Modeling and Simulation of **Digital Humans:** From Individuals to Crowds

Ming C. Lin

Department of Computer Science University of Maryland at College Park http://www.cs.umd.edu/~lin http://gamma.umd.edu

Digital Humans

Disaster Response [ICT/USC]

Applications

(a) Games

(b) Crowds

(c) Movie

(d) Robot

(e) CAD/Human factor

(f) ergonomics

Motivation

- Dynamic simulation of deformable solids
- Highly detailed surface geometry
- Large contact area: objects bounce, roll, slide,...

[Galoppo et al; Eurographics 2007]

Motivation: Layered Models

- Detailed, small-scale deformations
- Global (skeletal) deformations
- Dynamic interplay between skeletal motion and surface deformation during contact

Modeling Soft Articulated Bodies in Contact Using Dynamic Deformation Textures

Global deformations

Detailed deformations

[Galoppo et al; SCA 2006]

Motivation

- Human-like characters are widely used in computer animation and virtual environments
- Synthesize natural-looking human motion
 - Key-frame animation methods are tedious and need considerable input from the animators
 - Current automated tools are open limited to simple or open environments

Open environment

Constrained environment

Motivation: Goal-Oriented

Automated tools for natural human generation in constrained environments

Natural Human Motion

Constrained Environments

Crowd Simulation

• Simulating movement of a large number of agents to replicate collective behavior

9

Agents in Games

Interactive simulation of virtual agents

Spore

Planning & Architectural design

- Stampedes at Hajj
- Improvements to the Jamarat Bridge

11

Large, Dense Crowds

- Commonplace occurrences
- Greater safety risks
 - Crowd panic

(Top) Iraq war protest: Broadway (Bottom) Presidential swearing in ©MSNBC

Challenges

- Realistic human locomotion behaviors
- Simulating very *large, dense* crowd
- Control and direct crowd flows
- Modeling the interaction with and due to traffic flows & vehicles

Outline: Crowd Simulations

- "Principle of Least Efforts" Navigation
- Modeling of Dense Crowd
- Control and Direction Crowds

Outline: Crowd Simulations

• "Principle of Least Efforts" Navigation

- Modeling of Dense Crowd
- Control and Direction Crowds

Principle of Least Efforts

- Our hypothesis: Effort = Biomechanical Energy
- Imperially measured as function of speed [Whittle, 2007]
- $E = m \int (e_s + e_w |v|^2) dt$
 - e_s energy when still
 - e_w energy at speed

which we seek to minimize

Algorithm Overview

- 1. Determine goal position
- 2. Find permissible (non-colliding) velocities (PV)
- 3. Choose velocity \in PV with minimum energy

17

Optimal Reciprocal Collision Avoidance (ORCA) [ISRR2009]

- A new algorithm for collision avoidance
- A linear programming based formulation
- Scalable approach to collision avoidance
 - From two agents to thousands of agents
- Extends Velocity Obstacle concepts
 - Decentralized planning
 - Decisions are made *independently*, with no communication nor assumptions of the motion
 - Sufficient conditions for avoiding collisions

Problem Overview

- Inputs:
 - Independent Agents
 - Current Velocity of all
 - Own Desired Velocity (V^{pref})
- Outputs:
 - New n-way collision-free velocity (V^{out})
- Description Each Agent:
 - Determines permitted (collision free) velocities
 - Chooses velocity closest to V^{pref} which is permitted

19

Velocity Space & Forbidden Regions

- Forbidden Regions
 - Potentially Colliding Velocities
 - An "obstacle" in velocity space
- VO: Velocity Obstacle [Fiorini & Shillier 98]
 - Assumes other agent is unresponsive
 - Appropriate for static & unresponsive obstacles
- RVO: Reciprocal VO [Berg et al., 08]
 - Assumes other agent is mutually cooperating

Time Horizon

- Ignore collisions more than T seconds away
- Diagram of τ adjusted VO VO^T_{AIB}

21

ORCA

- u Vector which escapes VO^T_{AIB}
 - Each robot is responsible for ½u
- ORCA^T_{A|B}
 - The set of Velocities
 allow to A
 - Sufficient condition for collision avoidance if B chooses from ORCA^T_{AIB}

Multi-Robot Navigation

- Choose a velocity inside ALL pair-wise ORCAs
- Efficient O(n) implementation w/ Linear

23

Estimating Least Effort

- Evaluate potential paths based on least effort
- Approximate total effort in a greedy piecewise fashion
- Compute optimum in velocity space using linear programming

Video Demonstration

[Guy et al; SCA 2010]

Summary

- Powerful and simple (easy to implement) navigation method for multi-agent simulations
- Allows for easy integration with global planning, kinodynamic constraints, visibility constraints, etc.
- Scalable with number of agents and number of cores used
- Application to Behavior Modeling & Crowd Simulation

Outline: Crowd Simulations

- "Principle of Least Efforts" navigation
- Modeling of Dense Crowd
- Control and Direction Crowds

Dense Crowds

(Top): Obama campaign rally © The Telegraph (Bottom): Subway Station, Beijing © ABC

(Top): Al-Masjid Al-Haram, Mecca © SacredSites (Bottom): Carnivale, Milan © Dan, Picasa

Challenges

- Human behavior is complex
 - Avoid other people
- Complex emergent behavior

©ehow.com

Challenges

- Parameters
 - Scene complexity
 - Crowd distribution
- Density dependent behaviors

Shibuya crossing © NextStop

http://bobscrafts.com/bobstuff/maze .htm

Large, Dense Crowds

- Per-agent Local navigation expensive
 - Large number of possible collisions
 - Continuous collisions

- Becomes computational bottleneck
- Infeasible to simulate large crowds

Density-dependent Behavior

- Low density
 - Similar to gases
- Medium density
 - Fluid flow
- High density
 - Granular flow

[Sud et al. 2007]

Intuition

- Crowd behaves as an aggregate at medium-high densities
- Reduced individual freedom of movement

Key Ideas

- Model crowd as hybrid of
 - Discrete agents
 - Continuum based crowd
- Collision avoidance ↔
 Minimum separation

Key Ideas (2)

- Minimum separation
- Density must be below a maximum
- Inequality constraint on density
- Unilateral Incompressibility Constraint (UIC)

[Narain et al; SIGGRAPH Asia 2009]

System Overview

System Overview

- System
 - Agents i
 - Mass (m_i)
 - Velocity (v_i)
 - Crowd continuum
 - Density (ρ)
 - Velocity(v)
- UIC: $\rho < \rho_{max}$

Building Crowd Continuum

- Accumulate
 - Agent velocity
 - Agent mass
- Bilinear interpolation weights

Collision Avoidance (UIC)

- If density is high
 - Apply some force to prevent agents from coming closer
- Else, leave cell as it is
- Solve this constraint as LCP

Collision Avoidance (UIC)

- What should this force be?
 - Isotropic
- Any analogues?
 - Pressure (fluids)

 Pressure force only acts when density is high

Collision Avoidance (UIC)

- Pressure modifies velocities
- What is the pressure force, and thus the new velocity field?
- Modified velocity should make maximum possible progress to goal
- Maximize

 $\int \rho v_{original} \cdot v_{mod\,ified}$

V_{original} V_{modified}

Collision Avoidance (UIC)

• Move with maximum speed possible in the direction of modified velocity

- This is a non-linear formulation
- Approximate iterative solution?

Collision Avoidance (UIC)

Collision avoidance (UIC)

- Discretize conservation of mass equation with
 - Density
 - Modified velocity
- Linear Complimentarity problem
- Efficient solvers exist

Collision Avoidance

- Getting collision-free velocities for each agent
 - Interpolate between agent velocity and grid velocity
- There may be some collisions still
 - Push apart intersecting agents
 - Sufficient: only 0.12% agents approach closer than minimum separation

Advantages

- Gross collision avoidance independent of number of agents
- Makes large dense crowds feasible

System Demonstration

Outline: Crowd Simulations

- "Principle of Least Efforts" navigation
- Modeling of Dense Crowd
- Control and Direction Crowds

Approach

- Our method allows the user to 'direct' the flow of agents in an ongoing simulation
- Salient features:
 - Interactive scheme to direct virtual crowds
 - Novel formulation for compositing arbitrary user input into navigation fields
 - Importing data from real video

[Patil et al; TVCG 2010]

Framework **User Input : Guidance Fields User-specified** strokes Flow fields Composition Navigation Field from video module **Procedural** generation Multi-agent system Environment description

Specifying User Input

• Stroke based interface

Importing Guidance Fields From Video

Individual Guidance Fields

Framework

User Input : Guidance Fields

Navigation Fields

- Key Features
 - Goal-directed
 - Encodes paths of least effort (minimum cost)
 - Singularity-free (except for minima at goal positions)

Navigation Fields

• Store gradient at each grid-cell

Analysis

• Computes discrete approximation of following static Hamilton-Bellman-Jacobi PDE:

 $\max_{\mathbf{a}\in S^1} \{ (-\nabla T(X) \cdot \mathbf{a}) s(X, \mathbf{a}) \} = 1$

• Necessary and sufficient condition for cost-optimal paths under an *anisotropic* speed function

Performance

Scene	#Agents	Grid Dimension (m x n)	NF compute time* (ms		s)	Local Collision Avoidance	Average sim time* (ms/frame)
4 Blocks	100	100 x 100		5.0		RVO	2.0
Crossing	640	100 x 100		5.0		Helbing	1.1
Crosswalk	145	225 x 100		13.0		Helbing	0.4
Subway	435	200 x 200		22.0		RVO	5.5

• Complexity: O(m·n log (m·n))

* All times measured on single Intel Xeon 2.66 GHz processor

Overall System

System Demonstration

<u>Directing Crowds</u>

• Animating Crowds in Blender

Reconstructing Traffic

- <u>Virtualized Traffic</u> [van den Berg et al. VR2009; TVCG2010]
- <u>Continuum Traffic Simulation</u> [Sewall et al. Eurographics 2010; CGF2010]

Summary

- Modeling & simulation of digital humans present many new computational challenges
- New techniques for motion synthesis for virtual humans from individuals to crowds
 - Layer Representation for accelerated collision detection & Dynamics
 - Motion Planning with high degrees of freedom and constraints
 - Multi-Agent Planning and Collision Avoidance
- Map well to new Moore's Law

Future Research Challenges

- Investigate issues associated with adaptive algorithms that use hierarchical structures (e.g. multigrids, pedestrian level of detail, etc.)
- Hybrid models (physics+AI, data-driven+physcis, etc.)
- Incorporation of behaviors and variety
- Integration of locomotion and foot-step planning
- Integrated crowd & traffic simulations in virtual cities
- Parallel algorithms for solving real-world problems (e.g. emergency response, entertainment, shopping, e-commerce, travel)