics 
○ Hardware to software rendering pipelines

● Simplifying the concepts
○ Game engines automatically handle the low-level implementation
○ Game engines are basically wrappers for graphics APIs

● This lecture is an overview of CG pipeline



A fundamental problem: 3D>2D
● End result is almost always 2D 

○ computer monitor, VR device screen, etc.
○ Exceptions: holograms (intersection of light rays create “3D” pixels)

■ E.g. 3D holographic projector, (some) autostereoscopic displays [1,2]

● Challenges: 
○ How to accurately project to 2D? Distortion, visual effects, etc.?
○ How to convince user that they’re looking at something 3D? Estimate eyes?

● Optimizations:
○ How to clean the image?
○ How to make the pipeline efficient?
○ How to make the image photorealistic?

● Benefits:
○ Can create images very quickly if done well
○ Can make things look nice with visual trickery

[1] Dodgson, Neil A. "Autostereoscopic 3D displays." Computer 38.8 (2005): 31-36.
[2] Dodgson, Neil A., J. R. Moore, and S. R. Lang. "Multi-view autostereoscopic 3D display." International Broadcasting Convention. Vol. 2. 1999.

Low-Level
Pipelines

Simplified Game/VR Pipeline

High-Level 3D Graphics Pipeline

Scene Setup 
(Geometry, 

transforms, etc.)

Scene/Model 
Parameter Setup 

(shaders, 
materials)

Rendering
(Rasterization or 

Ray-tracing)

Post-processing 
(anti-aliasing, blur, 
color grading, etc.)

Output to Display 
(buffered output)

● Simplification of resources like OpenGL’s & UE3 pipeline documentation
● Pipeline from perspective of game/VR dev.... Not exactly how it flows internally

○ Think of it as “order of things to worry about as a game/XR dev”
○ Mix of graphics and development pipelines



Simplified Game/XR Pipeline
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Scene/Model 
Parameter Setup 
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materials)

Rendering
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Ray-tracing)

Post-processing 
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grading, etc.)

Output to 
Display (buffered 

output)
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3D Models/Meshes
● Vertices, edges, faces (aka polygons or polys)

○ (usually tris/quads, game engines internally triangulate for optimizations and consistency)

● Often called meshes...bunch of vertices meshed together

3D Primitives
● “Atomic” shapes: any mesh can be decomposed into geometric primitives
● Among the most important concepts in optimization

○ Extremely important for physics & collisions!
○ Also have rendering optimizations… not important for now

● Traditionally, primitives are simple, convex shapes
○ so no “dents”....topology doesn’t suddenly flip direction

● Definition changed over time to just mean common shapes
○ E.g. Blender considers monkey a primitive



3D Virtual Environments (VEs)
● aka scenes, levels, maps
● world/global origin (like the origin in any 3D axes)
● All things with physical definition have a transform 

(location/position, rotation/orientation, scale)
○ E.g. a class representing “game settings” doesn’t need transform

● Global/world transform relative to world origin
● Local/relative transform relative to a parent (e.g. want human eyes parented to 

                      the body)

More VEs

From Meehan 2002

From Razzaque 2001



Rotations
● 2 standards:

○ Quaternion: composition of vectors: (W, X, Y, Z) [vector pointing forward & rotation around it]
■ Used more often in low-level graphics b/c they’re easier to use in transformation matrices 

(which are usually 4x4)….which PCs are really good at computing
○ Euler: (pitch, yaw, roll)

■ Used in high-level APIs like game engines...although Quaterions usually used internally

Conversion between themQuaternion Euler

From Local/Relative Space to Global/World Space
● Put very simply, if 3D model is the node of a tree:

○ traverse upwards through tree, adding all relative location & rotation, multiply scales
○ Stop after reaching world origin (aka root)

■ (transform of root relative to itself is [position=(0,0,0), rotation=(0,0,0), 
scale=(1,1,1)]....so you can keep iterating but the result won’t change)

<-Name of Level is 
World Origin

Same convention 
in UE4 

V



Quick Intro to Low-Level Graphics APIs
● OpenGL (1992)

○ Made it possible to create graphics without going into hardware
○ Standardized graphics APIs
○ Still one of most widely compatible graphics APIs
○ Used by Unity and usually for simpler graphics

● Direct3D (1995) -> DirectX
○ DirectX describes entire range of MS’s “Direct” APIs
○ Originally a competitor to OpenGL
○ Everyone petitioned to Microsoft to play nice
○ They did, but the APIs never merged as industry hoped
○ Now used by UE4 and higher-end graphics

● AMD Mantle (2013) -> Vulkan (2016)
○ Newer API, accelerating in popularity
○ Meant to balance CPU & GPU usage
○ Much lower-level

● Apple Metal (2015)
○ Poor attempt to disrupt the game engine industry (depracate OpenGL)

Coordinate Systems
● OpenGL-based systems (e.g. Unity) usually Y-up

○ Philosophy that XY plane is the screen and Z is out of screen (depth)... Physics does this

● DirectX-based systems (but not DirectX itself) (e.g. Unreal) usually Z-up
○ Philosophy that Z is height…which goes up in 3-space. Also follows 3D math conventions

● Lower-level graphics APIs (non-game engines) are usually right-handed
● Game engines (Unity, Unreal) usually left-handed

○ Forward vector, right vector, up vector are positive

(I use finger guns)

Standard Color 
scheme:

X
Y
Z



Light Sources
● Directional

○ Used for sun

● Point
● Spot
● Ambient/SkyLight
● Planar 

○ (used to approximate 
umbrellas… like in 
modelling)

Many other parts of scene setup!
● Volumetric fog
● Particle generators
● Decals
● Physics, destructibility, 

fluids, etc.



Scene/Model Parameter Setup
Scene Setup 
(Geometry, 

transforms, etc.)

Scene/Model 
Parameter Setup 

(shaders, 
materials)

Rendering
(Rasterization or 

Ray-tracing)

Post-processing 
(anti-aliasing, 

blur, color 
grading, etc.)

Output to 
Display (buffered 

output)

Giving Details to the 3D Scene
● Need to tell renderer (which outputs the image):

○ How to show the 3D model (colors, textures, etc.)
○ How model interacts with scene, esp. lighting (reflections, absorption, etc.)

● Materials encode the model’s parameters (textures, colors, smoothness, etc.)
● Shaders are mini-programs that tell renderer what to do with that info



Textures
● Images...as simple as that!

○ Usually .png, .jpg, .tga
○ Could specify that they’re images 

used before rendering for setup
● Have different purposes

Traditional 3D Graphics (90s)
● Computer hardware not strong enough to run in realtime
● Everything needed to be preprocessed & stored somehow
● Materials were basically just textures with various elements 

baked onto them with texture maps (at time drawn by artists!)
○ Back then, mostly shadows and bumps
○ Maps are still important optimizations

● UV maps used to apply the textures to 3D models

Great resource for understanding different maps: 
https://help.poliigon.com/en/articles/1712652-what-are-the-different-texture-maps-for 

https://help.poliigon.com/en/articles/1712652-what-are-the-different-texture-maps-for


UV mapping
● Texture is 2D, model is 3D….how do we put texture on model?
● UV mapping is like wrapping a piece of paper (with image) around the model
● Often do it through the inverse example: UV unwrapping

○ flattening the model and overlaying the texture. Like origami!

● Optimization: UV/Texture atlas: 
○ mapping of many distinct texture/UVs of separate models/parts onto single texture/UV map
○ In many cases, it’s used to merge all textures in scene as one
○ UV atlas is generally extremely high resolution

^^^
We have a class at UNC on this 
called “Visual Solid Shape!”

Maps, maps, and more maps!
“Map” is used in so many contexts in game dev

● Can refer to images/texture maps with specific roles (diffuse, opacity, normal, etc)
○ Can fake effects as in reflection/specular & HDR maps
○ Can assist physically-based rendering (e.g. which part of the model is reflective?)

● Can refer to mathematical mapping
○ Topology
○ Mapping between coordinate systems (local & global, UV & model space, etc.)

● Can refer to game maps
○ Often small levels, like multiplayer maps

● Can be a literal map in your game!



Diffuse Map
● The surface details of the model without effect of light

○ Color
○ Texture
○ Patterns
○ Flaws, randomized features, etc.

● Anything besides solid colors start with a texture
○ Can be used as is, or transformed through Material Functions
○ Even solid colors usually treated like textures in game engines...4D RGBA Vector repeated per-pixel

● Often synonymous with albedo or base color (in Unity) but technically not the 
same in theory

Some types of texture maps

Great resource for understanding different maps: 
https://help.poliigon.com/en/articles/1712652-what-are-the-different-texture-maps-for 

https://help.poliigon.com/en/articles/1712652-what-are-the-different-texture-maps-for


Another Cheap Method: Vertex Colors
● Give each vertex of the triangle a color and linearly 

interpolate (lerp) along the polygon (if there is one)
● Very cheap and simple, but major limitations

○ What if the model has few triangles (low-poly)?
○ What about sharp changes in topology? Corners of a cube?
○ Vertex colors used for dense vertex-based models, e.g. 3D 

point clouds
○ Textures used for polygon-based models

Fun resource for more info: http://www.alkemi-games.com/a-game-of-tricks-ii-vertex-color/ 

Nowadays…Physically-Based Rendering!
● Light rays are predictable as are most things in traditional physics
● We use global illumination (GI) to model lighting of a scene
● We use physically-based rendering (PBR) to model how meshes & their 

materials interact with GI and approximate the light paths
○ Materials include this description of interactions (smoothness, textures, etc.)
○ Shaders include info about getting everything to render and display (like little C 

programs...e.g. What does it mean for an object to have 0.75 smoothness?)

● Thus, functions can describe the light with parameters changed dynamically 
○ e.g. player position/rotation, moving lights, varying brightness, deformed mesh

http://www.alkemi-games.com/a-game-of-tricks-ii-vertex-color/


Pre-PBR: Phong reflection model
● Start with texture/color & mesh and apply reflection model on top of it
● Reflection model: a function of constants

○ Diffuse/Matte: How much of the light’s color survives 
■ e.g. if light is blue & diffuse is high, a lot of the blue survives and makes model more blue

○ Specular: How much should light reflect and make the surface glossy
■ Maximum specular means you can only see reflection of scene like HDR map

○ Ambient: Base amount of light applied evenly throughout scene

● Improved with Blinn-Phong model
● Still in use today and is de facto baseline for 3D shaders
● Not quite PBR since parameters are constants...PBR describes them as functions
● Thus, rough estimation
● Only option in Unity until 

HDRP

Quick History of 3D Shading
● Methods of interpolating model edges when rendering image

○ Can make model appear smooth without geometrically smoothing it (e.g. subdividing)
○ Visual trickery for a great optimization!

● Such methods often called “smooth shading”...compare to “flat shading” below
● One of the first smooth shading methods: Gouraud shading (1971)

○ Lerps between vertices...similar to vertex colors in concept
○ Massive contribution in computer graphics...allowed rendered models to have curves with few verts!

● Another major contribution from Phong: Phong shading (1973)
○ Allows for interpolation WITH specularity!
○ Still a common method!



Basics of PBR
● Incident ray=light ray
● Diffuse reflections=rays that get scattered (detail of model that you see)
● Specular reflections= rays that reflect the environment (ooooh shiny!)
● Sometimes we model medium (e.g. passing through water or glass)

From “The 
Comprehensive PBR 
Guide” by 
Allegorithmic

How to actually implement PBR?
● At first, it was mostly just mixing a bunch of lighting models together, such as:

Found on https://theovermare.com/blog/2015/02/the-journey-of-the-light-physically-based-shading/

● In game engines, it’s much more complex but unnecessary to 
know the details unless you work that low-level

https://theovermare.com/blog/2015/02/the-journey-of-the-light-physically-based-shading/


Shader Languages
GLSL
● OpenGL Shader Language
● Similar to C
● Usually only used if interfacing with 

OpenGL directly

HLSL
● High-level shader language
● What Unity, Unreal, and most other 

high-level APIs use & expose to dev
○ Unity HDRP & UE4 abstract them

● Still pretty similar to C….more like C++

Rarely need to touch either one nowadays 
unless making shaders from scratch

Emergence of Shader Graphs
● Shading more accessible to high-level devs.... Like game devs!
● Results are immediately apparent & can be displayed visually

○ Why wouldn’t we want to display graphics-related concepts graphically if possible?



PBR & Material Functions (Composite of Shaders)
● PBR enables all materials to be parameterized functions with realtime light response

○ Powerful for randomization, dynamic materials, etc.

Randomized hair material in UE4 
from Digital Human demo

PBR & Material Functions

Small portion of that previous material randomizing small, periodic motions in the hair



Another example

● Lava Effect by Tanya Jeglova on https://www.artstation.com/artwork/mqAk0Z
● Nice tutorials at https://www.youtube.com/watch?v=H13BbNvKYjA and https://www.youtube.com/watch?v=bIvjz3A3anQ 

Unity 2018 Shader Graph
● They added a graph similar to UE4’s

○ Not fully featured but they’re getting there…
○ At least they’re moving on from Phong!

https://www.artstation.com/artwork/mqAk0Z
https://www.youtube.com/watch?v=H13BbNvKYjA
https://www.youtube.com/watch?v=bIvjz3A3anQ
http://www.youtube.com/watch?v=nZqq6ckGkrU


Material Properties
Unity 
(non-HDRP)

UE4

(small subsection of UE4 material 
properties)

Light Parameters & Lightmaps
● Radiance/luminosity/intensity 

○ lux, candelas, lumen

● Dynamic vs static/baked lighting



Office Hours – to be updated as needs change
● Open Lab Hours: TBD

@ AR/VR Lab (IRB 0110) on the ground level

● Office hours

Ming: Tues/Thur after class @ IRB 5162 or by appointment <lin@umd.edu>

Niall:  Friday 12:00pm-2:00pm @ IRB 5207 or by appointment <niallw@cs.umd.edu> 

Geonsun: Wed 12:00pm-2:00pm @ IRB 5207 or by appointment <gsunlee@umd.edu>

Jason: Tues/Thur 12:30pm-1:30pm @ AVW4176 or by appointment <jfotsopu@terpmail.umd.edu> 

Rendering: Creating the Image
Scene Setup 
(Geometry, 

transforms, etc.)

Scene/Model 
Parameter Setup 

(shaders, 
materials)

Rendering
(Rasterization or 

Ray-tracing)

Post-processing 
(anti-aliasing, 

blur, color 
grading, etc.)

Output to 
Display (buffered 

output)

mailto:lin@umd.edu
mailto:niallw@cs.umd.edu
mailto:gsunlee@umd.edu
mailto:jfotsopu@terpmail.umd.edu


Cameras
● Structure representing viewpoint.... Virtual implementation of physical camera
● Camera plane: reference plane used to create image

○ like world origin of the 2D rendered image!

● Camera frustum: camera’s range of vision

Two Major Rendering Methods
● Rasterizing
● Ray-tracing
● Main difference: how 

you learn the source of 
a pixel



Rasterizing
● Uses z-buffer to determine layer that each slice of 3D scene is on

○ Like dividing 3D scene into cross-sections parallel to camera plane

● Fast and default rendering method, essentially just projects pixel to camera plane

Where Rasterization Fails
● Can Cloud Gate, Chicago be rendered with a rasterizer? What would it look like?

○ Reflected object is seen from a different angle from the forward vector of camera to the mirror...it 
comes from a vector from mirror to reflected object. 

○ Rasterizer mostly just cares about direct rays of light...pixel doesn’t “travel”
○ Only rays can accurately represent this

Ya boi



Ray-Tracing (simpler Path-Tracing)
● Learns pixel by shooting rays from lights & cam

○ Gives a better impression of the 3D scene

● Much slower than rasterizing...rays are harder to 
compute than pixels. Z-buffer is like precomputing

● Denoising is making ray-tracing more feasible
○ Denoising basically fills in the blanks, requiring fewer rays

(probably not ray-traced… easier 
methods for planes! But imagine 
this for every surface) Post-Processing

Scene Setup 
(Geometry, 

transforms, etc.)

Scene/Model 
Parameter Setup 

(shaders, 
materials)

Rendering
(Rasterization or 

Ray-tracing)

Post-processing 
(anti-aliasing, 

blur, color 
grading, etc.)

Output to 
Display (buffered 

output)



Purpose of Post-Processing
● 3D environments are complex & require specialized algorithms
● 2D image processing is really fast on modern GPUs
● So add some effects AFTER image is rendered from 3D scene 

○ (which # pass depends on whether it’s deferred or forward rendering)

● Lots of beautification can be done in 2D with simple image processing
● Often called post-processing pass or post-processing layer

○ Each pass is a different set of effects applied
Some Common 

Post-Processing Options



Ambient Occlusion
● Draw shadows where sudden change in topology, regardless of light

○ Estimating where shadows will probably be given corners & blocking objects
○ Approximates real ambient light instead of adding luminosity to everything

● Gives exaggerated sense of depth

Anti-aliasing
● Aliasing: “jaggies” from limited # pixels
● Anti-aliasing: smoothing jaggies, usually by interpolating or filtering
● Can be per-frame or temporal



Motion Blur
● Blurs objects moving faster than framerate can keep up with

○ Can stylize action sequences and things that are hard to make high-res (like grass)
○ In games, usually used to obscure low framerate
○ We try to avoid it in VR b/c it causes sickness

Tonemapping
● Maps current color range to another...often faking HDR

○ Sometimes (like in UE4) make colors more natural…. 
■ E.g. pure white is almost nonexistent in real world, so map it to a pale color



Color-grading
● Changing color, gamma, brightness, etc. 

parameters to achieve stylistic effect

Supplementary Material on Color & Tone



Vignette
● This radial effect that looks like paper degradation or 

tunnel vision 

Depth of field
● Defocus things outside of focal range



Post-Processing in Game Engines
● Unreal 4 has always had a “post-processing volume” with a huge list of 

params. Can apply different post-processing to different areas of scene
○ Makes UE4 suitable for film CGI and architectural visualization (archviz)

● Unity 2018 added a “post-processing stack” with these volumes as well
○ Still has very few features….just common ones like anti-aliasing, bloom, etc

Unity post-processing 
options  as of 2019.2

Some of Unreal 4’s 
options

Output: Showing the Image
Scene Setup 
(Geometry, 

transforms, etc.)

Scene/Model 
Parameter Setup 

(shaders, 
materials)

Rendering
(Rasterization or 

Ray-tracing)

Post-processing 
(anti-aliasing, 

blur, color 
grading, etc.)

Output to 
Display (buffered 

output)



From Image to Screen
● Some low-level API sends the image to the GPU, which 

handles output to device (fragments->pixels, etc.)
● Mentioned b/c older VR devices were treated like multi-monitor 

setups...nowadays we can tell which output is VR
○ OpenXR standardizes the HMD drivers

(above-average student 
bank account) ---->

Optimization & 
Complexity



How do we work with limited hardware?
● Game devs already had to optimize for multiplatform
● Now we have all these VR devices (some mobile like Quest)
● What to do?

Legend of 
Zelda: Breath 
of the Wild 

Uncharted 4 Battlefield 1

The Witcher 3

Basic principle of complexity
The more complex the individual objects in a scene are, the fewer we can have!



Importance of Complexity 
● Processing times
● Rendering load/times
● Memory usage (GPU and RAM)
● Affects number of objects in scene (scene complexity)

What makes an object complex?
● Size relative to camera
● Vertex count
● Shape (affects shadows)
● Collision and contact complexity
● Resolution of maps (UV maps, lightmaps, etc)
● Intended materials 

○ (eg. a human body part might use subsurface scattering, 
which is very computationally complex!)



Complexity in Games How do we simplify complex objects?
● Decimation of vertices/recalculation of triangles
● Maps

○ Use when material functions unnecessary
○ Keep just high enough resolution to save RAM

● Simplifying Shaders & Material Functions
○ Avoid unnecessary computation
○ Share values (e.g. UV coordinates)

● Level of Detail (LOD)
● Randomization of certain details
● Accuracy parameters (shadows, textures, etc)

Save complexity for more important objects! (main characters, things that will be 
closer to the screen, etc.)



Level of Detail
● Farther objects are, less detail they should have
● Great and common optimization
● Multi-platform almost impossible without it nowadays
● Poor implementation causes “pop-in” 

Kui Wu 2017, “Real-time Cloth Rendering 
with Fiber-level Detail”

Level of Detail



Conclusions: 
● 3D graphics are complicated, many moving parts
● The game engine provides API and can handle 

things at the low level for you
● Try to use simplified representations (e.g. maps, 

textures, LoDs, etc.) instead of complex 
geometric methods, when applicable


