
Interactive Sound Rendering

Sound Synthesis

Numerical Acoustic Simulation

Interactive Sound Propagation

Application Demonstration

Themes

● Exploiting analytical solutions using Modal Analysis to 
accelerate numerical simulation and reducing 
runtime computation  

● Capture only perceptually important auditory cues to 
perform real-time sound synthesis and acoustic 
propagation on complex 3D scenes
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Overview

● Interactive Sound Synthesis

● Efficient Numerical Acoustic Simulation

● Interactive Sound Propagation

● Conclusion and Future Work
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Overview

● Interactive Sound Synthesis
○ Modal Analysis
○ Perceptually-based acceleration techniques
○ Hundreds of sounding objects
○ Sound from image textures

● Efficient Numerical Acoustic Simulation

● Interactive Sound Propagation

● Conclusion and Future Work
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Physically-based Sound Synthesis

● Aim: Take object geometry and 
material as input and produce sound 

● Current trend: Recorded sounds

● Problems with recorded sounds:

○ Difficult, expensive or dangerous to 
record (eg. Explosions)

○ Repetitiveness

○ Complex interactions (impact/rolling)

* Image taken from: http://www.marblehead.net/foley/index.html

A typical foley studio*
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Physical Simulation

● Elastic deformable model

● Typical simulation time-steps must be ~10-5 s

● Direct simulation infeasible

● Efficient method: Modal Analysis
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http://www.marblehead.net/foley/index.html


Modal Analysis

● Each mode represents a resonant mode of vibration

● Frequency of a mode is fixed

● Applying impulse excites modes of vibration

● Position of impact determines relative amplitude of modes
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Overview of Technique
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Approach

⚫ Simpler model: Spring-mass system

⚫ Fast: Supports hundreds of sounding objects

⚫ Runs in real-time, low CPU utilization (~10%), graceful 
degradation in quality with limited computation

⚫ Exploit human auditory perception 

⚫ Mode Compression

⚫ Mode Truncation

⚫ Quality Scaling
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Modal Analysis

⚫ Deformation modeling

⚫ Vibration of surface generates sound

⚫ Sound sampling rate: 44100 Hz

⚫ Impossible to calculate the displacement of the surface at 
sampling rate

⚫ Represent the vibration pattern by a bank of damped 
oscillators (modes)

⚫ Standard technique for real-time sound synthesis



Modal Analysis

⚫ Discretization

⚫ An input triangle mesh -> a spring-mass system

⚫ A spring-mass system -> a set of decoupled modes

Modal Analysis

⚫ The spring-mass system set-up

⚫ Each vertex is considered as a mass particle

⚫ Each edge is considered as a damped spring



Modal Analysis

⚫ Coupled spring-mass system to a set of decoupled modes

Modal Analysis

⚫ A discretized physics system  

⚫ We use spring-mass system

⚫ Small displacement, so consider it linear

Stiffness Damping Mass

Stiffness Damping Mass



Modal Analysis

⚫ Rayleigh damping

    And diagonalizing 

▪ Now, solve this ODE instead

▪ Solve the Ordinary Differential Equation (ODE)

Modal Analysis

⚫ Substitute                  (z are the modes)

    Now, solve this ODE instead

▪ Solve the ODE



Modal Analysis

⚫ General solution

▪ External excitation defines the initial conditions

Modal Analysis

⚫ Assumptions

⚫ In most graphics applications, only surface representations 
of geometries are given

⚫ A surface representation is used in modal Analysis

⚫ Synthesized sound appears to be “hallow”



Modal Analysis Summary

⚫ An input triangle mesh ->

    A spring-mass system ->

    A set of decoupled modes

State Detection



State Detection

⚫ Distinguishing between lasting and transient contacts

⚫ In contacts?

⚫ In lasting contacts?

Interaction Handling

⚫ Lasting contacts -> a sequence of impulses

⚫ Transient contacts -> a single impulse



Impulse Response

⚫ Dirac Delta function as impulse excitation

▪ General solution

    with initial condition given by the impulse,
    we have:

    

Impulse Response



Handling Lasting Contacts

⚫ The interaction simulation has to be stepped at the audio 
sampling rate: 44100 Hz

⚫ The update rate of a typical real-time physics simulator: 
on the order of 100’s Hz

⚫ Not enough simulation is provided by the physics engine

⚫ An customized interaction model for sound synthesis

Mode Compression: Principle

⚫ Humans can’t distinguish two frequencies arbitrarily close 
to each other [Sek et. al., 1995*]

⚫ Accuracy in discriminating frequencies depends on the 
frequency in question

⚫ Different frequencies were played in succession to find if 
the subject could distinguish between them

*Sek, A., and Moore, B. C. 1995. Frequency discrimination as a function of 
frequency, measured in several ways. J. Acoust. Soc. Am. 97, 4 (April), 
2479–2486.
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Mode Compression: Auditory Perception

Frequency Discrimination at 2 KHz is about 4 Hz -- We can’t 
tell apart frequencies within the range 1998 - 2002 Hz ->
playing many sinusoids of different frequencies together
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Mode Truncation

⚫ Impact Sounds: Attack + Decay

⚫ Key Point: Critical to capture attack properly

⚫ Stop mixing mode when its contribution falls below a 
prescribed threshold,      (typically -60 to -80 dB of initial level)
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Quality Scaling

⚫ A typical audio scene consists of foreground and 
background sounds

⚫ Higher intensity sounds are considered to be foreground

⚫ Idea: Give more importance to foreground sounds

⚫ Provides a graceful way to adapt to variable time 
constraints
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System Demonstration
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VIDEO

https://www.youtube.com/watch?v=7xzKyIq9h3s&list=PLB1EF1E4D08A6C063&index=6


Sound from Image Textures
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VIDEO

Limitations

⚫ Implementation:  Model only the surface (not an inherent 
limitation of the approach)

⚫ More approximate than an FEM-based formulation
⚫ Some tuning is required

⚫ All sound synthesis techniques relying on Modal Analysis: 
Can only use linear damping models
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https://www.youtube.com/watch?v=JOwTrmgVK4k&list=PLB1EF1E4D08A6C063&index=7


Sounding Liquids [Moss et al. 2009]

● Work in physics & engineering literature since 1917
○ Sound generated by resonating bubbles

● Physically-based Models for Liquid Sounds (van den Doel, 
2005)

○ Spherical bubble model
○ No fluid simulator coupling

■ Hand tune bubble profile

Background (Fluid)

● Grid-based methods
● Accurate to grid resolution

○ Bubbles can be smaller
○ Slow
○ Can be two-phase



Background (Fluid)

● Shallow Water Equations
○ Simulate water surface

■ No breaking waves
○ Real time
○ One phase 

■ Explicit bubbles

Overview
● Generate sound from existing fluid simulation

○ Model sound generated by bubbles
● Apply model to two types of fluid simulators

● Shallow Water Equations
○ Processes surface

■ Curvature and velocity
○ Select bubble from 

distribution
○ Generate sound

● Particle-Grid-based
○ Extract bubbles
○ Process spherical and 

non-spherical bubbles
○ Generate sound



⚫ Spherical Bubbles

⚫ Non-spherical bubbles
- Decompose into a spherical harmonics


RR

0

Mathematical Formulations

R
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Without
Spherical Harmonics

With
Spherical Harmonics



System Overview

Summary

• Simple, automatic sound synthesis
• Applied to two fluid simulators

• Interactive, shallow water
• High-quality, grid based



Video Demonstration

VIDEO

Overview

⚫ Interactive Sound Synthesis

⚫ Efficient Numerical Acoustic Simulation

⚫ Interactive Sound Propagation

⚫ Conclusion and Future Work
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https://www.youtube.com/watch?v=MHBViinfmKo&list=PLB1EF1E4D08A6C063&index=5


Overview

⚫ Interactive Sound Synthesis

⚫ Efficient Numerical Acoustic Simulation

⚫ Novel technique based on 3D Adaptive Rectangular 
Decomposition

⚫ Hundred times faster than Finite Difference Time Domain

⚫ Interactive Sound Propagation

⚫ Conclusion and Future Work
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Acoustics: Governing Equation

⚫ Solve the Linear Wave Equation:

                is the Laplacian operator in 3D

                is the speed of sound in air

                is the pressure field to solve

⚫ The RHS is the forcing term, corresponding to volume 
sound sources in the scene
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State of the art: Room Acoustics

⚫ Geometric Techniques (e.g. Ray/Beam/Frustum Tracing) 
combined with explicit diffraction modeling 

⚫ Auralization software (e.g. ODEON, CATT): Hybrid 
image-source and ray-tracing along with (upcoming) 
explicit diffraction modeling

⚫ Numerical acoustic simulation for complex 3D scenes has 
been explored only since mid-2000 (~2006)
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Acoustics for Interactive Applications

● Geometric Approaches
○ Beam Tracing ( Funkhouser et. al. )
○ Phonon Tracing ( Bertram and Deines et. al. )
○ Frustum Tracing ( Chandak et. al. )

●
● Advantages: Efficient, easy to understand
●
● Difficulties: Diffraction / Scattering, high-order 

reflections
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Numerical Acoustics

● Discretize and solve Wave Equation on a grid 

● Explored for complex 3D scenes (eg. auditoria) only 
recently (2004 – 2006) by Sakamoto et. al.

● Disadvantage: Slow and memory-intensive

○ Simulations are band-limited
○

● Advantages: Diffraction / Scattering, high-order 
reflections
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Acoustics in Games

    Creative EAX: Pre-baked reverb filters assigned 
manually to different parts of a map
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Adaptive Rectangular Decomposition

⚫ Numerical Simulation of the Wave Equation

⚫ Rectangular Decomposition of a 3D scene

⚫ Exploit analytical solutions on rectangular spaces

⚫ 6th order Finite Difference for interface transmission
51

Interface Handling

Solution on a Rectangular Domain

⚫ Rectangular space in 3D with size :                    , and 
perfectly reflective boundary

⚫ Modal Analysis can be done analytically –
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Leveraging GPU for Acoustics

⚫ Solution of Wave Equation within each rectangle can be 
done using a 3D Discrete Cosine Transform (DCT)

⚫ DCTs can be computed using FFT

⚫ Use efficient  FFT implementation on GPU 
⚫ Govindaraju, N. K., Lloyd, B., Dotsenko, Y., Smith, B., and Manferdelli, J.  

High-Performance Discrete Fourier Transforms on Graphics Processors.  
In the Proc. of 2008 ACM/IEEE Supercomputing 
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⚫ For a scene of size  L  in 3D and simulation duration T –

    Memory :                             
    
     
    Time :

Computational Efficiency

s = 4

⚫ Nyquist Limit: s ≥ 2

⚫ FDTD:  s = 10.  My approach:  s = 2.6

⚫ Speedup with my technique :                        > 100 
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Demo
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Video

Performance Comparison

Scene 
Name

Volume 
(m3)

Time: FDTD 
(CPU)

Time: My 
Technique 

(GPU)

Speedup

Corridor 375 365 min 4 min ~ 90x
House* 1,275 3.5 days 24 min ~ 200x

Cathedral 13,650 1 week 
(estimated)

29 min ~ 300 x

⚫ Quad-core 2.8GHz Intel Xeon CPU with 8GB RAM, NVIDIA GeForce GTX 280

* This simulation was band-limited to 2 kHz, instead of 1 kHz
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https://www.youtube.com/watch?v=FDL39J-i0yQ


Summary

● Adaptive Rectangular Decomposition yields 100x 
improvement in performance over FDTD and 
consumes 10x less memory

● Source of Speedup: Modal Analysis of rectangular 
spaces as well as GPU-DCT

● Can feasibly simulate acoustics for large, complex 
scenes, such as a Cathedral
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Overview

⚫ Interactive Sound Synthesis

⚫ Efficient Numerical Acoustic Simulation

⚫ Interactive Sound Propagation

⚫ Conclusion and Future Work
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Overview

⚫ Interactive Sound Synthesis

⚫ Efficient Numerical Acoustic Simulation

⚫ Interactive Sound Propagation

⚫ Perceptual aspects of acoustics

⚫ Novel perceptually-motivated techniques

⚫ Interactive auralization system: moving sources and listener

⚫ Conclusion and Future Work
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Impulse Response (IR)

Time

Impulse  Response

Direct

Reflected
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Frequency  Response
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Challenges

⚫ Direct approach is costly

⚫ Days of simulation (even 
with fast simulator)

⚫ Terabytes of storage
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Source locations 

Listener locations 

Contributions

• Approach –

• Sample data at lower resolution in space (~1 m)

• Novel perceptually-based scheme: Store each Impulse 
Response compactly

• Spatially-interpolate Impulse Responses

• Audio engine that uses fast frequency-domain 
convolutions
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Auditory perception of acoustic spaces

• Direct  Sound: Sense of direction
• ER: Loudness, Timbre, “Envelopment”. Perceivable spatial 

variation.
• LR: Only statistical properties perceivable – Decay Time 

(RT60), Periodicities (Flutter echoes)

Time

P
re

ss
ur

e

Early Reflections (50 - 100 ms)

Late Reverberation

Reference: “Room Acoustics” by Heinrich Kuttruff

(~1 sec)
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IR Factoring (1)

TimePr
es

su
re

Probe Source

Listener

Record sound
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IR Factoring (2)

Peak Detection
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• Finds peak delays and amplitudes

IR Factoring (3)

Early Reflections (ER) Late Reverberation (LR)

ER - LR Decomposition

Store peaks as LRIR
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• Compute and store only one Late Reverberation filter 
per room

• Reduces pre-computation time and runtime memory 
usage by 10 times



Early Reflections (ER) Late Reverberation (LR)

FFT

Time

IR Factoring (4)

Frequency
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Early Reflections (ER) Late Reverberation (LR)

FFT

FFT

FrequencyTime

IR Factoring (5)
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Early Reflections (ER) Late Reverberation (LR)

FFT

FFT

DivideTime

Frequency trend

Extrapolated

IR Factoring (6)

Frequency
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Early Reflections (ER) Late Reverberation (LR)

FFT

FFT

DivideTime

Store ,[ ]
Peak times and amplitudes Frequency trend

Extrapolated

IR Factoring (7)

Frequency
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ERIR 
Interpolation

Auralization

Source Listener

.
+

IFFT

FFT

Output

Sparse FT

Pre-baked

Input

ERIR

LRIR

Frequency Trend
. +

Runtime Processing
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Performance

● Pre-processing times typically a few hours

● Can handle about 10 sound sources in real-time on a 
Quad-core Xeon system with 4 GB RAM

● Bottleneck: 1D FFT
○ Auralization system maps well to parallel processors
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Walkthrough: Game Scene

⚫ “Citadel” Scene from the game Half-Life 2

⚫ Large Size: 3,500 m3

⚫ Complex geometry (fin-like structures)
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System Demonstration
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Video

http://www.youtube.com/watch?v=MQt1jtDBNK4

http://www.youtube.com/watch?v=MQt1jtDBNK4


Summary

● The first interactive sound propagation system that 
leverages numerical simulation 

● Can render important acoustic effects like Late 
Reverberation and Diffraction low-pass filtering in 
real-time

● Can handle multiple moving sound sources and listener

● Works for large, complex 3D scenes
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Overview

● Sound Synthesis

● Efficient Numerical Acoustic Simulation

● Interactive Sound Propagation

● Conclusion and Future Work
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Summary
• Interactive Sound Synthesis

• Perceptually-motivated optimizations enabling hundreds of 
sounding objects in real-time

• Efficient Numerical Acoustics
• A simulator 100 times faster than Finite Difference Time 

Domain for constant wave speed simulations

• Interactive Sound Propagation
• Leverage fast numerical acoustics 
• Exploit auditory perception 
• Render wave-based acoustics for multiple moving sources 

and listener in real-time
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Conclusion

• Physically-based Sound: Complex underlying physical 
processes require a lot of computational power

• Combination  of  efficient algorithms, 
perceptually-motivated optimizations and fast 
hardware
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Recent Work: Sound Synthesis
• Ultimate goal: Virtual Worlds with physically-based 

sounds for collisions, rolling, sliding, creaking, cloth, 
gunshots, water, automobiles, and so on

• Infer audio materials from video

• Virtual Musical Instruments using next-gen UI

• Mobile Musical Instruments
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Recent Work: Sound Propagation

• Acoustics for Games and Virtual Worlds

• Accurate numerical predictions in auditorium design

• Efficient numerical solvers for high-performance 
computing applications

• Combine Sound Synthesis and Acoustics for a 
completely physically-based auralization system
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https://www.youtube.com/watch?v=RdoGlKOvzKk&list=PLB1EF1E4D08A6C063&index=11
https://www.youtube.com/watch?v=i7D_ao-LUBw&list=PLB1EF1E4D08A6C063&index=10
http://gamma.cs.unc.edu/vMusic/music-demo.mp4
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Acoustics in Games

Aureal 3D: Limited ray-tracing

Direct Path
First-order reflections
Late reflections
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⚫ Need sufficient spatial resolution to resolve smallest 
wavelength of interest

                                          

⚫ Also, need sufficiently small time-step to resolve highest  
frequency

Computational Challenges (1) 

s = 4

,  s > 2
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⚫ For a scene of size  L  in 3D and simulation duration T –

    Memory :                             
    
     
    Time :

Computational Challenges (2)

s = 4

⚫ For a medium-sized room  –  L = 10 m,  T = 1 s,
c = 340 m/s,  s = 10,          =  10,000 Hz

Memory :   ~100 GB Time:  6 days,  at 100 GFLOPS   
87

Bass Boost in small spaces
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Input



A typical scenario

⚫ How do you handle this with recorded sounds?

Impact Rolling
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Related/Future Work

⚫ Model-based Synthesis

⚫ Current work with Naga K. Govindaraju, Brandon Lloyd, Guy 
Whitmore and Chirstopher Melroth

⚫ Sliding Sounds

⚫ Past work in SIGGRAPH by Doel et. al.

⚫ Current work being done by Zhimin Ren at UNC

⚫ Liquid Sounds

⚫ Recent paper on “Harmonic Fluids” by Doug James at Cornell

⚫ Also, some work at UNC by Yero Yeh

⚫ Cloth Rustling
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Quick primer on waves

⚫ Phase (θ): Measures the progression of wave between 

crest and trough

⚫ Frequency:       , Wavelength:  

⚫ Wave  Speed , 

Distance

Wavelength(λ)

π/2

Phase(θ)  π
 3π/2

 2π
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Equation of Motion

⚫ Equation of motion (linear system of coupled ODEs):

       

        ,    : Fluid and Viscoelastic Damping constants

    Inertia                       Damping               Elasticity       Force



Sound Synthesis

⚫ Rigid Body Simulator provides impulses

⚫ Transform to mode gains

⚫ Sound synthesized by adding the modes’ sinusoids

⚫ Advantage: Adding damped sinusoids is very fast
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Position Dependent Sounds: 
Analysis
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Mode Truncation: Performance

⚫ Xylophone bar struck in the middle

⚫ Higher value of    : Modes fall off more quickly

⚫ Very little perceptual difference
95

Efficiency: Analysis
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Acoustics: Computational Challenges

⚫ Multiple reflections are audible: Full time domain 
solution required, unlike lighting

⚫ Interference is important eg. Dead spots in auditoria

⚫ Diffraction is observable for sound and must be 
captured properly
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Errors in FDTD: Numerical Dispersion

• All frequencies don’t travel with the same 
numerical speed

• Need s = 10 for this
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Error comparison with FDTD
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Interface Errors
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Solution on a Rectangular Domain

⚫ Rectangle in 3D with size :                    , with sound-hard 
boundary

⚫ Represent pressure in Modal basis for Laplacian on the 
rectangular domain: 

m
i
(t)  are time-varying mode coefficients

Φ
i 
  are eigen-functions of Laplacian
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Solution in Spectral Basis using DCT

⚫ The transformation from real space and spectral space 
can be done using 3D DCT and inverse DCT

⚫ Wave Equation in spectral space (decoupled):

⚫ Analytical solution in time:
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Modeling partially absorbing surfaces

⚫ Numerical absorbers for Wave Equation is a tough challenge

⚫ Perfectly Matched Layer (PML) was developed in the 
Electromagnetic simulation community

⚫ We adapt a time-domain formulation described in
⚫ Y. S. Rickard, N. K. Georgieva, and W.-P. Huang, "Application 

and optimization of pml abc for the 3-d wave equation in 
the time domain," Antennas and Propagation, IEEE 
Transactions on, vol. 51, no. 2, pp. 286-295, 2003
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Summary (contd..)

⚫ Automatically handles interference and diffraction

⚫ Parallelizable at multiple granularities: Source 
positions, Partitions, DCT

⚫ Axis-aligned simulation grid, easy to obtain using 
voxelization
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Current Progress
• Compression scheme is nearly finished, can 

handle a medium-sized Lecture hall

• Extracting diffraction information still needs to be 
tested and tweaked

• Late reverb interpolation needs to be 
implemented

• Real-time auralization system is also near 
completion. IR interpolation needs to be tested 
properly.
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Finite Difference Time Domain 
(FDTD)

⚫ Discretize continuum derivative operators:

⚫ Spatial cell size: h, time-step: dt

⚫ Works on a uniform Cartesian grid

⚫ Pressure sampled at cell centers
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Summary

⚫ Simple formulation and easy to implement

⚫ Works on arbitrary surface meshes

⚫ Acceleration techniques exploiting auditory perception

⚫ Mode Compression

⚫ Mode Truncation 

⚫ Quality Scaling

⚫ Well suited for large-scale, real-time applications with 
stringent time constraints, like games

107

Interference
⚫ The resultant pressure at P due 

to two waves is their sum

⚫ Phase is crucial

signal A

signal B

A + B

in phase - addout of phase - cancel

A

B

P
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Performance: House

⚫ Dimensions: 17m x 15m x 5 m

⚫ Auralization: 24 minutes to generate a .4 second long 
Impulse Response (< 2 kHz)
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Performance: Cathedral

⚫ Dimensions:  35m x 15m x 26 m

⚫ 29 minutes to generate a 1-second long Impulse 
Response (< 1 kHz)
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