Interactive Sound Rendering

Sound Synthesis
Numerical Acoustic Simulation
Interactive Sound Propagation
Application Demonstration
Themes

- Exploiting analytical solutions using Modal Analysis to accelerate numerical simulation and reducing runtime computation

- Capture only perceptually important auditory cues to perform real-time sound synthesis and acoustic propagation on complex 3D scenes
Overview

- Interactive Sound Synthesis
- Efficient Numerical Acoustic Simulation
- Interactive Sound Propagation
- Conclusion and Future Work
Overview

- Interactive Sound Synthesis
 - Modal Analysis
 - Perceptually-based acceleration techniques
 - Hundreds of sounding objects
 - Sound from image textures
- Efficient Numerical Acoustic Simulation
- Interactive Sound Propagation
- Conclusion and Future Work
Physically-based Sound Synthesis

- **Aim:** Take object geometry and material as input and produce sound
- **Current trend:** Recorded sounds
- **Problems with recorded sounds:**
 - Difficult, expensive or dangerous to record (e.g., Explosions)
 - Repetitiveness
 - Complex interactions (impact/rolling)

A typical foley studio (*Image taken from: http://www.marblehead.net/foley/index.html*
Physical Simulation

- Elastic deformable model

- Typical simulation time-steps must be $\sim 10^{-5}$ s

- Direct simulation infeasible

- Efficient method: Modal Analysis
Modal Analysis

- Each mode represents a resonant mode of vibration
- Frequency of a mode is fixed
- Applying impulse excites modes of vibration
- Position of impact determines relative amplitude of modes

\[\text{1st Mode} \quad \text{2nd Mode} \quad \ldots \text{Higher modes} \]

- Frequency = \(f_0 \)
- Frequency = \(2f_0 \)
- Frequency = \(kf_0 \)

\[a_0 \quad a_1 \quad a_k \]
Overview of Technique

Pre-processing
- Input Mesh
- Transform
- Spring-Mass System
- Decouple (Diagonalize)
- Modal Bank
- Frequencies: ω_1, ω_2, ..., ω_n

Runtime
- Impulses f_i
- Transform $(f_i \rightarrow g_i)$
- Excitation
- Vibration g_i
- Sinusoids
- Add
- Output
Approach

Simpler model: Spring-mass system
Fast: Supports hundreds of sounding objects
Runs in real-time, low CPU utilization (~10%), graceful degradation in quality with limited computation
Exploit human auditory perception
 Mode Compression
 Mode Truncation
 Quality Scaling
Modal Analysis

Deformation modeling

Vibration of surface generates sound
Sound sampling rate: 44100 Hz
Impossible to calculate the displacement of the surface at sampling rate
Represent the vibration pattern by a bank of damped oscillators (modes)

Standard technique for real-time sound synthesis
Modal Analysis

Discretization

An input triangle mesh -> a spring-mass system
A spring-mass system -> a set of decoupled modes
Modal Analysis

The spring-mass system set-up

Each vertex is considered as a mass particle
Each edge is considered as a damped spring
Modal Analysis

Coupled spring-mass system to a set of decoupled modes
Modal Analysis

A discretized physics system

We use spring-mass system

\[K\ddot{d} + C(d, \dot{d}) + M(\ddot{d}) = f \]

Small displacement, so consider it linear

\[K\ddot{d} + C\dot{d} + M\ddot{d} = f \]
Modal Analysis

Solve the Ordinary Differential Equation (ODE)

\[K\ddot{d} + C\dot{d} + M\ddot{d} = f \]

Rayleigh damping

\[K\ddot{d} + (\gamma M + \eta K)\dot{d} + M\ddot{d} = f \]

And diagonalizing

\[K = GDG^{-1} \]

Now, solve this ODE instead

\[DG^{-1}\ddot{d} + (\gamma G^{-1} M + \eta DG^{-1})\dot{d} + G^{-1}M\ddot{d} = G^{-1}f \]
Modal Analysis

Solve the ODE

\[DG^{-1}d + (\gamma G^{-1}M + \eta DG^{-1})\dot{d} + G^{-1}M \ddot{d} = G^{-1}f \]

Substitute \(z = G^{-1}d \) (the modes)

Now, solve this ODE instead

\[Dz + (\gamma M + \eta D)\dot{z} + M\ddot{z} = G^{-1}f \]
Modal Analysis

General solution

\[z_i = c_i e^{\omega_i^+ t} + \bar{c}_i e^{\omega_i^- t} \]

\[\omega_i^\pm = \frac{-(\gamma \lambda_i + \eta) \pm \sqrt{(\gamma \lambda_i + \eta)^2 - 4\lambda_i}}{2} \]

External excitation defines the initial conditions
Assumptions

In most graphics applications, only surface representations of geometries are given.

A surface representation is used in modal Analysis.

Synthesized sound appears to be “hallow”
Modal Analysis Summary

An input triangle mesh ->
A spring-mass system ->
A set of decoupled modes
State Detection

- Transient Contact: $v_p \cdot n_p < 0$
- Lasting Contact: $v_t \neq 0$
- Free Motion: $v_p \cdot n_p > 0$
State Detection

Distinguishing between lasting and transient contacts

In contacts?

\[
\begin{align*}
 v_p \cdot n_p < 0 & \quad \text{in contact} \\
 v_p \cdot n_p > 0 & \quad \text{not in contact}
\end{align*}
\]

In lasting contacts?

\[
\begin{align*}
 v_t \neq 0 & \quad \text{lasting contact} \\
 v_t = 0 & \quad \text{not in lasting contact}
\end{align*}
\]
Interaction Handling

Lasting contacts -> a sequence of impulses
Transient contacts -> a single impulse
Impulse Response

Dirac Delta function as impulse excitation

General solution

\[z_i = c_i e^{\omega_i^+ t} + \bar{c}_i e^{\omega_i^- t} \]

with initial condition given by the impulse, we have:

\[c_i' = c_i e^{\omega_i^+ t_0} + \frac{g_i}{m_i(\omega_i^+ - \omega_i^-)} \]
\[\bar{c}_i' = \bar{c}_i e^{\omega_i^- t_0} - \frac{g_i}{m_i(\omega_i^+ - \omega_i^-)} \]
Impulse Response

\[z_i = c_i e^{\omega_i^+ t} + \bar{c}_i e^{\omega_i^- t} \]
Handling Lasting Contacts

The interaction simulation has to be stepped at the audio sampling rate: 44100 Hz.

The update rate of a typical real-time physics simulator: on the order of 100’s Hz.

Not enough simulation is provided by the physics engine.

An customized interaction model for sound synthesis.
Mode Compression: Principle

Humans can’t distinguish two frequencies arbitrarily close to each other [Sek et. al., 1995*]

Accuracy in discriminating frequencies depends on the frequency in question

Different frequencies were played in succession to find if the subject could distinguish between them

Mode Compression: Auditory Perception

Frequency Discrimination at 2 KHz is about 4 Hz -- We can’t tell apart frequencies within the range 1998 - 2002 Hz -> playing many sinusoids of different frequencies together
Mode Truncation

Impact Sounds: Attack + Decay

Key Point: Critical to capture attack properly

Stop mixing mode when its contribution falls below a prescribed threshold, τ (typically -60 to -80 dB of initial level)
Quality Scaling

A typical audio scene consists of foreground and background sounds

Higher intensity sounds are considered to be foreground

Idea: *Give more importance to foreground sounds*

Provides a graceful way to adapt to variable time constraints
System Demonstration

VIDEO
Sound from Image Textures

VIDEO
Limitations

Implementation: Model only the surface (not an inherent limitation of the approach)

More approximate than an FEM-based formulation

 Some tuning is required

All sound synthesis techniques relying on Modal Analysis:
 Can only use linear damping models
Sounding Liquids [Moss et al. 2009]

- Work in physics & engineering literature since 1917
 - Sound generated by resonating bubbles
- Physically-based Models for Liquid Sounds (van den Doel, 2005)
 - Spherical bubble model
 - No fluid simulator coupling
 - Hand tune bubble profile
Background (Fluid)

- Grid-based methods
- Accurate to grid resolution
 - Bubbles can be smaller
 - Slow
 - Can be two-phase
Background (Fluid)

- Shallow Water Equations
 - Simulate water surface
 - No breaking waves
 - Real time
 - One phase
 - Explicit bubbles
Overview

- Generate sound from existing fluid simulation
 - Model sound generated by bubbles
- Apply model to two types of fluid simulators

Particle-Grid-based
- Extract bubbles
- Process spherical and non-spherical bubbles
- Generate sound

Shallow Water Equations
- Processes surface
 - Curvature and velocity
- Select bubble from distribution
- Generate sound
Mathematical Formulations

Spherical Bubbles

\[f_0 = \frac{1}{2\pi} \sqrt{\frac{3\gamma p_0}{\rho R_0^2}} \]

\[\tau(t) = A \sin(2\pi f(t)t) e^{-dt} \]

Non-spherical bubbles

- Decompose into a spherical harmonics

\[f_n^2 \approx \frac{1}{4\pi^2} (n - 1)(n + 1)(n + 2) \frac{\sigma}{\rho R_0^3} \]
System Overview

- Shallow Water Fluid Simulation
 - Weber Number Calculation
 - Generation Criteria
 - Distribution Model
 - Bubbles

- Grid-SPH Fluid Simulation
 - Level set
 - Surface Mesh Generation
 - Mesh
 - Volume Integration
 - Spherical Harmonics Transform
 - Bubbles
 - Bubbles from previous frame

- Bubble Tracking
 - Bubbles

- Event Pool
 - Creation Events
 - Modification Events
 - Deletion Events

- Event Distribution

- Sound Generation
Summary

• Simple, automatic sound synthesis
• Applied to two fluid simulators
 • Interactive, shallow water
 • High-quality, grid based
Video Demonstration

VIDEO
Overview

Interactive Sound Synthesis

Efficient Numerical Acoustic Simulation

Interactive Sound Propagation

Conclusion and Future Work
Overview

Interactive Sound Synthesis

Efficient Numerical Acoustic Simulation
 Novel technique based on 3D Adaptive Rectangular Decomposition
 Hundred times faster than Finite Difference Time Domain

Interactive Sound Propagation

Conclusion and Future Work
Acoustics: Governing Equation

Solve the Linear Wave Equation:

\[\frac{\partial^2 p}{\partial t^2} - c^2 \nabla^2 p = F(x, t) \]

\(\nabla^2\) is the Laplacian operator in 3D
\(c\) is the speed of sound in air
\(p\) is the pressure field to solve

The RHS is the forcing term, corresponding to volume sound sources in the scene.
State of the art: Room Acoustics

Geometric Techniques (e.g. Ray/Beam/Frustum Tracing) combined with explicit diffraction modeling

Auralization software (e.g. ODEON, CATT): Hybrid image-source and ray-tracing along with (upcoming) explicit diffraction modeling

Numerical acoustic simulation for complex 3D scenes has been explored only since mid-2000 (~2006)
Acoustics for Interactive Applications

● Geometric Approaches
 ○ Beam Tracing (Funkhouser et. al.)
 ○ Phonon Tracing (Bertram and Deines et. al.)
 ○ Frustum Tracing (Chandak et. al.)

● Advantages: Efficient, easy to understand

● Difficulties: Diffraction / Scattering, high-order reflections
Numerical Acoustics

- Discretize and solve Wave Equation on a grid

- Explored for complex 3D scenes (e.g. auditoria) only recently (2004 – 2006) by Sakamoto et. al.

- Disadvantage: Slow and memory-intensive
 - Simulations are band-limited

- Advantages: Diffraction / Scattering, high-order reflections
Acoustics in Games

Creative EAX: Pre-baked reverb filters assigned manually to different parts of a map
Adaptive Rectangular Decomposition

Numerical Simulation of the Wave Equation
Rectangular Decomposition of a 3D scene
Exploit analytical solutions on rectangular spaces
6th order Finite Difference for interface transmission
Solution on a Rectangular Domain

Rectangular space in 3D with size \((l_x, l_y, l_z)\), and perfectly reflective boundary.
Modal Analysis can be done \textit{analytically} –

\[
p(x, y, z, t) = \sum_{i=(i_x,i_y,i_z)} m_i(t) \Phi_i(x, y, z)
\]

\[
\Phi_i(x, y, z) = \cos\left(\frac{\pi i_x}{l_x} x\right) \cos\left(\frac{\pi i_y}{l_y} y\right) \cos\left(\frac{\pi i_z}{l_z} z\right)
\]
Leveraging GPU for Acoustics

Solution of Wave Equation within each rectangle can be done using a 3D Discrete Cosine Transform (DCT)

DCTs can be computed using FFT

Use efficient FFT implementation on GPU

Computational Efficiency

For a scene of size L in 3D and simulation duration T –

Memory: \(\left(\frac{Lsv_{\text{max}}}{c} \right)^3 \)

Time: \(T \left(\frac{L}{c} \right)^3 (sv_{\text{max}})^4 \)

Nyquist Limit: \(s \geq 2 \)

FDTD: \(s = 10 \). My approach: \(s = 2.6 \)

Speedup with my technique: \(\left(\frac{10}{2.6} \right)^4 > 100 \)
Demo

Video
Performance Comparison

<table>
<thead>
<tr>
<th>Scene Name</th>
<th>Volume (m3)</th>
<th>Time: FDTD (CPU)</th>
<th>Time: My Technique (GPU)</th>
<th>Speedup</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corridor</td>
<td>375</td>
<td>365 min</td>
<td>4 min</td>
<td>~ 90x</td>
</tr>
<tr>
<td>House*</td>
<td>1,275</td>
<td>3.5 days</td>
<td>24 min</td>
<td>~ 200x</td>
</tr>
<tr>
<td>Cathedral</td>
<td>13,650</td>
<td>1 week (estimated)</td>
<td>29 min</td>
<td>~ 300 x</td>
</tr>
</tbody>
</table>

Quad-core 2.8GHz Intel Xeon CPU with 8GB RAM, NVIDIA GeForce GTX 280

* This simulation was band-limited to 2 kHz, instead of 1 kHz
Summary

- Adaptive Rectangular Decomposition yields 100x improvement in performance over FDTD and consumes 10x less memory

- Source of Speedup: Modal Analysis of rectangular spaces as well as GPU-DCT

- Can feasibly simulate acoustics for large, complex scenes, such as a Cathedral
Overview

Interactive Sound Synthesis

Efficient Numerical Acoustic Simulation

Interactive Sound Propagation

Conclusion and Future Work
Overview

Interactive Sound Synthesis

Efficient Numerical Acoustic Simulation

Interactive Sound Propagation

 Perceptual aspects of acoustics

 Novel perceptually-motivated techniques

 Interactive auralization system: moving sources and listener

Conclusion and Future Work
Impulse Response (IR)

Direct

Reflected

Impulse Response

Time

1

a

Δt

1+a

1-a

Frequency Response

Frequency (Hz)

0

1/Δt

1/Δt

61
Challenges

Direct approach is costly

Days of simulation (even with fast simulator)

Terabytes of storage

- Source locations
- Listener locations
Contributions

• Approach –
 • Sample data at lower resolution in space (~1 m)
 • Novel perceptually-based scheme: Store each Impulse Response compactly
 • Spatially-interpolate Impulse Responses

• Audio engine that uses fast frequency-domain convolutions
Auditory perception of acoustic spaces

- Direct Sound: Sense of direction
- LR: Only statistical properties perceivable – Decay Time (RT60), Periodicities (Flutter echoes)

Reference: “Room Acoustics” by Heinrich Kuttruff
IR Factoring (1)

Time

Pressure

Record sound

Listener

Probe Source

65
IR Factoring (2)

Peak Detection

- Finds peak delays and amplitudes
IR Factoring (3)

ER - LR Decomposition

• Compute and store only one Late Reverberation filter per room
• Reduces pre-computation time and runtime memory usage by 10 times
IR Factoring (4)

Early Reflections (ER)

Late Reverberation (LR)

Time

Frequency

FFT
IR Factoring (5)

Early Reflections (ER)

Late Reverberation (LR)

FFT

Time

Frequency
IR Factoring (6)

Early Reflections (ER)

Late Reverberation (LR)

Time

Frequency

FFT

Divide

Extrapolated

Frequency trend
IR Factoring (7)

Early Reflections (ER)

Late Reverberation (LR)

FFT

Divide

Extrapolated

Peak times and amplitudes

Frequency trend
Runtime Processing

ERIR Interpolation

Source

Listener

Auralization

Input

ERIR

Frequency Trend

Pre-baked

Sparse FT

Per Ear

Output

FFT

Sparse FT

IFFT
Performance

● Pre-processing times typically a few hours

● Can handle about 10 sound sources in real-time on a Quad-core Xeon system with 4 GB RAM

● Bottleneck: 1D FFT
 ○ Auralization system maps well to parallel processors
Walkthrough: Game Scene

“Citadel” Scene from the game Half-Life 2

Large Size: 3,500 m³

Complex geometry (fin-like structures)
System Demonstration

Video

http://www.youtube.com/watch?v=MQt1jtDBNK4
Summary

- The first interactive sound propagation system that leverages numerical simulation
- Can render important acoustic effects like Late Reverberation and Diffraction low-pass filtering in real-time
- Can handle multiple moving sound sources and listener
- Works for large, complex 3D scenes
Overview

● Sound Synthesis
● Efficient Numerical Acoustic Simulation
● Interactive Sound Propagation
● Conclusion and Future Work
Summary

- Interactive Sound Synthesis
 - Perceptually-motivated optimizations enabling hundreds of sounding objects in real-time

- Efficient Numerical Acoustics
 - A simulator 100 times faster than Finite Difference Time Domain for constant wave speed simulations

- Interactive Sound Propagation
 - Leverage fast numerical acoustics
 - Exploit auditory perception
 - Render wave-based acoustics for multiple moving sources and listener in real-time
Conclusion

• Physically-based Sound: Complex underlying physical processes require a lot of computational power

• Combination of efficient algorithms, perceptually-motivated optimizations and fast hardware
Recent Work: Sound Synthesis

- **Ultimate goal**: Virtual Worlds with physically-based sounds for collisions, rolling, sliding, creaking, cloth, gunshots, water, automobiles, and so on

- Infer audio materials from video

- Virtual Musical Instruments using next-gen UI

- Mobile Musical Instruments
Recent Work: Sound Propagation

• Acoustics for Games and Virtual Worlds

• Accurate numerical predictions in auditorium design

• Efficient numerical solvers for high-performance computing applications

• Combine Sound Synthesis and Acoustics for a completely physically-based auralization system
References

Acoustics in Games

Aureal 3D: Limited ray-tracing
Computational Challenges (1)

Need sufficient spatial resolution to resolve smallest wavelength of interest

\[h \sim \frac{\lambda_{\text{min}}}{s}, \quad s > 2 \]

Also, need sufficiently small time-step to resolve highest frequency

\[dt < \frac{1}{s \nu_{\text{max}}} \]
Computational Challenges (2)

For a scene of size L in 3D and simulation duration T –

Memory: \[\left(\frac{Ls v_{\text{max}}}{c}\right)^3\]

Time: \[T \left(\frac{L}{c}\right)^3 \left(s v_{\text{max}}\right)^4\]

For a medium-sized room – $L = 10$ m, $T = 1$ s, $c = 340$ m/s, $s = 10$, $v_{\text{max}} = 10,000$ Hz

Memory: ~100 GB
Time: 6 days, at 100 GFLOPS
Bass Boost in small spaces

Input
A typical scenario

How do you handle this with recorded sounds?
Related/Future Work

Model-based Synthesis
 Current work with Naga K. Govindaraju, Brandon Lloyd, Guy Whitmore and Chirstopher Melroth

Sliding Sounds
 Past work in SIGGRAPH by Doel et. al.
 Current work being done by Zhimin Ren at UNC

Liquid Sounds
 Recent paper on “Harmonic Fluids” by Doug James at Cornell
 Also, some work at UNC by Yero Yeh

Cloth Rustling
Quick primer on waves

Phase (θ): Measures the progression of wave between crest and trough

Frequency: ν, Wavelength: λ

Wave Speed, $c = \nu \lambda$
Equation of Motion

Equation of motion (linear system of coupled ODEs):

\[M \frac{d^2r}{dt^2} + (\gamma M + \eta K) \frac{dr}{dt} + Kr = F(t) \]

\[\begin{array}{ccc}
\text{Inertia} & \text{Damping} & \text{Elasticity} & \text{Force} \end{array} \]

\[\gamma, \eta : \text{Fluid and Viscoelastic Damping constants} \]
Sound Synthesis

Rigid Body Simulator provides impulses
Transform to mode gains
Sound synthesized by adding the modes’ sinusoids
Advantage: Adding damped sinusoids is very fast
Position Dependent Sounds: Analysis
Mode Truncation: Performance

Xylophone bar struck in the middle
Higher value of τ : Modes fall off more quickly
Very little perceptual difference
Efficiency: Analysis

![Diagram showing audio FPS over time with different optimization levels: base timing, mode compression/truncation, and all optimizations.](image-url)
Acoustics: Computational Challenges

Multiple reflections are audible: Full time domain solution required, unlike lighting

Interference is important eg. Dead spots in auditoria

Diffraction is observable for sound and must be captured properly
Errors in FDTD: Numerical Dispersion

• All frequencies don’t travel with the same numerical speed
• Need $s = 10$ for this
Error comparison with FDTD

- Ideal: Memory - Time -
- Our method: 0.5 GB, 4 min
- FDTD: 0.4 GB, 11 min
- FDTD, s=10 (Reference): 6.1 GB, 365 min
Interface Errors

![Diagram of interface errors with absorption, exact propagation, and diffraction]

<table>
<thead>
<tr>
<th>Frequency</th>
<th>Interface error</th>
<th>Absorption error</th>
</tr>
</thead>
<tbody>
<tr>
<td>250 Hz</td>
<td>-54 dB</td>
<td>-21 dB</td>
</tr>
<tr>
<td>500 Hz</td>
<td>-42 dB</td>
<td>-26 dB</td>
</tr>
<tr>
<td>750 Hz</td>
<td>-36 dB</td>
<td>-26 dB</td>
</tr>
<tr>
<td>1000 Hz</td>
<td>-28 dB</td>
<td>-32 dB</td>
</tr>
</tbody>
</table>
Solution on a Rectangular Domain

Rectangle in 3D with size \((l_x, l_y, l_z) \), with sound-hard boundary

Represent pressure in Modal basis for Laplacian on the rectangular domain:

\[
p(x, y, z, t) = \sum_{i=(i_x,i_y,i_z)} m_i(t) \Phi_i(x, y, z)
\]

\[
\Phi_i(x, y, z) = \cos\left(\frac{\pi i_x}{l_x} x\right) \cos\left(\frac{\pi i_y}{l_y} y\right) \cos\left(\frac{\pi i_z}{l_z} z\right)
\]

\(m_i(t) \) are time-varying mode coefficients

\(\Phi_i \) are eigen-functions of Laplacian
Solution in Spectral Basis using DCT

The transformation from real space and spectral space can be done using 3D DCT and inverse DCT

\[\{ m_i \} = DCT \{ p_i \}, \quad \{ p_i \} = iDCT \{ m_i \} \]

Wave Equation in spectral space (decoupled):

\[\frac{\partial^2 m_i}{\partial t^2} + c^2 k_i^2 m_i = iDCT \left(F(t) \right), \]

Analytical solution in time:

\[M_i^{n+1} = 2M_i^n \cos(\omega_i \Delta t) - M_i^{n-1} + \frac{2\widetilde{F}_i^n}{\omega_i^2} \left(1 - \cos(\omega_i \Delta t) \right) \]
Modeling partially absorbing surfaces

Numerical absorbers for Wave Equation is a tough challenge

Perfectly Matched Layer (PML) was developed in the Electromagnetic simulation community

We adapt a time-domain formulation described in

Summary (contd..)

Automatically handles interference and diffraction

Parallelizable at multiple granularities: Source positions, Partitions, DCT

Axis-aligned simulation grid, easy to obtain using voxelization
Current Progress

• Compression scheme is nearly finished, can handle a medium-sized Lecture hall
• Extracting diffraction information still needs to be tested and tweaked
• Late reverb interpolation needs to be implemented
• Real-time auralization system is also near completion. IR interpolation needs to be tested properly.
Finite Difference Time Domain (FDTD)

Discretize continuum derivative operators:

\[\frac{P_{t+dt} - 2P_t + P_{t-dt}}{dt^2} + KP_t + O(h^6) + O(dt^2) = F_t \]

Spatial cell size: h, time-step: dt

Works on a uniform Cartesian grid

Pressure sampled at cell centers
Summary

Simple formulation and easy to implement
Works on arbitrary surface meshes
Acceleration techniques exploiting auditory perception
 Mode Compression
 Mode Truncation
 Quality Scaling
Well suited for large-scale, real-time applications with stringent time constraints, like games
Interference

The resultant pressure at P due to two waves is their sum. Phase is crucial.

out of phase - cancel in phase - add
Performance: House

Dimensions: 17m x 15m x 5 m

Auralization: 24 minutes to generate a .4 second long Impulse Response (< 2 kHz)
Performance: Cathedral

Dimensions: 35m x 15m x 26 m

29 minutes to generate a 1-second long Impulse Response (< 1 kHz)