## **Interactive Sound Rendering**

Sound Synthesis
Numerical Acoustic Simulation
Interactive Sound Propagation
Application Demonstration

### **Themes**

- Exploiting analytical solutions using Modal Analysis to accelerate numerical simulation and reducing runtime computation
- Capture only perceptually important auditory cues to perform real-time sound synthesis and acoustic propagation on complex 3D scenes

### Overview

- Interactive Sound Synthesis
- Efficient Numerical Acoustic Simulation
- Interactive Sound Propagation
- Conclusion and Future Work

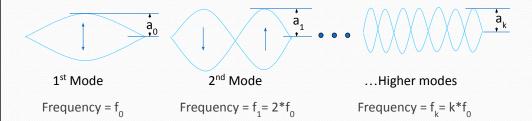
3

### Overview

- Interactive Sound Synthesis
  - Modal Analysis
  - Perceptually-based acceleration techniques
  - Hundreds of sounding objects
  - Sound from image textures
- Efficient Numerical Acoustic Simulation
- Interactive Sound Propagation
- Conclusion and Future Work

### Physically-based Sound Synthesis

- Aim: Take object geometry and material as input and produce sound
- Current trend: Recorded sounds
- Problems with recorded sounds:
  - Difficult, expensive or dangerous to record (eg. Explosions)
  - Repetitiveness
  - Complex interactions (impact/rolling)

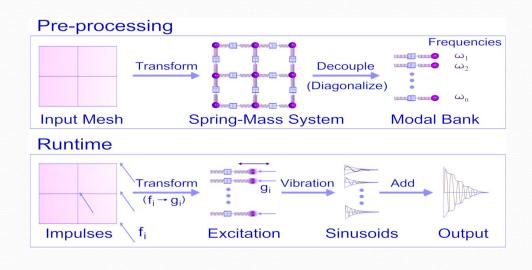



A typical foley studio\*

\* Image taken from: <a href="http://www.marblehead.net/foley/index.html">http://www.marblehead.net/foley/index.html</a>

# **Physical Simulation**

- Elastic deformable model
- Typical simulation time-steps must be ~10<sup>-5</sup> s
- Direct simulation infeasible
- Efficient method: Modal Analysis




- Each mode represents a resonant mode of vibration
- Frequency of a mode is fixed
- Applying impulse excites modes of vibration
- Position of impact determines relative amplitude of modes

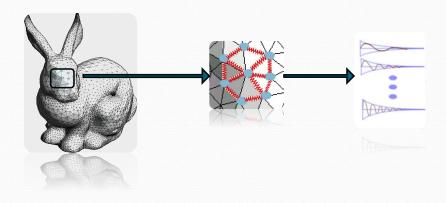
7

9

# Overview of Technique

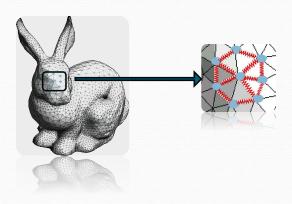


### **Approach**

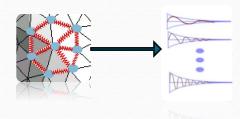

- Simpler model: Spring-mass system
- Fast: Supports hundreds of sounding objects
- Runs in real-time, low CPU utilization (~10%), graceful degradation in quality with limited computation
- Exploit human auditory perception
  - Mode Compression
  - Mode Truncation
  - Quality Scaling

10

### **Modal Analysis**

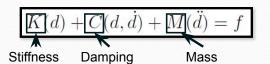

- Deformation modeling
  - Vibration of surface generates sound
  - Sound sampling rate: 44100 Hz
  - Impossible to calculate the displacement of the surface at sampling rate
  - Represent the vibration pattern by a bank of damped oscillators (modes)
- Standard technique for real-time sound synthesis

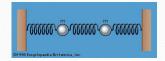
- Discretization
  - An input triangle mesh -> a spring-mass system
  - A spring-mass system -> a set of decoupled modes




# **Modal Analysis**

- The spring-mass system set-up
  - Each vertex is considered as a mass particle
  - Each edge is considered as a damped spring





Coupled spring-mass system to a set of decoupled modes



# Modal Analysis

- A discretized physics system
  - We use spring-mass system





Small displacement, so consider it linear

$$Kd + C\dot{d} + M\ddot{d} = f$$

Stiffness Damping Mass

Solve the Ordinary Differential Equation (ODE)

$$Kd + C\dot{d} + M\ddot{d} = f$$

Rayleigh damping

$$Kd + (\gamma M + \eta K)\dot{d} + M\ddot{d} = f$$
 And diagonalizing 
$$K = GDG^{-1}$$

Now, solve this ODE instead

$$DG^{-1}d + (\gamma G^{-1}M + \eta DG^{-1})\dot{d} + G^{-1}M\ddot{d} = G^{-1}f$$

### **Modal Analysis**

Selve the ODE.

$$DG^{-1}d + (\gamma G^{-1}M + \eta DG^{-1})\dot{d} + G^{-1}M\ddot{d} = G^{-1}f$$

• Substitute  $z = G^{-1}d$  the modes) Now, solve this ODE instead

$$Dz + (\gamma M + \eta D)\dot{z} + M\ddot{z} = G^{-1}f$$

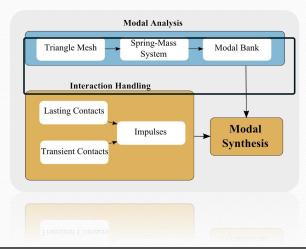
General solution

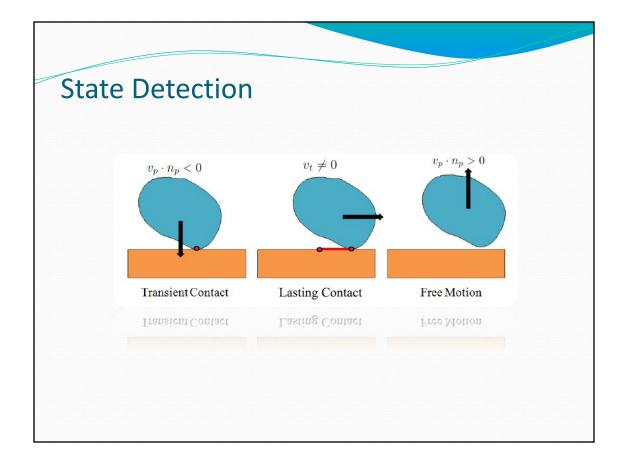
$$z_i = c_i e^{\omega_i^+ t} + \bar{c_i} e^{\omega_i^- t}$$

$$\omega_i^{\pm} = \frac{-(\gamma \lambda_i + \eta) \pm \sqrt{(\gamma \lambda_i + \eta)^2 - 4\lambda_i}}{2}$$

External excitation defines the initial conditions

### **Modal Analysis**


- Assumptions
  - In most graphics applications, only surface representations of geometries are given
  - A surface representation is used in modal Analysis
  - Synthesized sound appears to be "hallow"


# Modal Analysis Summary

An input triangle mesh ->

A spring-mass system ->

A set of decoupled modes





### State Detection

- Distinguishing between lasting and transient contacts
  - In contacts?

$$\begin{cases} v_p \cdot n_p < 0 & \text{in contact} \\ v_p \cdot n_p > 0 & \text{not in contact} \end{cases}$$

• In lasting contacts?

$$\begin{cases} v_t \neq 0 & \text{lasting contact} \\ v_t = 0 & \text{not in lasting contact} \end{cases}$$

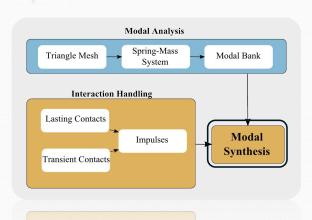
## Interaction Handling

- Lasting contacts -> a sequence of impulses
- Transient contacts -> a single impulse

### **Impulse Response**

- Dirac Delta function as impulse excitation
  - General solution

$$z_i = c_i e^{\omega_i^+ t} + \bar{c_i} e^{\omega_i^- t}$$


with initial condition given by the impulse,

$$c'_{i} = c_{i}e^{\omega_{i}^{+}t_{0}} + \frac{g_{i}}{m_{i}(\omega_{i}^{+} - \omega_{i}^{-})}$$

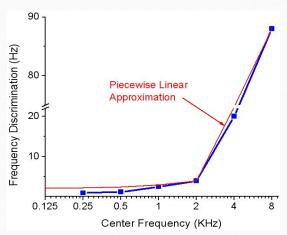
$$\bar{c}'_i = \bar{c}_i e^{\omega_i^- t_0} - \frac{g_i}{m_i(\omega_i^+ - \omega_i^-)}$$

## **Impulse Response**

$$z_i = c_i e^{\omega_i^+ t} + \bar{c_i} e^{\omega_i^- t}$$



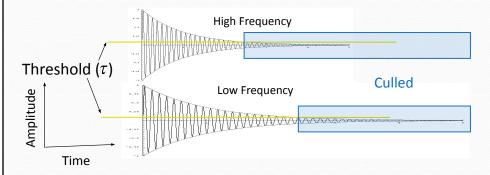
### **Handling Lasting Contacts**


- The interaction simulation has to be stepped at the audio sampling rate: 44100 Hz
- The update rate of a typical real-time physics simulator: on the order of 100's Hz
- Not enough simulation is provided by the physics engine
- An customized interaction model for sound synthesis

## Mode Compression: Principle

- Humans can't distinguish two frequencies arbitrarily close to each other [Sek et. al., 1995\*]
- Accuracy in discriminating frequencies depends on the frequency in question
- Different frequencies were played in succession to find if the subject could distinguish between them

<sup>\*</sup>Sek, A., and Moore, B. C. 1995. Frequency discrimination as a function of frequency, measured in several ways. J. Acoust. Soc. Am. 97, 4 (April), 2479–2486.


### Mode Compression: Auditory Perception



Frequency Discrimination at 2 KHz is about 4 Hz -- We can't tell apart frequencies within the range 1998 - 2002 Hz -> playing many sinusoids of different frequencies together

28

### **Mode Truncation**



- Impact Sounds: Attack + Decay
- Key Point: Critical to capture attack properly
- Stop mixing mode when its contribution falls below a prescribed threshold,  $\tau$  (typically -60 to -80 dB of initial level)

29

# **Quality Scaling**

- A typical audio scene consists of foreground and background sounds
- Higher intensity sounds are considered to be foreground
- Idea: Give more importance to foreground sounds
- Provides a graceful way to adapt to variable time constraints

30

## **System Demonstration**

**VIDEO** 

### Sound from Image Textures

### **VIDEO**

33

### Limitations

- Implementation: Model only the surface (not an inherent limitation of the approach)
- More approximate than an FEM-based formulation
  - Some tuning is required
- All sound synthesis techniques relying on Modal Analysis:
   Can only use linear damping models

# Sounding Liquids [Moss et al. 2009]

- Work in physics & engineering literature since 1917
   Sound generated by resonating bubbles
- Physically-based Models for Liquid Sounds (van den Doel, 2005)
  - Spherical bubble model
  - No fluid simulator couplingHand tune bubble profile

# Background (Fluid)

- Grid-based methods
- Accurate to grid resolution
  - Bubbles can be smallerSlow
    - Can be two-phase



# Background (Fluid)

- Shallow Water Equations
  - Simulate water surface
  - No breaking waves
  - Real time
  - One phase
    - **Explicit bubbles**



## Overview

- Generate sound from existing fluid simulation
   Model sound generated by bubbles
- Apply model to two types of fluid simulators

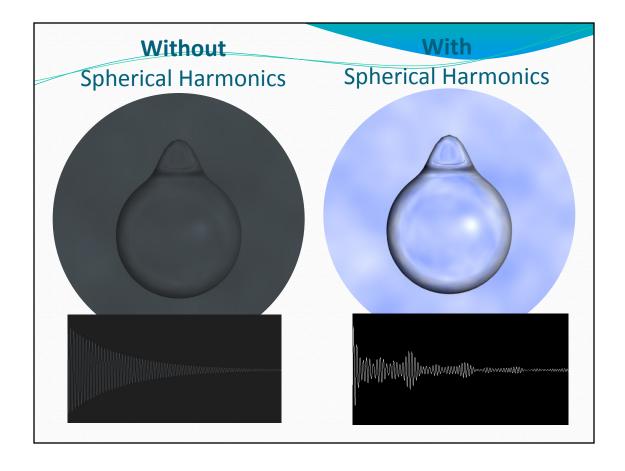
#### Particle-Grid-based

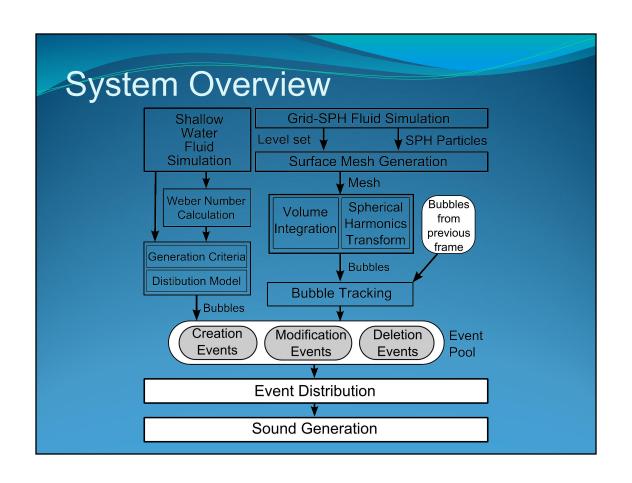
- Extract bubbles
- Process spherical and non-spherical bubbles
- Generate sound

#### **Shallow Water Equations**

- Processes surface
  - Curvature and velocity
- Select bubble from distribution
- Generate sound

# **Mathematical Formulations**


Spherical Bubbles


$$f_0 = \frac{1}{2\pi} \sqrt{\frac{3\gamma p_0}{\rho R_0^2}}$$
$$\tau(t) = A\sin(2\pi f(t)t)e^{-dt}$$





$$f_n^2 \approx \frac{1}{4\pi^2}(n-1)(n+1)(n+2)\frac{\sigma}{\rho R_0^3}$$







## **Video Demonstration**

### **VIDEO**

### Overview

- Interactive Sound Synthesis
- Efficient Numerical Acoustic Simulation
- Interactive Sound Propagation
- Conclusion and Future Work

### Overview

- Interactive Sound Synthesis
- Efficient Numerical Acoustic Simulation
  - Novel technique based on 3D Adaptive Rectangular Decomposition
  - Hundred times faster than Finite Difference Time Domain
- Interactive Sound Propagation
- Conclusion and Future Work

45

### **Acoustics: Governing Equation**

Solve the Linear Wave Equation:

$$\frac{\partial^2 p}{\partial t^2} - c^2 \nabla^2 p = F(\mathbf{x}, t)$$

 $abla^2$  is the Laplacian operator in 3D

c is the speed of sound in air

p is the pressure field to solve

 The RHS is the forcing term, corresponding to volume sound sources in the scene

### State of the art: Room Acoustics

- Geometric Techniques (e.g. Ray/Beam/Frustum Tracing) combined with explicit diffraction modeling
- Auralization software (e.g. ODEON, CATT): Hybrid image-source and ray-tracing along with (upcoming) explicit diffraction modeling
- Numerical acoustic simulation for complex 3D scenes has been explored only since mid-2000 (~2006)

47

## **Acoustics for Interactive Applications**

- Geometric Approaches
  - o Beam Tracing (Funkhouser et. al.)
  - o Phonon Tracing (Bertram and Deines et. al.)
  - o Frustum Tracing (Chandak et. al.)

•

• Advantages: Efficient, easy to understand

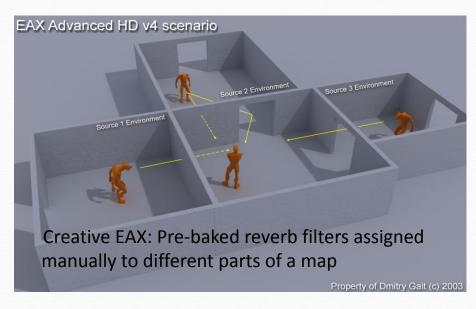
•

 Difficulties: Diffraction / Scattering, high-order reflections

### **Numerical Acoustics**

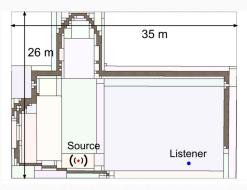
Discretize and solve Wave Equation on a grid

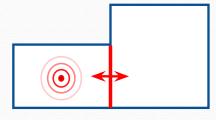
| 0 |   |   |   |   |   |
|---|---|---|---|---|---|
|   | 0 |   |   | 0 |   |
|   |   |   | ū |   | 0 |
|   |   |   | ū | 0 | ū |
| 0 | 0 | 0 | 0 | 0 | 0 |
|   | ū |   |   |   |   |


- Explored for complex 3D scenes (eg. auditoria) only recently (2004 – 2006) by Sakamoto et. al.
- Disadvantage: Slow and memory-intensive
  - Simulations are band-limited

0

 Advantages: Diffraction / Scattering, high-order reflections


49


### **Acoustics in Games**



50

### Adaptive Rectangular Decomposition





Interface Handling

- Numerical Simulation of the Wave Equation
- Rectangular Decomposition of a 3D scene
- Exploit analytical solutions on rectangular spaces
- 6<sup>th</sup> order Finite Difference for interface transmission

51

## Solution on a Rectangular Domain

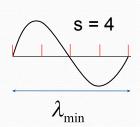
- Rectangular space in 3D with size  $(l_x, l_y, l_z)$ , and perfectly reflective boundary
- Modal Analysis can be done analytically –

$$p(x, y, z, t) = \sum_{i=(i_x, i_y, i_z)} m_i(t) \Phi_i(x, y, z)$$

$$\Phi_{i}\left(x,y,z\right) = \cos\left(\frac{\pi i_{x}}{l_{x}}x\right)\cos\left(\frac{\pi i_{y}}{l_{y}}y\right)\cos\left(\frac{\pi i_{z}}{l_{z}}z\right)$$

## Leveraging GPU for Acoustics

- Solution of Wave Equation within each rectangle can be done using a 3D Discrete Cosine Transform (DCT)
- DCTs can be computed using FFT
- Use efficient FFT implementation on GPU
  - Govindaraju, N. K., Lloyd, B., Dotsenko, Y., Smith, B., and Manferdelli, J.
     High-Performance Discrete Fourier Transforms on Graphics Processors.
     In the Proc. of 2008 ACM/IEEE Supercomputing


53

# **Computational Efficiency**

For a scene of size L in 3D and simulation duration T –

Memory: 
$$\left(\frac{L_{S}v_{\text{max}}}{c}\right)^{3}$$

Time:  $T\left(\frac{L}{c}\right)^3 \left(\underline{s}v_{\text{max}}\right)^4$ 



- Nyquist Limit: s ≥ 2
- FDTD: **s = 10**. My approach: **s = 2.6**
- Speedup with my technique :  $(10/2.6)^4 > 100$

### Demo

# **Video**

55

# **Performance Comparison**

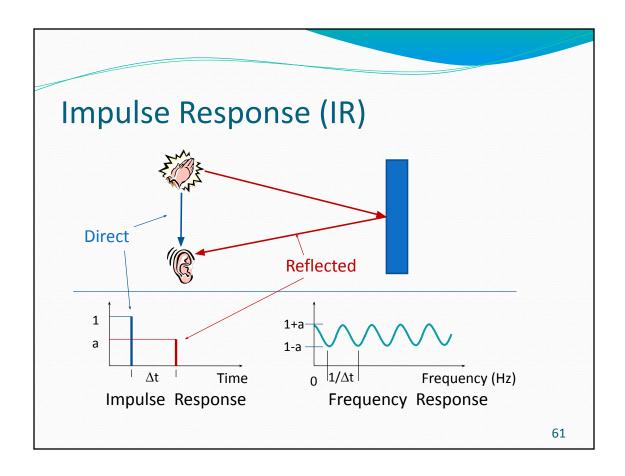
| Scene<br>Name | Volume<br>(m³) | Time: FDTD (CPU)   | Time: My<br>Technique<br>(GPU) | Speedup |
|---------------|----------------|--------------------|--------------------------------|---------|
|               |                |                    |                                |         |
| Corridor      | 375            | 365 min            | 4 min                          | ~ 90x   |
| House*        | 1,275          | 3.5 days           | 24 min                         | ~ 200x  |
| Cathedral     | 13,650         | 1 week (estimated) | 29 min                         | ~ 300 x |

- Quad-core 2.8GHz Intel Xeon CPU with 8GB RAM, NVIDIA GeForce GTX 280
- \* This simulation was band-limited to 2 kHz, instead of 1 kHz

### Summary

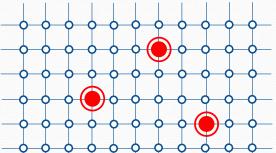
- Adaptive Rectangular Decomposition yields 100x improvement in performance over FDTD and consumes 10x less memory
- Source of Speedup: Modal Analysis of rectangular spaces as well as GPU-DCT
- Can feasibly simulate acoustics for large, complex scenes, such as a Cathedral

57


### Overview

- Interactive Sound Synthesis
- Efficient Numerical Acoustic Simulation
- Interactive Sound Propagation
- Conclusion and Future Work

### Overview


- Interactive Sound Synthesis
- Efficient Numerical Acoustic Simulation
- Interactive Sound Propagation
  - Perceptual aspects of acoustics
  - Novel perceptually-motivated techniques
  - Interactive auralization system: moving sources and listener
- Conclusion and Future Work

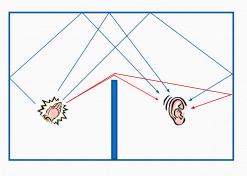
60

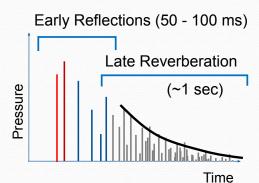


# Challenges

- Direct approach is costly
- Days of simulation (even with fast simulator)
- Terabytes of storage

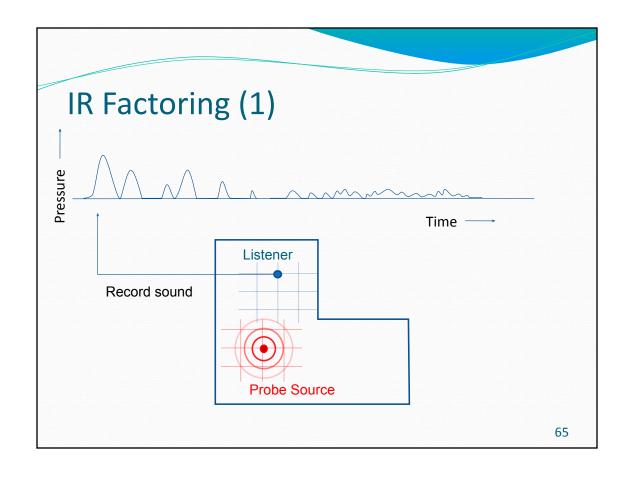



- Source locations
- Listener locations


62

### Contributions

- Approach
  - Sample data at lower resolution in space (~1 m)
  - Novel perceptually-based scheme: Store each Impulse Response compactly
  - Spatially-interpolate Impulse Responses
- Audio engine that uses fast frequency-domain convolutions


## Auditory perception of acoustic spaces





- Direct Sound: Sense of direction
- ER: Loudness, Timbre, "Envelopment". Perceivable spatial variation.
- LR: Only statistical properties perceivable Decay Time (RT60), Periodicities (Flutter echoes)

Reference: "Room Acoustics" by Heinrich Kuttruff



# IR Factoring (2)

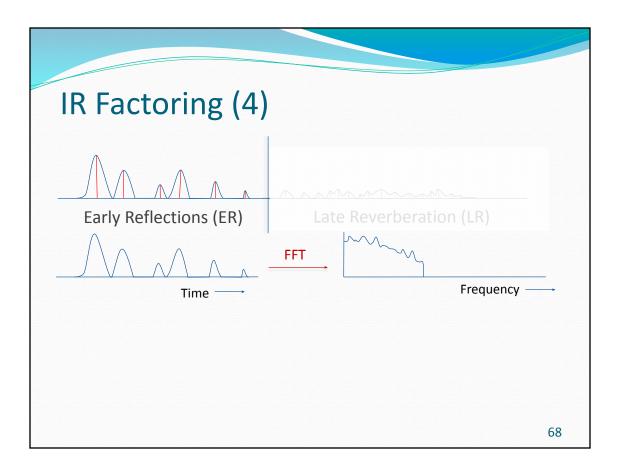
#### **Peak Detection**

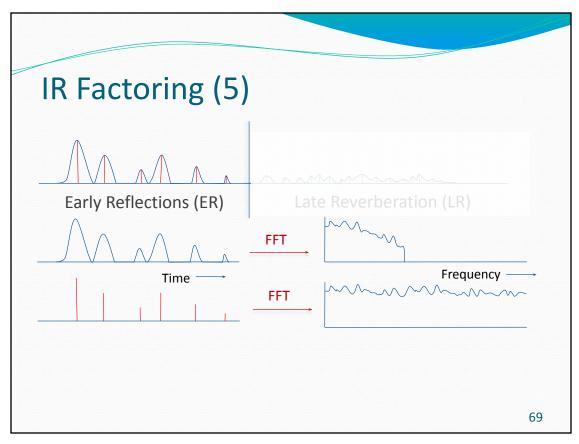
Finds peak delays and amplitudes

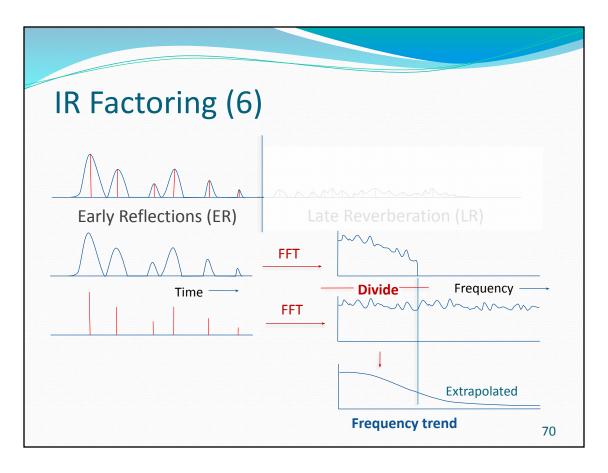
66

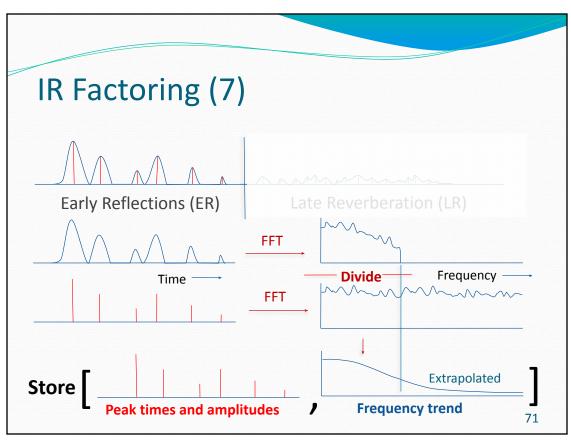
# IR Factoring (3)

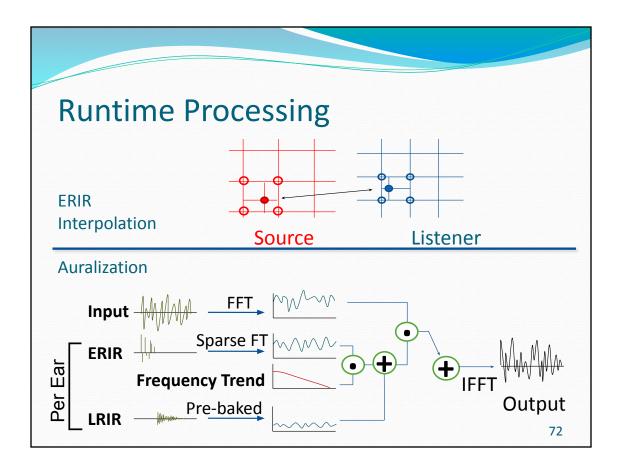
Early Reflections (ER)


Late Reverberation (LR)


Store peaks as LRIR


#### **ER - LR Decomposition**


- Compute and store only one Late Reverberation filter per room
- Reduces pre-computation time and runtime memory usage by 10 times


67











### Performance

- Pre-processing times typically a few hours
- Can handle about 10 sound sources in real-time on a Quad-core Xeon system with 4 GB RAM
- Bottleneck: 1D FFT
  - Auralization system maps well to parallel processors

## Walkthrough: Game Scene

- "Citadel" Scene from the game Half-Life 2
- Large Size: 3,500 m<sup>3</sup>
- Complex geometry (fin-like structures)

74

# **System Demonstration**

### Video

http://www.youtube.com/watch?v=MQt1jtDBNK4

#### Summary

- The first interactive sound propagation system that leverages numerical simulation
- Can render important acoustic effects like Late Reverberation and Diffraction low-pass filtering in real-time
- Can handle multiple moving sound sources and listener
- Works for large, complex 3D scenes

76

#### Overview

- Sound Synthesis
- Efficient Numerical Acoustic Simulation
- Interactive Sound Propagation
- Conclusion and Future Work

#### Summary

- Interactive Sound Synthesis
  - Perceptually-motivated optimizations enabling hundreds of sounding objects in real-time
- Efficient Numerical Acoustics
  - A simulator 100 times faster than Finite Difference Time Domain for constant wave speed simulations
- Interactive Sound Propagation
  - Leverage fast numerical acoustics
  - Exploit auditory perception
  - Render wave-based acoustics for multiple moving sources and listener in real-time

79

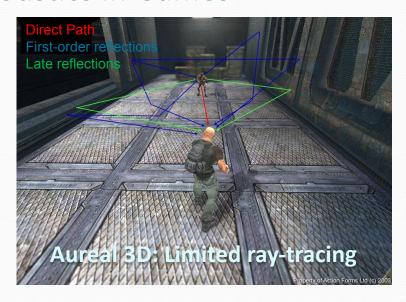
#### Conclusion

- Physically-based Sound: Complex underlying physical processes require a lot of computational power
- Combination of efficient algorithms, perceptually-motivated optimizations and fast hardware

# Recent Work: Sound Synthesis

- Ultimate goal: Virtual Worlds with physically-based sounds for collisions, rolling, sliding, creaking, cloth, gunshots, water, automobiles, and so on
- Infer audio materials from video
- · Virtual Musical Instruments using next-gen UI
- Mobile Musical Instruments

81


# **Recent Work: Sound Propagation**

- Acoustics for Games and Virtual Worlds
- Accurate numerical predictions in auditorium design
- Efficient numerical solvers for high-performance computing applications
- Combine Sound Synthesis and Acoustics for a completely physically-based auralization system

#### References

- Nikunj Raghuvanshi and Ming C. Lin. Interactive Sound Synthesis for Large Scale Environments. In SI3D '06: Proceedings of the 2006 symposium on Interactive 3D graphics and games, 2006.
- Nikunj Raghuvanshi, Nico Galoppo, and Ming C. Lin. Accelerated Wave-based Acoustics Simulation. In SPM '08: Proceedings of the 2008 ACM Symposium on Solid and physical modeling, 2008.
- Nikunj Raghuvanshi, Rahul Narain, and Ming C. Lin. Efficient and Accurate Sound Propagation using Adaptive Rectangular Decomposition. IEEE Transactions on Visualization and Computer Graphics, December 2009.
- Nikunj Raghuvanshi, Brandon Lloyd, and Ming C. Lin. Efficient Numerical Acoustic Simulation on Graphics Processors Using Adaptive Rectangular Decomposition. Proc. EAA Symposium on Auralization, 2009.

#### **Acoustics in Games**



85

# Computational Challenges (1)

 Need sufficient spatial resolution to resolve smallest wavelength of interest

$$h \sim \frac{\lambda_{\min}}{S}$$
 , s > 2



 Also, need sufficiently small time-step to resolve highest frequency

$$dt < \frac{1}{s v_{\text{max}}}$$

# Computational Challenges (2)

● For a scene of size L in 3D and simulation duration T -

Memory: 
$$\left(\frac{Lsv_{\text{max}}}{c}\right)^3$$

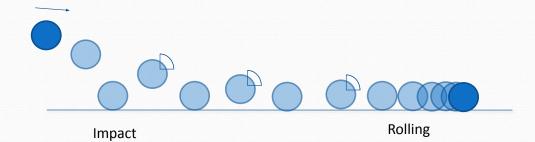
Time:  $T\left(\frac{L}{c}\right)^3 (sv_{\text{max}})^4$ 



• For a medium-sized room – L = 10 m, T = 1 s,  $c = 340 \text{ m/s}, s = 10, v_{max} = 10,000 \text{ Hz}$ 


Memory: ~100 GB Time: 6 days, at 100 GFLOPS

87


# Bass Boost in small spaces



Input



# A typical scenario

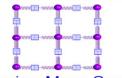


How do you handle this with recorded sounds?

89

# Related/Future Work

- Model-based Synthesis
  - Current work with Naga K. Govindaraju, Brandon Lloyd, Guy Whitmore and Chirstopher Melroth
- Sliding Sounds
  - Past work in SIGGRAPH by Doel et. al.
  - Current work being done by Zhimin Ren at UNC
- Liquid Sounds
  - Recent paper on "Harmonic Fluids" by Doug James at Cornell
  - Also, some work at UNC by Yero Yeh
- Cloth Rustling


# Quick primer on waves

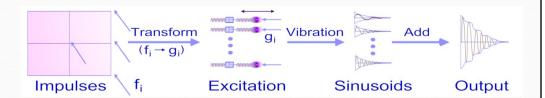
 $\frac{\pi/2}{\operatorname{Phase}(\theta)} \xrightarrow{\pi/2} \pi$ 

- Phase ( $\theta$ ): Measures the progression of wave between crest and trough
- ullet Frequency:  $_{\mathcal{V}}$  , Wavelength:  $\lambda$
- Wave Speed,  $c = v\lambda$

91

# **Equation of Motion**



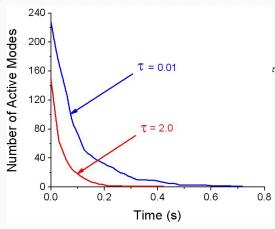

Spring-Mass System

Equation of motion (linear system of coupled ODEs):

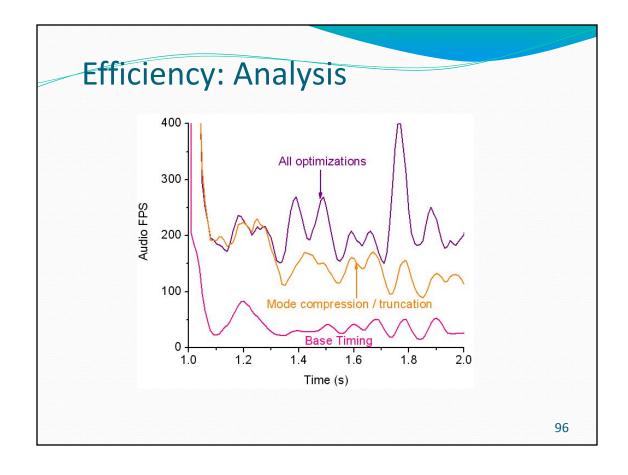
$$M\frac{d^2r}{dt^2} + (\gamma M + \eta K)\frac{dr}{dt} + Kr = F(t)$$
Inertia Damping Elasticity Force

 $\gamma$  ,  $\eta$  : Fluid and Viscoelastic Damping constants

# Sound Synthesis




- Rigid Body Simulator provides impulses
- Transform to mode gains
- Sound synthesized by adding the modes' sinusoids
- Advantage: Adding damped sinusoids is very fast


93

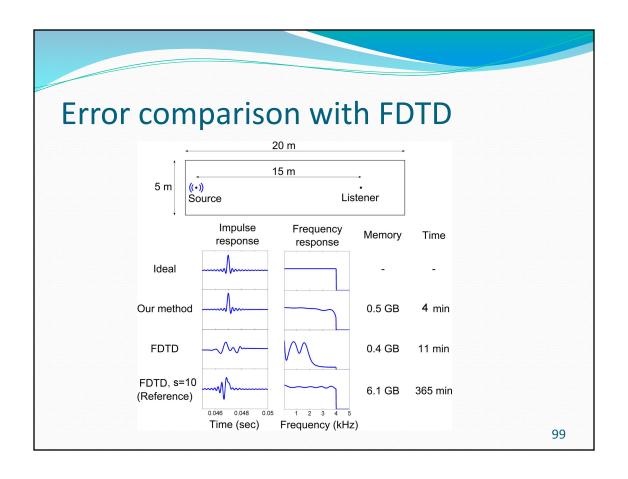
# Analysis Table Struck in the Middle Table Struck in the Middle Table Struck on Edge Table Struck on Edge

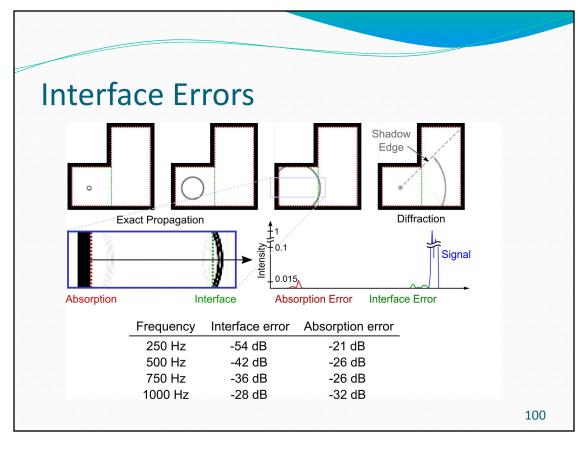
# Mode Truncation: Performance



- Xylophone bar struck in the middle
- Higher value of  $\tau$ : Modes fall off more quickly
- Very little perceptual difference




#### **Acoustics: Computational Challenges**


- Multiple reflections are audible: Full time domain solution required, unlike lighting
- Interference is important eg. Dead spots in auditoria
- Diffraction is observable for sound and must be captured properly

97

# Errors in FDTD: Numerical Dispersion

- All frequencies don't travel with the same numerical speed
- Need s = 10 for this





# Solution on a Rectangular Domain

- Rectangle in 3D with size :  $(l_x, l_y, l_z)$ , with sound-hard boundary
- Represent pressure in Modal basis for Laplacian on the rectangular domain:

$$p(x, y, z, t) = \sum_{i=(i_x, i_y, i_z)} m_i(t) \Phi_i(x, y, z)$$

$$\Phi_i(x, y, z) = \cos\left(\frac{\pi i_x}{l_x}x\right)\cos\left(\frac{\pi i_y}{l_y}y\right)\cos\left(\frac{\pi i_z}{l_z}z\right)$$

m<sub>i</sub>(t) are time-varying mode coefficients

 $\Phi_i$  are eigen-functions of Laplacian

101

# Solution in Spectral Basis using DCT

 The transformation from real space and spectral space can be done using 3D DCT and inverse DCT

$$\{m_i\} = DCT\{p_i\}, \{p_i\} = iDCT\{m_i\}$$

Wave Equation in spectral space (decoupled):

$$\frac{\partial^2 m_i}{\partial t^2} + c^2 k_i^2 m_i = iDCT(F(t)),$$

• Analytical solution in time:  $k_i^2 = \pi^2 \left( \frac{i_x^2}{l_x^2} + \frac{i_y^2}{l_y^2} + \frac{i_z^2}{l_z^2} \right)$ 

$$M_i^{n+1} = 2M_i^n \cos(\omega_i \Delta t) - M_i^{n-1} + \frac{2\widetilde{F^n}}{\omega_i^2} (1 - \cos(\omega_i \Delta t))$$

# Modeling partially absorbing surfaces

- Numerical absorbers for Wave Equation is a tough challenge
- Perfectly Matched Layer (PML) was developed in the Electromagnetic simulation community
- We adapt a time-domain formulation described in
  - Y. S. Rickard, N. K. Georgieva, and W.-P. Huang, "Application and optimization of pml abc for the 3-d wave equation in the time domain," *Antennas and Propagation, IEEE Transactions on*, vol. 51, no. 2, pp. 286-295, 2003

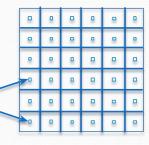
103

# Summary (contd..)

- Automatically handles interference and diffraction
- Parallelizable at multiple granularities: Source positions, Partitions, DCT
- Axis-aligned simulation grid, easy to obtain using voxelization

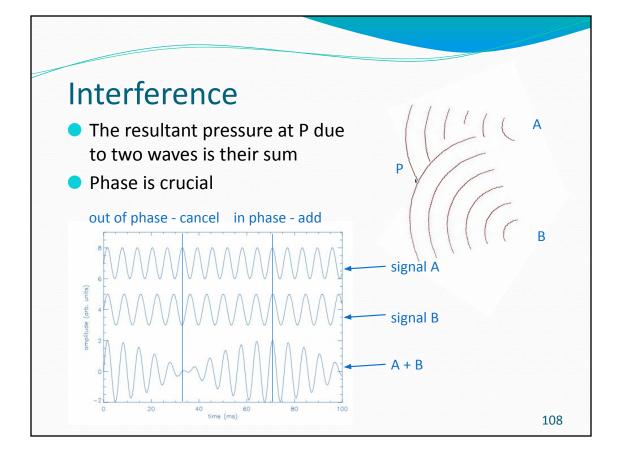
#### **Current Progress**

- Compression scheme is nearly finished, can handle a medium-sized Lecture hall
- Extracting diffraction information still needs to be tested and tweaked
- Late reverb interpolation needs to be implemented
- Real-time auralization system is also near completion. IR interpolation needs to be tested properly.

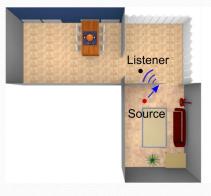

105

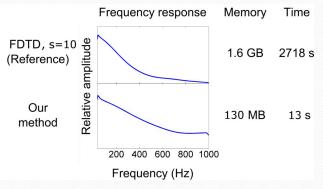
# Finite Difference Time Domain (FDTD)

Discretize continuum derivative operators:


$$\frac{P_{t+dt} - 2P_t + P_{t-dt}}{dt^2} + KP_t + O(h^6) + O(dt^2) = F_t$$

- Spatial cell size: h, time-step: dt
- Works on a uniform Cartesian grid
- Pressure sampled at cell centers

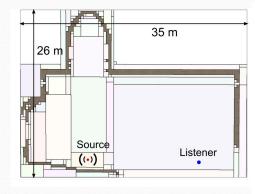


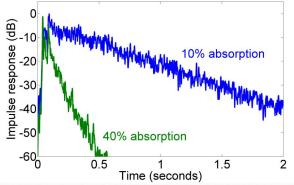


# Summary

- Simple formulation and easy to implement
- Works on arbitrary surface meshes
- Acceleration techniques exploiting auditory perception
  - Mode Compression
  - Mode Truncation
  - Quality Scaling
- Well suited for large-scale, real-time applications with stringent time constraints, like games



# Performance: House




- Dimensions: 17m x 15m x 5 m
- Auralization: 24 minutes to generate a .4 second long Impulse Response (< 2 kHz)</li>

109

# Performance: Cathedral





- Dimensions: 35m x 15m x 26 m
- 29 minutes to generate a 1-second long Impulse Response (< 1 kHz)</li>