High-Level Introduction
to 3D Graphics

“High-level™?

e CMSC 427 — Introduction to Computer Graphics

o Hardware to software rendering pipelines

o Simplifying the concepts
o Game engines automatically handle the low-level implementation
o Game engines are basically wrappers for graphics APIs

BUFFER_BIT|GL_DEPTH_BUFFER_BIT)

e This lecture is an overview of CG pipeline
e ot 10,00, 00)
{reter, 00, 0,00)

A fundamental problem: 3D>2D

e End result is almost always 2D
o computer monitor, VR device screen, etc.
o Exceptions: holograms (intersection of light rays create “3D” pixels)
m E.g. 3D holographic projector, (some) autostereoscopic displays [1,2]
e Challenges:
o How to accurately project to 2D? Distortion, visual effects, etc.? e
o How to convince user that they’re looking at something 3D? Estimate eyes?

High-Level 3D Graphics Pipeline

e Simplification of resources like OpenGL'’s & UE3 pipeline documentation

e Pipeline from perspective of game/VR dev.... Not exactly how it flows internally
o Think of it as “order of things to worry about as a game/XR dev”
o Mix of graphics and development pipelines

. _ Low-Level
" Pipetines- |2

o How to clean the image?
o How to make the pipeline efficient?
o How to make the image photorealistic?

e Optimizations: M

Sconn Soup Scanaode:
[Paramotor Seup

Ouputto Display
ansiorma, oc) srader

oullord ouput)

Rendorng
(Rastorzation o
Rayiracng)

, el >
e Benefits: PP -

o Can create images very quickly if done well) 7\

o

Can make things look nice with visual trickery

viewing
frustrum

[1] Dodgson, Neil A. "Autostereoscopic 3D displays.” Computer 38.8 (2005): 31-36.

[2] Dodgson, Neil A., J. R. Moore, and S. R. Lang. "Multi-view autostereoscopic 3D display." i ing C

viewplane
viewpoint

ion. Vol. 2. 1999.

Simplified Game/XR Pipeline

Scene/Model
Parameter Setup
(shaders,
materials)

Rendering
(Rasterization or
Ray-tracing)

Post-processing Output to
(anti-aliasing, Display (buffered
blur, color output)

grading, etc.)

BEFORE

Scene Setup

Scene/Model
Parameter Setup
(shaders,
materials)

Rendering
(Rasterization or
Ray-tracing)

Post-processing
(anti-aliasing,
blur, color
grading, etc.)

BEFORE

Output to
Display (buffered
output)

3D Models/Meshes

e Vertices, edges, faces (aka polygons or polys)

o (usually tris/quads, game engines internally triangulate for optimizations and consistency)
e Often called meshes...bunch of vertices meshed together

face

3D Primitives

e “Atomic” shapes: any mesh can be decomposed into geometric primitives
e Among the most important concepts in optimization

o Extremely important for physics & collisions!
Also have rendering optimizations... not important for now

Traditionally, primitives are simple, convex shapes
o sono “dents”....topology doesn’t suddenly flip direction
e Definition changed over time to just mean common shapes
o E.g. Blender considers monkey a primitive \

o

&

Concave Convex

Cube Cylinder Cone

Pyramid Torus Pipe

Soccer Ball Platonic Solids Helix

3D Virtual Environments (VESs) 7!

e aka scenes, levels, maps
e world/global origin (like the origin in any 3D axes)

e All things with physical definition have a transform
(location/position, rotation/orientation, scale) Y
o E.g. aclass representing “game settings” doesn’t need transform

o Global/world transform relative to world origin
e Locallrelative transform relative to a parent (e.g. want human eyes parented to
the body)

More VEs

From Razzaque 2001

Rotations

e 2 standards:
o Quaternion: composition of vectors: (W, X, Y, Z) [vector pointing forward & rotation around it]
m Used more often in low-level graphics b/c they're easier to use in transformation matrices
(which are usually 4x4)....which PCs are really good at computing
o Euler: (pitch, yaw, roll)
m Used in high-level APIs like game engines...although Quaterions usually used internally

Rotation
Axis,

Rotation
Plane —

X (North)

Y (East)

-~ Pitch (0)

Yaw ()

(toward views

Z (Down)
Quaternion Euler

Conversion between them

From Local/Relative Space to Global/World Space

e Put very simply, if 3D model is the node of a tree:
o traverse upwards through tree, adding all relative location & rotation, multiply scales
o Stop after reaching world origin (aka root)
m (transform of root relative to itself is [position=(0,0,0), rotation=(0,0,0),
scale=(1,1,1)]....so you can keep iterating but the result won’t change)

rmsae -

<-Name of Level is
v Q TestScene World Origin

Vig BlueP!ane Same convention
¥ | WhitePlane in UE4

|/ RedCylinder

Quick Intro to Low-Level Graphics APIs

OpenGL (1992)
Made it possible to create graphics without going into hardware
o Standardized graphics APIs
o Still one of most widely compatible graphics APIs
o Used by Unity and usually for simpler graphics
Direct3D (1995) -> DirectX
DirectX describes entire range of MS’s “Direct” APIs
o Originally a competitor to OpenGL
o Everyone petitioned to Microsoft to play nice
o They did, but the APIs never merged as industry hoped
o Now used by UE4 and higher-end graphics
AMD Mantle (2013) -> Vulkan (2016)
o Newer API, accelerating in popularity
Meant to balance CPU & GPU usage
o Much lower-level
Apple Metal (2015)

o Poor attempt to disrupt the game engine industry (depracate OpenGL)

Microsoft®

Di rectX

penGL.

Vulkan.

Coordinate Systems

Y Y
Standard Color
X scheme:
X N X
‘ L

OpenGL-based systems (e.g. Unity) usually Y-up
o Philosophy that XY plane is the screen and Z is out of screen (depth)... Physics does this
DirectX-based systems (but not DirectX itself) (e.g. Unreal) usually Z-up
o Philosophy that Z is height...which goes up in 3-space. Also follows 3D math conventions
Lower-level graphics APIs (non-game engines) are usually right-handed
Game engines (Unity, Unreal) usually left-handed
o Forward vector, right vector, up vector are positive

DirectX

Y
z

source)
@ cRr

@biender

Lebt hand Right hand

(I use finger guns)

Light Sources

Directional
Used for sun
Point
Spot
Ambient/SkyLight
Planar
(used to approximate
umbrellas... like in
modelling)

V\J]
A\

Volumetric fog

Particle generators
Decals

Physics, destructibility,
fluids, etc.

Scene/Model Parameter Setup

transforms, etc.)

grading, etc.)

»

f

Scene Setup Rendering Post-processing Output to
(Geometry, (Rasterization or (anti-aliasing, Display (buffered
Ray-tracing) blur, color output)

Giving Details to the 3D Scene

e Need to tell renderer (which outputs the image):
o How to show the 3D model (colors, textures, etc.)
o How model interacts with scene, esp. lighting (reflections, absorption, etc.)

e Materials encode the model’s parameters (textures, colors, smoothness, etc.)
e Shaders are mini-programs that tell renderer what to do with that info

Textures

e Images...as simple as that!
o Usually .png, .jpg, .tga
o Could specify that they're images
used before rendering for setup

e Have different purposes

Traditional 3D Graphics (90s)

Computer hardware not strong enough to run in realtime

Everything needed to be preprocessed & stored somehow

Materials were basically just textures with various elements

baked onto them with texture maps (at time drawn by artists!)
o Back then, mostly shadows and bumps
o Maps are still important optimizations

UV maps used to apply the textures to 3D models

‘ @ Great resource for understanding different maps:
@ https://help.poliigon.com/en/articles/17 12652-what-are-the-different-texture-maps-for

https://help.poliigon.com/en/articles/1712652-what-are-the-different-texture-maps-for

UV mapping

e Texture is 2D, model is 3D....how do we put texture on model?
e UV mapping is like wrapping a piece of paper (with image) around the model
L]

Often do it through the inverse example: UV unwrapping
o flattening the model and overlaying the texture. Like origami!

From Robert Lang's“Origami Design Secrets”

=y L7 m\ 3-D Model UV Map

AAA ‘ 4

We have a class at UNC on this & |
called “Visual Solid Shape!”

e Optimization: UV/Texture atlas:

o

mapping of many distinct texture/UVs of separate models/parts onto single texture/UV map
In many cases, it's used to merge all textures in scene as one
UV atlas is generally extremely high resolution

o

o

Maps, maps, and more maps!
‘Map” is used in so many contexts in game dev
e Can refer to images/texture maps with specific roles (diffuse, opacity, normal, etc)
o Can fake effects as in reflection/specular & HDR maps

Can assist physically-based rendering (e.g. which part of the model is reflective?)
e Can refer to mathematical mapping

o Topology
o

o

Mapping between coordinate systems (local & global, UV & model space, etc.)
e Can refer to game maps

o Often small levels, like multiplayer maps
Can be a literal map in your game!

Diffuse Map

The surface details of the model without effect of light
o Color
o Texture
o Patterns
o Flaws, randomized features, etc.
Anything besides solid colors start with a texture
o Can be used as is, or transformed through Material Functions

o Even solid colors usually treated like textures in game engines...4D RGBA Vector repeated per-pixel

Often synonymous with albedo or base color (in Unity) but technically not the
same in theory

Some types of texture maps

%

SPECULAR lDISPLACEMENT: AMBIENT

DIFFUSE i NORMAL
' | OCCLUSION l
Adiffuse map Aspeculority map ‘ Displacement maps Amb\sm‘ occlusion | is| The red, green, and

contains the color ' defines how srong ' are similar fo bump Bhio Chiamneis o e

infomnationofthe the texiued ufoce bulstore height image are used fo

texture. It defines willshine’ af a cerlain ooha g ot should be. commatine direction

whalonghalColor posfion Mod fonder _ Generates of
fhe fexiure wilhave engines use thisinfor- depth by adding romd el
atacertain position. mafion fo define fhe geomery when

ered

“*Multiplay mode'" in

dr«:‘nenmnem\d
| specularhighights | h is facing as well
I ' I ' .
I ' I ' .

s
e

'

Great resource for understanding different maps:
https://help.poliigon.com/en/articles/1712652-what-are-the-different-texture-maps-for

https://help.poliigon.com/en/articles/1712652-what-are-the-different-texture-maps-for

Another Cheap Method: Vertex Colors
e Give each vertex of the triangle a color and linearly
interpolate (lerp) along the polygon (if there is one)
e \ery cheap and simple, but major limitations
o What if the model has few triangles (low-poly)?
o What about sharp changes in topology? Corners of a cube?
Vertex colors used for dense vertex-based models, e.g. 3D
point clouds
o Textures used for polygon-based models

Fun resource for more info: http://www.alkemi-games.com/a-game-of-tricks-ii-vertex-color/

Nowadays...Physically-Based Rendering!

Light rays are predictable as are most things in traditional physics
We use global illumination (Gl) to model lighting of a scene
We use physically-based rendering (PBR) to model how meshes & their
materials interact with Gl and approximate the light paths
o Materials include this description of interactions (smoothness, textures, etc.)

o Shaders include info about getting everything to render and display (like little C
programs...e.g. What does it mean for an object to have 0.75 smoothness?)

Thus, functions can describe the light with parameters changed dynamically
o e.g. player position/rotation, moving lights, varying brightness, deformed mesh

@ Lo Wi g Global lucios

http://www.alkemi-games.com/a-game-of-tricks-ii-vertex-color/

Pre-PBR: Phong reflection model

Start with texture/color & mesh and apply reflection model on top of it

Reflection model: a function of constants
o Diffuse/Matte: How much of the light's color survives
m e.g.if lightis blue & diffuse is high, a lot of the blue survives and makes model more blue
o Specular: How much should light reflect and make the surface glossy
m Maximum specular means you can only see reflection of scene like HDR map
o Ambient: Base amount of light applied evenly throughout scene
Improved with Blinn-Phong model
Still in use today and is de facto baseline for 3D shaders

Not quite PBR since parameters are constants...PBR describes them as functions

Thus, rough estimation
Only option in Unity until
HDRP

Ambient + Diffuse + Specular = Phong Reflection

Quick History of 3D Shading

e Methods of interpolating model edges when rendering image
o Can make model appear smooth without geometrically smoothing it (e.g. subdividing)
o Visual trickery for a great optimization!
Such methods often called “smooth shading”...compare to “flat shading” below
One of the first smooth shading methods: Gouraud shading (1971)
o Lerps between vertices...similar to vertex colors in concept
o Massive contribution in computer graphics...allowed rendered models to have curves with few verts!
e Another major contribution from Phong: Phong shading (1973)
o Allows for interpolation WITH specularity!
o Still a common method!

TF A

FIAT SHADING GOURAUD SHADING PHONG SHADING

Basics of PBR

Incident ray=light ray

Diffuse reflections=rays that get scattered (detail of model that you see)
Specular reflections= rays that reflect the environment (ooooh shiny!)
Sometimes we model medium (e.g. passing through water or glass)

Incident Ray

From “The
Comprehensive PBR
Guide” by
Allegorithmic

e ©
il \. "\\. 1/ 0/'. Scattering Particles

How to actually implement PBR?

e At first, it was mostly just mixing a bunch of lighting models together, such as:

Ambient Diffuse + Ambient Specular + Direct Diffuse + Direct Specular

Found on https:/theovermare.com/blog/2015/02/the-journey-of-the-light-physically-based-shading/

e In game engines, it's much more complex but unnecessary to
know the details unless you work that low-level

PHYSICALLY BASED
NI

https://theovermare.com/blog/2015/02/the-journey-of-the-light-physically-based-shading/

void main(void) {
Shader Languages TecA Screeision < mdeiview * HVervens Emergence of Shader Graphs
GLSL 4} gl _Position = PRMatrix * ecPosition;

diffuseTextureCoord = TexCoord0;

e Shading mor ibl high-level devs.... Lik m vs!

e OpenGL Shader Language if (EnableLighting) 2 adltg O.e ac&;e.ststl)e to hig tf&e debsd' | e gda -e dTI s
I { (]
e Similarto C ecPosition3 = (vec3(ecPosition)) / ecPosition.w; esults are Immediately a_pparen - can be displaye VI.SLIa _y .
e . . ecNormal = vec3(modelView * vecd (MCNormal, 0.0)); o Why wouldn’t we want to display graphics-related concepts graphically if possible?
e Usually only used if interfacing with if (EnableNormalize)
. ecNormal = normalize (ecNormal);
OpenGL directly)

Floats pos : SUJ
float2 packs : TEXCOO
flost2 lnap : TEXCOORDL;

HLSL Structure of HLSL code)

e High-level shader language HESL code bas four:parts:

; 1. Variables that get values from application
e What Unity, Unreal, and most other

: 7 oppdata_rut v ¢
2. Input and Output structure (optional)

T
. 3. Functions . “TRANSFORM_TEX(v. te tainTex);

high-level APIs use & expose to dev 4. Techniques and passes e N T —

:
o Unity HDRP & UE4 abstract them One HLSL file could have more techniques. One technique Floats vorld = ul(FLoatsxa) Objectzvorld, SCALED_IORAL):
. . . can have multiple passes. Lets see the following example o. a

° ++ ; b

Still pretty similar to C....more like C =i S o o

t3 shlight = Shades9 (floatd(worldN,1.0));

float4 pos : POSITION;
float4 color : COLORO;

shlight;
ERTEXLIGHT_O

Rarely need to touch either one nowadays
unless making shaders from scratch

i loat4x4 WorldViewProj : WORLDVIEWPROJECTION;

PBR & Material Functions (Composite of Shaders)

e PBR enables all materials to be parameterized functions with realtime light response
o Powerful for randomization, dynamic materials, etc. 3

Randomized hair material in UE4
from Digital Human demo

PBR & Material Functions

Animated Dither.

5 translucency steps, high frequency regular pattern

SeicenAigredPelToPeiI Vs

5] B

L] Ao =
“HE

\'rain&om noise to break up the 5 st:ps

Cr & | (Sccenigedpeliopkelivs
.)

. 'l ey |
) vf
L2

Time (Periodof 1.00) [
o B

Small portion of that previous material randomizing small, periodic motions in the hair

Another example Unity 2018 Shader Graph

e They added a graph similar to UE4’s
o Not fully featured but they’re getting there...
o At least they're moving on from Phong!

e Lava Effect by Tanya Jeglova on https://www.artstation.com/artwork/mgAk0Z
. Nice tutorials at https://www.youtube.com/watch?v=H13BbNvKYjA and https://www.youtube.com/watch?v=blvjz3A3anQ

https://www.artstation.com/artwork/mqAk0Z
https://www.youtube.com/watch?v=H13BbNvKYjA
https://www.youtube.com/watch?v=bIvjz3A3anQ
http://www.youtube.com/watch?v=nZqq6ckGkrU

Material Properties
Unity
(non-HDRP)

NewMaterial3

Shininess
Base (RGB) Gloss (A)

Tiing XL |Y[T

offsct X0 Y0
Color

Normal map

Tiling X[|Y[
offset X0 Y[
Reflection map

Tiling

x[__|v[
offset X0 I¥[o
Enable Reflection map

"3
Render Queue [From Shader ¢]2000

Enable GPU Instancing a
Double Sided Global Iilumination [

Add Component

© Rough

O Em
O Opacity

O Normal

© World Position Offset

o
o

© Ambient Occlusion

(small subsection of UE4 material O Pixel Depth Offset
properties)

Light Parameters & Lightmaps

e Radiance/luminosity/intensity
o lux, candelas, lumen

e Dynamic vs static/baked lighting

7

Office Hours — to be updated as needs change

Open Lab Hours: TBD
@ AR/VR Lab (IRB 0110) on the ground level

Office hours

Ming: Tues/Thur after class @ /RB 5162 or by appointment <lin@umd.edu>

Niall: Friday 12:00pm-2:00pm @ /RB 5207 or by appointment <niallw@cs.umd.edu>
Geonsun: Wed 12:00pm-2:00pm @ /RB 5207 or by appointment <gsunlee@umd.edu>

Jason: Tues/Thur 12:30pm-1:30pm @ AVW4176 or by appointment <jfotsopu@terpmail.umd.edu>

Rendering: Creating the Image

Scene Setup
(Geometry,
transforms, etc.)

Scene/Model
Parameter Setup
(shaders,
materials)

=
y 3

A

Post-processing
(anti-aliasing,
blur, color
grading, etc.)

BEFORE

Output to
Display (buffered
output)

mailto:lin@umd.edu
mailto:niallw@cs.umd.edu
mailto:gsunlee@umd.edu
mailto:jfotsopu@terpmail.umd.edu

Cameras Two Major Rendering Methods

e Structure representing viewpoint.... Virtual implementation of physical camera e Rasterizing . .

. H asterization
e Camera plane: reference plane used to create image o8 X e Ray-tracing [Resterization]

o like world origin of the 2D rendered image! R :
, . N e Main difference: how
e Camera frustum: camera’s range of vision v II
@3 you learn the source of
el a pixel
©'Too eraph Computr Sysems y

2-Dimensional 3-Dimensional

y axis
y axis

H T - T axis Ve |
: il e "

- —
0 37
a 2
l : Q
? " Scene Object
H ,
4
3

L1 .
73486180 onaawe® X OXIS

viewing e,
frustrum viewplane)
viewpoint

X axis

Rasterizing
e Uses z-buffer to determine layer that each slice of 3D scene is on
o Like dividing 3D scene into cross-sections parallel to camera plane
e Fast and default rendering method, essentially just projects pixel to camera plane

Triangles in Fragments Image
v2 3D.mesh screen space Fragments with colors Output
what is the b ¢
position ofthis &R T L. Fae:
point? == ‘
(interpolate 8 E
V0, v1, v2) \ .\ N\ a0\
\ / \ / \ / \ /
\e ol / % A
 / « / L «/
Vertex Rasterization Raster Fragment
processing Operations processing
m': | Texture
vi UL filtering

© www.scratchapixel.com

Where Rasterization Fails

e Can Cloud Gate, Chicago be rendered with a rasterizer? What would it look like?
o Reflected object is seen from a different angle from the forward vector of camera to the mirror...it

comes from a vector from mirror to reflected object.

Rasterizer mostly just cares about direct rays of light...pixel doesn'’t “travel”

Only rays can accurately represent this

e
4

RAY TRACING

(probably not ray-traced... easier

Ray-Tracing (simpler Path-Tracing) ot o lares Buinaone

Post-Processing

e Learns pixel by shooting rays from lights & cam
o Gives a better impression of the 3D scene

e Much slower than rasterizing...rays are harder to Scene Setup Scene/Model Rendering Output to
compute than pixels. Z-buffer is like precomputing (Geometry, Parameter Setup (Rasterization or Displayt(but;‘fered
outpu!

.. transforms, etc. shaders, Ray-tracin
e Denoising is making ray-tracing more feasible) r(naterials) Y @

o Denoising basically fills in the blanks, requiring fewer rays

DENOISING PATH TRACING

time Result

BEFORE

Purpose of Post-Processing

e 3D environments are complex & require specialized algorithms
e 2D image processing is really fast on modern GPUs
e So add some effects AFTER image is rendered from 3D scene
o (which # pass depends on whether it's deferred or forward rendering)
e Lots of beautification can be done in 2D with simple image processing
e Often called post-processing pass or post-processing layer
o Each pass is a different set of effects applied

ey] Post-Procéssing

Some Common
Post-Processing Options

Ambient Occlusion

e Draw shadows where sudden change in topology, regardless of light
o Estimating where shadows will probably be given corners & blocking objects
o Approximates real ambient light instead of adding luminosity to everything

Anti-aliasing
e Aliasing: “jaggies” from limited # pixels
e Anti-aliasing: smoothing jaggies, usually by interpolating or filtering

e Can be per-frame or temporal
Aliased Anti-Aliased

v

o0
il

Motion Blur

e Blurs objects moving faster than framerate can keep up with
o Can stylize action sequences and things that are hard to make high-res (like grass)
o In games, usually used to obscure low framerate
o We try to avoid it in VR b/c it causes sickness

o o = o !
no rﬂblur ‘ resamleon blu! reelsmaﬂon blul

—

Tonemapping

e Maps current color range to another...often faking HDR
o Sometimes (like in UE4) make colors more natural....
m E.g. pure white is almost nonexistent in real world, so map it to a pale color

B TOWER -
"RESHADE

VANLLA . o GEan A

Color-grading

e Changing color, gamma, brightness, etc.

parameters to achieve stylistic effect

NoT GRADED

Supplementary Material on Color & Tone
COLOR THEORY

COLOR MODELS

Vignette

e This radial effect that looks like paper degradation or
tunnel vision

Depth of field

e Defocus things outside of focal range

Narrow Deplh of Field

No Vignette Vignette

Focu: sPo int

Focus Distanc

i ;n 1i1

Large Depth of Field

Post-Processing in Game Engines
E PostProcessVolume

e Unreal 4 has always had a “post-processing volume” with a huge list of
params. Can apply different post-processing to different areas of scene

Output: Showing the Image

o Makes UE4 suitable for film CGI and architectural visualization (archviz) i@ post Process Layer (Script)

e Unity 2018 added a “post-processing stack” with these volumes as well
o Still has very few features....just common ones like anti-aliasing, bloom, etc 4Rendering Fealiwes

Ambient Occlusion

4 Color Grading

Auto Exposure

Bloom

Chromatic Aberration
Color Grading

Depth of Field

Grain

Lens Distortion

Motion Blur
Screen-space reflections
Vignette

Unity post-processing
options as of 2019.2

Some of Unreal 4's
options

Scene Setup Scene/Model
(Geometry, Parameter Setup
transforms, etc.) (shaders,

materials)

Rendering
(Rasterization or
Ray-tracing)

Post-processing

(anti-aliasing,
blur, color

grading, etc.)

BEFORE AFTER

(above-average studen

From Image to Screen bank account) o>

e Some low-level API sends the image to the GPU, which
handles output to device (fragments->pixels, etc.)
e Mentioned b/c older VR devices were treated like multi-monitor

setups...nowadays we can tell which output is VR
OpenXR standardizes the HMD drivers

Data element 52
— >
Buffer

Point-by-point read operation
" wite operation

NI DMA

Engine

system Bus
FPGA Buffer % Host Buffer

Optimization &
omplexity

How do we work with limited hardware?

e Game devs already had to optimize for multiplatform

e Now we have all these VR devices (some mobile like Quest)
e \What to do?

Legend of
Zelda: Breath
of the Wild

The Witcher 3

Uncharted 4 Battlefield 1

Basic principle of complexity

The more complex the individual objects in a scene are, the fewer we can have!

Importance of Complexity

Processing times

Rendering load/times

Memory usage (GPU and RAM)

Affects number of objects in scene (scene complexity)

°U [STATGROUZLGRU] {)
i

What makes an object complex?

Size relative to camera

Vertex count

Shape (affects shadows)

Collision and contact complexity

Resolution of maps (UV maps, lightmaps, etc)

Intended materials
o (eg. a human body part might use subsurface scattering
which is very computationally complex!)

Complexity in Games

0S: 64-bit Windows 7, Windows 8.1 and Window
Processor (AMD): AMD FX-6350

Processor (Intel): Core i5 6600K

Memory: 8GB RAM

Graphics card (AMD): AMD Radéon HD 7850 2GB
Graphi d (NVIDIA): nVidia GeForce GTX 660 268"

DirectX: 11.0.Compatible video card or equivalent

Confection Requirements: 512,KBPS or faster In’ connection

ace: 10GB o . -

How do we simplify complex objects?

e Decimation of vertices/recalculation of triangles
e Maps

o Use when material functions unnecessary

o Keep just high enough resolution to save RAM
e Simplifying Shaders & Material Functions

o Avoid unnecessary computation

o Share values (e.g. UV coordinates)

e Level of Detail (LOD)
e Randomization of certain details
e Accuracy parameters (shadows, textures, etc)

Save complexity for more important objects! (main characters, things that will be
closer to the screen, etc.)

SBOR®]

Lot ESEN

Level of Detail

Farther objects are, less detail they should have
Great and common optimization

Multi-platform almost impossible without it nowadays
Poor implementation causes “pop-in” =

Kui Wu 2017, “Real-time Cloth Rendering
with Fiber-level Detail”

Level of Detail

o9

oD2
Lol = oSt

Conclusions:

3D graphics are complicated, many moving parts
The game engine provides APl and can handle
things at the low level for you

Try to use simplified representations (e.g. maps,
textures, LoDs, etc.) instead of complex
geometric methods, when applicable

