Problem Set \#2

Quantum Error Correction
Instructor: Daniel Gottesman

Due Tuesday, Mar. 5, 2024, 5 PM

Note: This problem set has problems on 2 pages.
Problem \#1. Analyzing Clifford group circuits (25 points)
In the following diagrams, $R=R_{\pi / 4}$ is the matrix $\operatorname{diag}(1, i)$ and H is the Hadamard transform.
a) (10 points) For the following Clifford group circuit, compute the overall action on Paulis and use that to write down the 4×4 unitary matrix performed by the circuit:

b) (15 points) For the following Clifford group circuit, use Clifford simulation techniques to compute the full probability distribution of the 8 possible classical outputs after measuring all qubits in the computational basis:

Problem \#2. Twirling (20 points)

Let $S(\rho)$ be a quantum operation (a completely positive trace-preserving map) taking n qubits to n qubits. Hint: (For both parts) Any $2^{n} \times 2^{n}$ matrix can be expanded in the basis of Pauli operators.
a) (10 points) Consider the following quantum operation: Choose a uniformly random $P \in \mathcal{P}_{n} /\{ \pm I, \pm i I\}$ (i.e., a Pauli ignoring global phase). Apply P^{\dagger}, then S, then P (for the same P). Show that, averaging over P, the resulting quantum operation is a Pauli channel. A Pauli channel is any channel \mathcal{S} such that $\mathcal{S}(r h o)=\left(1-\sum_{P} p_{P}\right) \rho+\sum_{P} p_{P} P \rho P^{\dagger}$. (Where the sums are over non-trivial Paulis without phases, $\left.\mathcal{P}_{n} /\{ \pm 1, \pm i\} \backslash\{I\}.\right)$
b) (10 points) Now instead of choosing a random Pauli, choose a random Clifford and do the same thing, i.e., uniformly random $C \in \mathcal{C}_{n} /\left\{e^{i \phi} I\right\}$, apply C^{\dagger}, then S, then C. Show that, averaging over C, the resulting quantum channel is a depolarizing channel. A depolarizing channel is a channel \mathcal{S} such that $\mathcal{S}(r h o)=\left[1-\left(2^{n}-1\right) p\right] \rho+\sum_{P} p P \rho P^{\dagger}$. (Where the sums are over non-trivial Paulis without phases, $\mathcal{P}_{n} /\{ \pm 1, \pm i\} \backslash\{I\}$.) That is, an n-qubit depolarizing channel is a Pauli channel where all probabilities p_{P} are the same.

Problem \#3. Logical operations for qudit code (15 points)
Consider the following stabilizer code for qutrits (qudits with dimension $p=3$):

$$
\begin{array}{cccc}
X & X & Z & Z \\
Z & Z & X & X
\end{array}
$$

a) (5 points) Show that these generators define a qudit stabilizer code. What are its parameters as a QECC?
b) (5 points) Find a generating set for the logical Pauli group. (I.e., coset representatives for \bar{X}_{i} and \bar{Z}_{i}).
c) (5 points) For your choice of logical Pauli operators, write down the codeword for logical $|\overline{0}\rangle$ states (for all logical qubits) expanded in the standard basis for the physical qubits.

