
Surviving as a Quantum Computer in a Classical World

Daniel Gottesman

February 21, 2024

2

Contents

I Quantum Error Correcting Codes 7

1 Know Your Enemy: Quantum Errors 9
1.1 The Quantum Channel . 9
1.2 Single-Qubit Example Channels . 11
1.3 Multiple-Qubit Channels . 17
1.4 A Peek Ahead: Errors During Computation . 24

2 Redundancy Without Repetition: Basics Of Quantum Error Correction 25
2.1 Quantum Error Correction? Ridiculous! . 25
2.2 The 3-Qubit Code(s) . 26
2.3 The 9-Qubit Code . 29
2.4 Correcting General Errors . 30
2.5 The Quantum Error Correction Conditions . 35
2.6 What Makes a Good QECC? . 41

3 Will The Real Codeword Please Stand Still?: Stabilizer Codes 43
3.1 The 9-Qubit Code Revisited . 43
3.2 Pauli Group . 45
3.3 Stabilizer Codes . 46
3.4 Cosets and Error Syndromes . 52
3.5 Binary Symplectic Representation . 56

4 Maybe I Should Have Started Here: Classical Error Correction 59
4.1 Classical Error Correction in General . 59
4.2 Classical Linear Codes . 61
4.3 Dual Codes . 66
4.4 Non-Binary Linear Codes . 67
4.5 Hamming, Gilbert-Varshamov, and Singleton Bounds, MDS Codes 70

5 Combining The Old And The New: Making Quantum Codes From Classical Codes 75
5.1 CSS Codes . 75
5.2 GF(4) Codes and Stabilizer Codes . 80

6 Symmetries Of Symmetries: The Cli↵ord Group 85
6.1 Definition of the Cli↵ord Group . 85
6.2 Classical Simulation of the Cli↵ord Group . 91
6.3 Generators of the Cli↵ord Group . 98
6.4 Encoding Circuits for Stabilizer Codes . 102
6.5 Extending the Cli↵ord Group to a Universal Gate Set . 105

3

7 Tighter, Please: Upper And Lower Bounds On Quantum Codes 107
7.1 The Quantum Gilbert-Varshamov Bound . 107
7.2 The Quantum Hamming Bound . 109
7.3 The Quantum Singleton Bound . 110
7.4 Linear Programming Bounds . 112

8 Bigger Can Be Better: Qudit Codes 123
8.1 Qudit Pauli Group . 123
8.2 Qudit Stabilizer Codes . 129
8.3 Qudit CSS Codes . 133
8.4 Qudit Cli↵ord Group . 136

9 Now, What Did I Leave Out?: Other Things You Should Know About Quantum Error
Correction 139
9.1 Concatenated Codes . 139
9.2 Convolutional Codes . 142
9.3 Information-Theoretic Approach to QECCs . 146
9.4 Approximate Quantum Error-Correcting Codes . 149

II Fault-Tolerant Quantum Computation 155

10 Everyone Makes Mistakes: Basics Of Fault Tolerance 157
10.1 The Fault-Tolerant Scenario . 157
10.2 Formal Definition of Fault Tolerance . 163
10.3 Statement of the Threshold Theorem for the Basic Model . 169
10.4 Proofs Versus Simulations for Fault Tolerance . 170

11 If Only It Were So Easy: Transversal Gates 173
11.1 What is a Transversal Gate? . 173
11.2 Transversal Gates for Stabilizer Codes . 176
11.3 Transversal Gates for the 7-Qubit Code . 178
11.4 Transversal Gates and Measurement for CSS Codes . 179
11.5 Other Topics Relating to Transversal Gates . 182

12 Who Corrects The Correctors?: Fault-Tolerant Error Correction And Measurement 185
12.1 Fault Tolerant Pauli Measurement for Stabilizer Codes . 185
12.2 Shor Error Correction . 193
12.3 Steane Error Correction and Measurement . 196
12.4 Knill Error Correction and Measurement . 202
12.5 E�ciency of FTEC Protocols . 205

13 Any Su�ciently Advanced Fault-Tolerant Protocol is Indistinguishable from Magic States:
State Preparation And Its Applications 209
13.1 Preparation of Encoded Stabilizer States . 209
13.2 Gate Teleportation . 213
13.3 Compressed Gate Teleportation . 216
13.4 Cli↵ord Eigenstate Preparation by Measurement . 217
13.5 Magic State Distillation . 220

4

14 If It’s Worth Doing, It’s Worth Overdoing: The Threshold Theorem 227
14.1 Adversarial Errors . 227
14.2 Good and Bad Extended Rectangles . 229
14.3 Correctness . 230
14.4 Incorrectness: Simulations With a Bad Extended Rectangle 234
14.5 Probability of Having a Bad Rectangle . 237
14.6 Level Reduction . 242
14.7 Concatenation and the Threshold Theorem . 245

15 Now Hold On Just a Second: Assumptions Re-Examined 253
15.1 Solovay-Kitaev Theorem . 253
15.2 Short-Range Gates . 255
15.3 Fresh Ancilla Qubits . 258
15.4 Slow Measurement or No Intermediate Measurement . 262
15.5 Parallelism and Timing . 265
15.6 Leakage Errors . 267
15.7 Biased Errors . 269
15.8 Error Independence and Non-Markovian Errors . 272

16 Now, What Did I Leave Out, Part Two?: Other Things You Should Know About Fault
Tolerance 287

III Miscellaneous Topics 289

17 They May Not Be Error Correction, But We Still Love Them: Other Methods Of Error
Control 291
17.1 Entanglement Distillation and Quantum Repeaters . 291
17.2 Subsystem Coding . 291
17.3 Entanglement-Assisted Codes . 291
17.4 Decoherence-Free Subspaces . 291
17.5 Dynamical Decoupling . 291
17.6 Error Mitigation . 291

18 Wholesale Error Correction: Channel Capacity 293

19 Donuts. Is There Anything They Can’t Do?: Topological Codes 295
19.1 Toric Code and Surface Codes . 296
19.2 Decoding of Surface Codes . 303
19.3 Fault Tolerance with Surface Codes . 311

20 It Certainly Helps If You Look At Things The Right Way: Graph States 321

IV Appendices 323

A Quantum Computation 325

B Group Theory 327

C Finite Fields 329

D Linear Algebra 331

5

6

Part I

Quantum Error Correcting Codes

7

Chapter 1

Know Your Enemy: Quantum Errors

In this book, you will learn how to seek out and destroy errors on quantum states. Quantum errors are nasty,
unforgiving things. If you don’t know what you are doing, a single misstep can result in the destruction of
irreplaceable quantum information. Of course, nobody’s perfect, and in part II, you will learn how to handle
your own fallibility. (Short answer: very carefully.) For now, we will assume you don’t make any mistakes,
but that doesn’t mean things will be easy. The quantum errors are still out there, hungering to consume
quantum information. You need to get the errors before they get you.

The key to most error hunts is preparation. There are two forms of preparation. One is dressing your
quantum information properly: that is, encoding it in an appropriate quantum error-correcting code. You
will learn about that in the other chapters in part I. This chapter will focus on the other aspect of preparation:
studying the habits of the errors you are hunting.

1.1 The Quantum Channel

The most common way of characterizing a source of errors in a quantum system is as a quantum channel.
“Quantum channel” is a general term for an opportunity for the environment to introduce errors into your
quantum system. Usually, we consider a situation as depicted in figure 1.1. Alice wants to send quantum
information to Bob. Alice and Bob both have perfect quantum computers, but the connection between
them is possibly imperfect: the quantum channel. (We will drop the assumption that Alice and Bob have
perfect quantum computers in part II.) While the quantum information is in transit, the external world
(the “environment”) has a chance to interact with the system, thereby changing it in some way, introducing
errors (or “noise”) relative to the state that Alice sent.

A common example of a quantum channel is an optical fiber. Single photons can pass through the optical
fiber, but they may be lost or altered en route. Other possibilities are sending a photon through the air,
physically moving an atom with information encoded in the state of the electron or nuclear spin, successively
swapping the states of neighboring qubits arranged on a line, or even using quantum teleportation to send

Alice Bob

Errors

Figure 1.1: Alice, who has a perfect quantum computer, wants to send qubits to Bob, who also has a perfect
quantum computer. However, the communications channel between them is not perfect.

9

a quantum state from Alice to Bob with classical communication and some sort of entangled state. This is
not an exhaustive list. Indeed, any sort of communication, even a classical telephone call, can be considered
as a quantum channel. If you try to send a qubit through a regular telephone connection, no amount of
quantum error correction will allow you to recover the full quantum state afterwards, but that doesn’t a↵ect
the telephone line’s status as a quantum channel — it is simply a very noisy quantum channel.

Another common situation is when Bob is replaced by Alice’s future self. In this case, we really want
a “quantum memory”: Alice wants to prepare some quantum information, go o↵ and do other things, and
then return and manipulate her stored quantum information again. If we assume that Alice’s manipulations
at the beginning and the end of the process are perfect, we can consider the “memory” portion, when the
qubit is stored but subject to noise, as a quantum channel.

It is worth noting that the notion of a quantum channel only applies when we can look at a single
communications link in isolation. That is, to have a quantum channel, the quantum state that exits the
channel should only depend on the quantum state that goes into the channel. That may seem like a tautology,
but it is not. Imagine that Alice has a quantum memory, and prepares a qubit to store in the memory at
time 0. At time 1, she returns and fiddles some more with the stored system, then goes away again and
comes back at time 2. The storage from time 0 to time 1 is a quantum channel (assuming Alice’s initial
preparation of the qubit is perfect), but the storage from time 1 to time 2 might not be. The problem is
that the environment might remember what happened between time 0 and 1 (and more importantly, might
remember something about the state that was stored between time 0 and 1) and use that to influence what
it does to the state during the second time interval. The error now no longer depends only on what state
is stored at time 1; it also depends on what state was stored at time 0. Of course, some environments have
a very short memory, and in that case, it is a very good approximation to consider the time interval 1 to
2 to be independent of the time interval 0 to 1, and with that approximation, the second time interval is
a quantum channel. When the environment has no memory, and every time interval is independent of any
other non-overlapping time interval, the environment (or the error source) is called Markovian. When the
environment does remember over time scales long enough to matter, it is a non-Markovian environment.

In part I, we only consider the case depicted in figure 1.1. There the environment has only one opportunity
to attack the quantum information. While that opportunity may last for an extended period of time,
because Alice and Bob do not do anything with the quantum information during that time, we can lump
together everything the environment does to the state into a single transformation, and consider the whole
communications line as a single quantum channel. The question of whether the environment is Markovian
or non-Markovian then becomes moot. If we were to generalize this picture and allow noise during Alice and
Bob’s processing of the qubit, then the question arises again, since the environment then gets more than one
shot at the quantum information, but don’t worry about that situation until part II.

Now it is time to formally define a quantum channel:

Definition 1.1. A quantum channel is a completely positive trace-preserving (CPTP) map.

Wasn’t that easy? At least, it is if you know what a CPTP map is. If not, you should refer to appendix A,
where you will learn that a CPTP map is the most general physically possible transformation for an operation
where the output depends only on the input, so this is the right definition. It is frequently convenient to
consider the Kraus form of a CPTP map:

E(⇢) =
X

k

Ak⇢A
†

k
. (1.1)

We can think of this channel as a collection of possible errors Ak, where error Ak occurs with probability
tr(Ak⇢A

†

k
). However, note that the probability of Ak occurring is not a single value but actually depends

on the state ⇢. Furthermore, remember that the decomposition into Ak operators is not unique and thatP
k
A†

k
Ak = I.

Frequently, instead of dealing explicitly with a quantum channel, I will instead refer to the set of possible
errors. One way to write this set is E = {Ak}, but it is frequently convenient to rescale the errors, so more
generally E = {Ek}, where each Ak = pkEk for some scalar pk.

10

1.2 Single-Qubit Example Channels

1.2.1 Unitary Channels, Pauli Errors

Let us start by discussing some examples of channels acting on a single-qubit input. The simplest case is
when there is only a single value of k in the Kraus decomposition:

E(⇢) = A⇢A†. (1.2)

Since
P

k
A†

k
Ak = I, it follows that A is unitary. Typographically, I will usually represent a unitary channel

the same way as a unitary matrix, e.g. A(⇢) versus A(| i), even though they formally act on di↵erent kinds
of objects (density matrices versus state vectors). The one exception is that I will usually write the identity
channel as I, as opposed to the identity unitary I.

There are of course infinitely many unitary maps, but some are more interesting than others. One set
that you will be particularly sick of by the end of this book are the Pauli matrices:

I =

✓
1 0
0 1

◆
, X =

✓
0 1
1 0

◆
, Y =

✓
0 �i
i 0

◆
, Z =

✓
1 0
0 �1

◆
. (1.3)

I is, of course, the identity matrix — no error. X is probably the first thing you think of when you think
of an error, a classical bit flip:

X|0i = |1i (1.4)

X|1i = |0i. (1.5)

However, since it is a quantum operator, it also acts sensibly on superpositions:

X(↵|0i+ �|1i) = ↵|1i+ �|0i. (1.6)

Z is the most basic kind of truly quantum error, a phase flip:

Z(↵|0i+ �|1i) = ↵|0i � �|1i. (1.7)

Y is then just a combined bit flip and phase flip error:

Y = iXZ (1.8)

Y (↵|0i+ �|1i) = i↵|1i � i�|0i. (1.9)

Recall that an overall phase — one that a↵ects all states uniformly — has no physical significance, so Y and
XZ are really the same channel. In the form presented above, all the Pauli matrices are Hermitian as well
as unitary, which is sometimes useful.

In other contexts, the Pauli matrices are often written as �x, �y, and �z or �1, �2, and �3, but those are
too much writing and less easy to read. I’ll be using the Pauli matrices a lot in this book, so I’ll use the more
straightforward notation X, Y , and Z. In some of the earlier quantum error-correction literature, Y = XZ
instead of iXZ. There is not a huge di↵erence, but I think this convention is somewhat nicer overall.

There are many more single qubit unitary errors, and some are even interesting. For instance, we can
have phase rotation by an arbitrary angle:

R✓ =

✓
e�i✓ 0
0 ei✓

◆
= e�i✓

✓
1 0
0 e2i✓

◆
. (1.10)

Again, we can ignore an overall phase, so R✓ is the same channel as diag(1, e2i✓). The full set of physically
distinct one-qubit unitary channels is the group SU(2).

In the Bloch sphere picture of the state space for a qubit, a unitary map is just a rotation of the sphere.
X, Y , and Z are ⇡ rotations around the X, Y , and Z axes, as one might expect. R✓ is a rotation by angle 2✓
around the Z axis. (I have defined R✓ this way in order to agree with the prevailing terminology for phase
rotations, which results from talking about spin-1/2 particles.) Note that a reflection of the Bloch sphere is
not a completely positive map. For instance, the transpose map is a reflection in the XZ plane, and when
applied to part of an entangled state, the transpose gives something non-positive.

11

Figure 1.2: Bloch sphere transformation induced by a dephasing channel

1.2.2 Dephasing Channel

One very commonly-encountered channel is the dephasing channel.

Definition 1.2. A channel of the form

Rp(⇢) = (1� p)⇢+ pZ⇢Z†. (1.11)

is a dephasing channel. When p = 1/2, we have the completely dephasing channel. We usually restrict
attention to p 1/2 since channels with p > 1/2 are related to channels with p < 1/2 by a Z operation.

The Kraus operators of a dephasing channel in this form are
p
1� pI and

p
pZ. Since both are propor-

tional to unitary maps, the probabilities of these two errors occurring do not depend on the input state.
Thus, this channel corresponds to no error with probability 1 � p and a phase flip with probability p. We
can calculate how it acts on the density matrix in component form:

Rp :

✓
a b
c d

◆
7!
✓

a (1� 2p)b
(1� 2p)c d

◆
. (1.12)

In other words, a dephasing channel shrinks the o↵-diagonal components of the density matrix. In the
completely dephasing channel, the o↵-diagonal terms disappear completely.

An alternate Kraus decomposition is also edifying.

Rp(⇢) = (1� 2p)⇢+
2p

⇡

Z
⇡

0

R✓⇢R
†

✓
d✓. (1.13)

The dephasing channel is a channel for which, with probability 1 � 2p, nothing happens to the state, and
with probability 2p, the phase between |0i and |1i is completely randomized. This seems to conflict with the
decomposition into I and Z, where the state is left unchanged with probability 1 � p, not with probability
1 � 2p. However, when the dephasing angle ✓ is chosen uniformly at random, there is a reasonable chance
that ✓ is small and the state does not change very much. Of course, the probability that the angle ✓ is exactly
zero is just 1�2p, but using the magic of quantum mechanics, the small-✓ cases cancel out just right so that
if we break the channel up into I and Z, we find the probability of error is only p.

This example illustrates a rather disturbing principle: in quantum mechanics, the notion of “probability
of error” is inherently somewhat subjective. When error correction is concerned, the decomposition into
I and Z is the better choice for the dephasing channel, for reasons that will become clearer in chapter 2.
However, there are many channels for which none of the decompositions is particularly favored, even for the
specific application of quantum error correction.

In the Bloch sphere picture, a dephasing channel shrinks the sphere into an ellipsoid, leaving the Z axis
unchanged, as in figure 1.2. A completely dephasing channel shrinks the Bloch sphere down to just the
segment on the Z axis.

The dephasing channel is a physically very interesting channel. A dephasing channel occurs in any
system where the environment learns about the qubit in the standard basis but does not otherwise interfere
with the state. Even in a more realistic system where there are more complicated interactions between the

12

system and the environment, there is frequently a large dephasing component to the noise. The prevalence
of approximate dephasing channels is one of the reasons that the macroscopic world appears classical to us
— a completely dephasing channel converts a qubit into a probabilistic classical bit.

We can make a simple model of a dephasing channel by having one environment qubit interact with
the system qubit via a Hamiltonian H = !Z ⌦ Z. The environment qubit starts in the pure state |+i =
(|0i+ |1i)/

p
2, and the system qubit starts in state | 0i = ↵|0i+ �|1i. Then, after a time t, the state of the

two qubits is

e�i!tZ⌦Z | 0i ⌦ |+i = 1p
2
(↵e�i!t|00i+ ↵e+i!t|01i+ �e+i!t|10i+ �e�i!t|11i. (1.14)

(Taking ~ = 1.) Tracing over the second (environment) qubit, we find that the system qubit at time t is in
an equal mixture of R�!t| 0i and R+!t| 0i, giving it density matrix

✓
|↵|2 ↵�⇤ cos(2!t)

↵⇤� cos(2!t) |�|2
◆
. (1.15)

In other words, at time t, we have the dephasing channel R(1�cos(2!t))/2. In this simple model, the system
dephases at short times, but after a longer time t = ⇡/!, it returns to its starting state.

In a more realistic system, there are many di↵erent environment qubits interacting with the system,
and/or there are additional qubits interacting with the environment qubits. If we take a Markovian form of
our simple model, and assume that the environment’s internal interaction e↵ectively resets the environment
qubit after a very short time, phase coherence instead decays steadily:

✓
|↵|2 ↵�⇤e�t/T2

↵⇤�e�t/T2 |�|2
◆
, (1.16)

corresponding to a dephasing channel R
(1�e�t/t2)/2. The time constant T2 of the exponential decay is known

as the t2 time. (Otherwise I probably would have used a di↵erent symbol.) One way to think about this
behavior is that there is a constant probability 1/T2 per unit time that the phase is completely randomized
as an instantaneous “quantum jump”.

Another common source of dephasing is a varying energy di↵erence between the |0i and |1i states. If |ai
has energy Ea, after time t, |ai has evolved into e�iEat|ai. We can ignore the global phase, but there is still
a relative phase di↵erence e�i(E1�E0)t between |0i and |1i. However, when E0 and E1 are known constants,
we can generally ignore the relative phase too: if we keep track of the time t, the relative phase is known, and
we can take it into account in any operation we want to perform. In some systems, there is a phase reference
(such as the phase of a laser) which automatically compensates for the phase di↵erence. However, when the
energy di↵erence varies unpredictably, we can no longer keep precise track of the relative phase, resulting in
an uncompensated relative phase shift accumulating randomly over time. This results in dephasing. In some
cases, the relative phase shift is not random, but is simply unknown, and more sophisticated techniques may
be able to compensate.

Experimentally, the signature of dephasing is often a decay of coherent interference e↵ects. In a Rabi
oscillation experiment, the system cycles cos(⌦Rt)|0i+ sin(⌦Rt)|1i. After time t, the system is measured to
test if it is |0i or |1i. If the system were perfect, if we were to plot the probability of 1 against the time, we
would get a perfect oscillation sin2(⌦Rt) for all times. Instead, we get something more like figure 1.3, with
oscillations decreasing in amplitude.

Let us imagine a Markovian environment, and assume that the T2 time is much longer than the Rabi
frequency ⌦R, so that we can assume the dephasing and oscillation are independent. If there is a quantum
jump causing full dephasing at time t0, the pure state cos(⌦Rt0)|0i+ sin(⌦Rt0)|1i becomes the mixed state
with probability cos2(⌦Rt0) of |0i and probability sin2(⌦Rt0) of |1i. Then |0i and |1i continue with their

13

time

Prob.(1)

1

2

1

0

Figure 1.3: Decay of Rabi oscillations due to dephasing

own oscillations, but out of phase with each other. This mixture has density matrix
✓
cos2(⌦Rt0) cos2(⌦Rt0) + sin2(⌦Rt0) sin

2(⌦Rt0) (cos2(⌦Rt0)� sin2(⌦Rt0)) sin(⌦Rt0) cos(⌦Rt0)
(cos2(⌦Rt0)� sin2(⌦Rt0)) sin(⌦Rt0) cos(⌦Rt0) cos2(⌦Rt0) sin

2(⌦Rt0) + sin2(⌦Rt0) cos2(⌦Rt0)

◆
(1.17)

=

✓
sin2(⌦Rt0) + cos(2⌦Rt0) cos2(⌦Rt0) cos(2⌦Rt0) sin(⌦Rt0) cos(⌦Rt0)

cos(2⌦Rt0) sin(⌦Rt0) cos(⌦Rt0) sin2(⌦Rt0) + cos(2⌦Rt0) sin
2(⌦Rt0)

◆
(1.18)

= sin2(⌦Rt0)I + cos(2⌦Rt0)⇢(t
0), (1.19)

where t0 = t � t0 and ⇢(t0) is the density matrix of a Rabi oscillation running for time t0. We will still see
Rabi oscillation, but with a reduced amplitude.

1.2.3 Depolarizing Channel and Pauli Channel

While the dephasing channel is perhaps the favorite (or least favorite, depending on your point of view) of
experimentalists, it lacks a certain quantumness. It only involves one kind of non-trivial error, and indeed,
in an appropriate choice of basis, it can be viewed as a purely classical noisy channel. Theorists are instead
enamored of the depolarizing channel, which does experience the full range of quantum errors and is highly
symmetric. It is not so common in the real world, which is less symmetric than theorists would prefer, but
it is still extremely useful for exploring quantum error correction.

Definition 1.3. The depolarizing channel is the quantum channel

Dp(⇢) = (1� p)⇢+
p

3
X⇢X† +

p

3
Y ⇢Y † +

p

3
Z⇢Z†. (1.20)

D3/4 is the completely depolarizing channel.

The depolarizing channel has an equal chance of an X, Y , or Z error, each with probability p/3. We can
analyze what it does to the density matrix:

Dp :

✓
a b
c d

◆
7!
✓
(1� 2p/3)a+ (2p/3)d (1� 4p/3)b

(1� 4p/3)c (1� 2p/3)d+ (2p/3)a

◆
. (1.21)

This is not particularly enlightening until you remember that tr ⇢ = 1, in which case you can see that

Dp(⇢) = (1� 4p/3)⇢+ (4p/3)(I/2). (1.22)

In other words, with probability 1 � 4p/3, the qubit is left alone, but with probability 4p/3, it is replaced
with the completely mixed state. It also should now be clear why I defined p = 3/4 as the completely
depolarizing channel: in that case, the input state is always replaced with the maximally mixed state. As
with the dephasing channel, there is some ambiguity as to what the “true” error rate is for the depolarizing
channel, but the two representations can be reconciled by recognizing that the completely mixed state does
contain a component of the original input state.

The other thing to notice about the second representation is that it is much more symmetric than the
first one. The decomposition into Paulis has a certain amount of symmetry, treating X, Y , and Z on the

14

Figure 1.4: Bloch sphere transformation induced by a depolarizing channel

same footing, but the second decomposition has even more: there are no preferred bases or unitary operators
at all appearing in it. This is the true beauty of the depolarizing channel — it can at once be considered
as a simple mixture of the very basic Pauli errors, but also is invariant under any kind of unitary rotation.
This symmetry property suggests a decomposition for the depolarizing channel akin to equation (1.13), and
indeed there is one:

Dp(⇢) = (1� 4p/3)⇢+

Z

SU(2)
U⇢U†dU, (1.23)

where the integral uses the Haar measure, the unitarily-invariant measure over SU(2).
We can generalize the depolarizing channel by giving up its symmetry but keeping its decomposition into

Paulis:

Definition 1.4. A channel of the form

E(⇢) = pI⇢+ pXX⇢X† + pY Y ⇢Y
† + pZZ⇢Z

† (1.24)

is a Pauli channel.

A Pauli channel has potentially di↵erent probabilities for the four Pauli matrices I, X, Y , and Z.
They don’t have to be di↵erent — dephasing channels and depolarizing channels are both examples of
Pauli channels — but once you’ve generalized to a Pauli channel, you might as well take advantage of the
opportunity to have some variety among the Paulis. Naturally, pI + pX + pY + pZ = 1 so that the total
probability adds up to 1.

The depolarizing channel uniformly shrinks the Bloch sphere into a smaller sphere still centered on the
origin, or to a single point (the maximally mixed state) if we have the completely depolarizing channel. A
more general Pauli map shrinks the Bloch sphere into an ellipsoid centered on the origin.

1.2.4 Amplitude Damping Channel

Another physically motivated channel is the amplitude damping channel. It occurs, for instance, if |0i and
|1i are the ground and excited state of a two-level atom, and the excited state can decay to the ground state
by spontaneously emitting a photon. The amplitude damping channel also occurs for a photonic qubit where
|0i is no photon and |1i is 1 photon — damping occurs when the photon escapes or is absorbed somewhere
along the way. There should be 2 Kraus operators for the amplitude damping channel, one representing the
cases when there is no emission (or loss), and one representing the “no-jump” case. It is worthwhile trying
to figure out yourself what the form of the Kraus operators should be before looking at the definition below.

Definition 1.5. An amplitude damping channel has the following form:

Ap(⇢) = A0⇢A
†

0
+A1⇢A

†

1
, (1.25)

where

A0 =

✓
1 0
0
p
1� p

◆
, A1 =

✓
0
p
p

0 0

◆
. (1.26)

15

Figure 1.5: Bloch sphere transformation induced by an amplitude damping channel

Probably you were able to get the right form for A1 (perhaps without the square root, which is a matter
of convention depending on how we choose to parametrize amplitude damping channels). It represents the
possibility that |1i can become |0i. However, |0i never spontaneously gains energy in this idealized channel;
even in the real world, it is fairly rare, since it requires that a stray photon of about the right energy be
wandering by. Therefore the lower left corner of A1 is 0.

A0 might surprise you. (If not, then good work.) The most obvious guess is that since there is no decay,
nothing should happen, and A0 should be proportional to the identity. However, you won’t be able to satisfy
the constraint that A†

0
A0 + A†

1
A1 = I if you choose A1 as above and A0 / I. Conceptually, the reason for

this is that A1 can only occur if the initial state was |1i. Therefore, if A1 doesn’t happen, it means that
the initial state was more likely to be |0i, and A0 reflects that, reducing the amplitude of |1i in the initial
state. The same phenomenon can be found in classical probability theory, for instance in the “Monty Haul
problem.”

In the Bloch sphere picture, amplitude damping results in a uniform shrinkage to a smaller sphere. It
di↵ers from the depolarizing channel in that the center of the sphere is no longer fixed. Instead, the south
pole (the |0i state) is fixed. In the limit p = 1, the whole sphere shrinks down to the south pole.

The characteristic decay time for a system undergoing continuous amplitude damping is the “T1 time.”
(After all, there had to be a T1 to go with T2 for the dephasing time scale.)

1.2.5 Photon Loss Channels

Amplitude damping can occur due to photon loss from a photon channel when the presence or absence of a
photon represents |0i or |1i. However, this is not a particularly common encoding used for photonic qubits.
More often, the qubit is stored in some other state of a single photon (such as the polarization), or by being
in one of two modes (a “dual-rail encoding”), or some more complicated structure possibly involving multiple
photons. When we use one of these encodings, loss of a photon is no longer represented by an amplitude
damping channel.

Consider, for instance, a polarization encoding, with horizontal polarization being |0i and vertical polar-
ization being |1i. Now, photon loss can a↵ect either |0i or |1i, and what results if the photon does escape
is neither of those states, instead being a third state |vacuumi. Therefore, a photon loss channel for polar-
ization encoding takes a qubit input but its output is a 3-dimensional qutrit. Assuming both polarizations
have equal probability p to lose a photon, the channel is then very simple. There are three Kraus operators,
corresponding to no photon loss, loss of a horizontally polarized photon, and loss of a vertically polarized
photon:

A0 = 1� p

0

@
1 0
0 1
0 0

1

A , A1 = p

0

@
0 0
0 0
1 0

1

A , and A2 = p

0

@
0 0
0 0
0 1

1

A . (1.27)

The same channel works for photon loss from a dual-rail encoding.
When the encoding involves multiple photons, there is still a sensible description as a quantum channel,

but the analysis requires a bit more quantum optics, and is beyond the scope of this book.

16

1.2.6 Erasure Errors

The example of the photon loss qubit channel suggests another interesting kind of error. When a photon
is not lost, the state is not changed at all. When a photon is lost, by monitoring the photon number
(but not the polarization), we can, in principle, tell that a photon has been lost. In that case, we do not
know what the original state of the system was, but at least we know that something has happened to it.
Measuring the photon number without destroying the polarization state is technologically di�cult, so for
this particular example, this is more an issue of principle than of practice. There are, however, other systems
where monitoring for loss of the qubit is easier.

Definition 1.6. A qubit erasure error is an error A acting on a single qubit which maps all qubit states to
a third state |?i orthogonal to the qubit Hilbert space.

Erasure channels may seem to be di�cult channels to correct, since the information is completely lost,
but that’s not the case. By measuring if the state is |?i is present (without collapsing superpositions of |0i
and |1i) — for instance, by measuring the number of photons — we can determine if an erasure error has
occurred. Because erasure channels provide some classical information about which qubits underwent errors,
erasure channels are actually easier to correct than more general channels.

1.3 Multiple-Qubit Channels

It’s hard to do too much with only one qubit. Even if we have only one qubit of data, we’ll need more
than one qubit to create a real quantum error-correcting code. Therefore, we should also think some about
channels acting on multiple qubits.

1.3.1 Pauli Channels

One route to defining multiple-qubit channels is to largely forgot about the tensor product structure and just
pick some completely positive map acting on the Hilbert space as a whole. Such channels can be extremely
complicated, since they act on a Hilbert space of dimension 2n when there are n qubits. Sometimes this is
necessary, as it reflects the actual physics of the system, but quantum computers are usually built out of
systems that naturally break up into qubits, and many-qubit interactions are rare.

Mathematically, it is usually too di�cult to deal with an arbitrary n-qubit channel, but the n-qubit
generalization of the Pauli channel is su�ciently well-behaved to be sometimes useful.

Definition 1.7. A channel of the form

E(⇢) =
X

P

pPP⇢P
†, (1.28)

where the sum is taken over P which are tensor products of I, X, Y , and Z, is a Pauli channel.

In a Pauli channel, the operator P occurs with probability pP . Pauli channels are a reasonable quantum
analogue of classical channels. There is a definite probability of error, and the errors that occur are large and
discrete. However, since we can have a mix of bit flip and phase errors, a Pauli channel does have enough
quantum features to be interesting.

1.3.2 Independent/Memoryless Channels

The simplest way to create a channel on n qubits is to just treat each qubit separately.

Definition 1.8. An independent channel on n qudits (each of dimension q) has the form ⌦n

i=1
Ei, where each

Ei is a single-qudit channel.

17

A dimension-q qudit is a single system whose state space is a Hilbert space of dimension q, so for instance,
q = 2 gives us a qubit, and for the moment, we will restrict attention to qubits. Often, we set all Ei’s to be
equal to E , so that all qubits are treated equally.

As a simple example, we can consider E = Rp, the dephasing channel. Let us stick to n = 3 in order
to be more explicit. There are a total of 8 possible Kraus operators for this channel, with the following
probabilities:

Probability Errors
(1� p)3 I ⌦ I ⌦ I
p(1� p)2 Z ⌦ I ⌦ I, I ⌦ Z ⌦ I, I ⌦ I ⌦ Z
p2(1� p) Z ⌦ Z ⌦ I, Z ⌦ I ⌦ Z, I ⌦ Z ⌦ Z

p3 Z ⌦ Z ⌦ Z

The total probability of having a Z error on exactly one qubit is then 3p(1 � p)2, and the probability of
having two Z errors is 3p2(1� p).

The chance of having at least one qubit with an error on it is therefore larger than the chance of having
a single qubit by itself go wrong under the same dephasing channel Rp. This makes sense, since there are
more places for errors to occur. However, when p is small, most of the time, there will only be 0 or 1 Z
error, and the other qubits will have I acting on them. This is the case we want to address through quantum
error correction — errors are rare, but not negligibly so. In the case of this 3-qubit dephasing channel, we
can make a good approximation by considering only the no-error or one-error possibilities, and ignoring the
two- and three-qubit error cases.

1.3.3 Definition of t-Qubit Errors

More generally, we can define a t-qubit error to be one that acts on t qubits. However, there are two technical
points in exactly how we want to define it:

Definition 1.9. We say that a linear operator A acting on n qubits has weight t if it is the tensor product
of the identity on n� t qubits with some matrix on the remaining t qubits. The weight of A is denoted wtA.
We say that a weight t operator A has support on the t qubits on which it acts non-trivially. Generally (but
not always), we cite the weight and support for the minimal set of qubits for which A acts non-trivially. A
linear operator B acting on n qubits is a t-qubit error if it has the form

B =
X

i

Bi, (1.29)

where each Bi has weight at most t, not necessarily with support on the same set of qubits for di↵erent i.
An n-qubit quantum channel is a t-qubit error channel if it has a Kraus decomposition for which all Kraus
operators are t-qubit errors. We can similarly define a t-qubit error map acting linearly on n-qubit density
matrices but which may not be trace preserving.

Technical point number one is that even though a weight-t operator A acts non-trivially on only t qubits,
it can act arbitrarily on those t qubits. In particular, it does not need to be a tensor product of errors on
the separate qubits — it can entangle them however it likes. For instance, CNOT⌦ I is a weight 2 operator
acting on 3 qubits.

Technical point number two is that a t-qubit error B can be the sum of terms acting on di↵erent sets of
t qubits. This naturally means that more than t qubits will be altered under the action of this error, but
it turns out that they are altered in a way that is no more harmful than if we had a channel that had a
possibility of altering each set of t qubits as separate Kraus operators. This point will be discussed in greater
length in section 2.4.3, once we have a real quantum error-correcting code to examine.

We can also define t-qubit erasure errors. For instance, imagine we have many qubits each stored as the
polarization of a photon, and each one undergoes a slight amount of photon loss.

Definition 1.10. A t-qubit erasure error is a weight t operator which is the tensor product of erasure errors
on the qubits in its support. A t-qubit erasure channel is a quantum channel with a Kraus representation

18

where all Kraus operators are s-qubit erasure errors, with s t. s can be di↵erent for di↵erent Kraus
operators.

Note that here I am requiring that each Kraus operator has a specific set of qubits which can be erased,
not a superposition of di↵erent sets of qubits. This reflects the idea that an erasure is in some sense a
classical event, because the set of qubits that were erased can be measured.

1.3.4 Connection Between Independent Channel and t-Qubit Errors

An independent channel seems much more physically plausible (albeit still an approximation) than a t-qubit
channel. However, it turns out to be more mathematically straightforward to design quantum error-correcting
codes for t-qubit channels (or to correct a set of t-qubit errors) than for independent channels. Luckily, as
suggested by the example of the 3-qubit dephasing channel, an n-qubit independent channel can be well
approximated by a t-qubit channel (for some t < n) when the single-qubit channels making up the n-qubit
channel are all close to the identity.

Theorem 1.1. Let I be the 1-qubit identity channel and E = ⌦n

i=1
Ei be an n-qubit independent channel,

with kEi � Ik⌃ < ✏ t+1

n�t�1
, and ✏ 1/3 as well. Then

kE � Ẽk⌃ < 5

✓
n

t+ 1

◆
[(4e+ 2)✏]t+1 (1.30)

for some t-qubit error map Ẽ.

The significance of the theorem is that if we have a quantum error-correcting code which is designed to
correct t-qubit error channels, it will automatically also correct independent channels where the single-qubit
tensor factors are su�ciently close to the identity. Actually, that’s not completely true: While the theorem
does show that, this is not really the significance of the theorem, since there is much easier proof (which we
will see in chapter 2) that a quantum error-correcting code that corrects t-qubit errors also corrects small
independent error channels. Rather, this theorem provides a motivation for thinking about t-qubit error
channels, which might otherwise seem rather bizarre.

When kEi � Ik⌃ < ✏, we are getting about an ✏ chance of error per qubit, so with n qubits, we expect
around ✏n errors. Therefore, we would not expect to be able to approximate E well by a t-qubit error map
unless t & ✏n, which is reflected in the bound on ✏. The other detailed constants in the theorem shouldn’t
be taken too seriously, as the proof could likely be tightened considerably to get better constants. But if you
do insist on taking those constants seriously, you might find, for example, that when n = 5 and t = 1, you
would get kE � Ẽk⌃ . 8286✏2, which only gives a non-trivial bound when ✏ is less than about 0.01.

Two elements of equation (1.30) that are significant are the combinatorial factor
�

n

t+1

�
, which reflects the

number of (t+1)-qubit subsets of the n qubits, and the exponent t+1 for ✏, which tells us that the closeness
of the approximation improves exponentially as we allow more qubits to have errors. In the limit of large n
and any constant ratio t/n, the combination of the combinatorial factor and the exponent means that there
will be a threshold value of ✏ below which we get a good approximation for all large n (and indeed, a better
one as n gets larger).

Proof. We begin with a lemma on sums of error probabilities or amplitudes that will also be helpful later.

Lemma 1.2. If 0 < t < n, then

a) For any 0 ✏ 1,
P

n

j=t+1

�
n

j

�
✏j(1� ✏)n�j

�
n

t+1

�
✏t+1

b) When 0 ✏ t+1

n�t�1
, then

P
n

j=t+1

�
n

j

�
✏j

�
n

t+1

�
(e✏)t+1

Proof of lemma. There are a number of ways to prove part a. One straightforward method is to interpret ✏
as a probability of some event (which is the main application we will have for this lemma). Then the sum
is the probability that the event occurs at least t + 1 times in n independent trials. We can upper bound

19

this probability by considering each subset of t + 1 trials. The total probability of having the event occur
in all trials in the subset, without regard to what happens on the other n � t � 1 trials, is ✏t+1. There are�

n

t+1

�
subsets of size t+1, so by the union bound, the total probability of having some set of t+1 trials with

the event is at most
�

n

t+1

�
✏t+1. Whenever the event occurs j > t+ 1 times, we have over-counted, since we

included that probability as part of all
�

j

t+1

�
sets of size t+ 1 which had the event.

For part b, note that

(1� ✏)n�t�1 �
✓
1� t+ 1

n� t� 1

◆n�t�1

� e�(t+1). (1.31)

Then

nX

j=t+1

✓
n

j

◆
✏j =

nX

j=t+1

✓
n

j

◆
✏j(1� ✏)n�j

1

(1� ✏)n�j
(1.32)

nX

j=t+1

✓
n

j

◆
✏j(1� ✏)n�j

1

(1� ✏)n�t�1
(1.33)

✓

n

t+ 1

◆
✏t+1et+1 (1.34)

by part a and equation (1.31).

As a warm-up to prove the theorem, let us consider the case when for all i, Ei has a Kraus operator
(1 � ✏)I. In this case, we can say that Ei has probability ✏ of having an error (one of the other Kraus
operators), and a probability of 1� ✏ of having no error. Part a of lemma 1.2 applies, so the probability of
having at least t+ 1 errors is at most

�
n

t+1

�
✏t+1. In this case, the t-qubit error map F has all combinations

of up to t “error” Kraus operators with the “good” Kraus operator (1� ✏)I on the other qubits. The map F
is completely positive, but is not trace preserving, since we have discarded the Kraus operators with more
than t errors.

For the general case, first we need a better characterization of single-qubit channels G which are close to
the identity.

Lemma 1.3. If E is a quantum channel from HD to HD satisfying kE�I1k⌃ < ✏ 1/3, then E has a Kraus
representation E(⇢) =

P
k
Ak⇢A

†

k
such that kA0 � Ik1 <

p
2D (✏ + ✏2) + (✏/2 + ✏2) and

P
k 6=0
kAkk21 <

D✏(1/2 + ✏).

Proof of lemma. Using the Choi-Jamiolkowski isomorphism, the channel E corresponds to the entangled
state �E = (I ⌦ E)(|�+i h�+|), with |�+i = 1

p
D

P
a
|aai. (Note that I have normalized the state to make

it easier to apply common identities, which is not always the convention used with the Choi-Jamiolkowski
isomorphism.) Since kE � I1k⌃ < ✏,

k�E � |�+i h�+|k1 < ✏ (1.35)

as well. Since the trace distance between these two states is small, the fidelity between them is high:

h�+|�E |�+i > 1� ✏/2. (1.36)

Now, |�+i h�+| has one eigenvalue +1 and the remaining eigenvalues 0. Let us also write �E in terms of
an eigenbasis,

�E =
D

2
�1X

i=0

�i|�ii h�i|. (1.37)

�E is positive and has trace 1, so �i � 0 and
P

i
�i = 1. Now consider

|h�i|�+ih�+|�ji| = |h�i|
�
�E � |�+i h�+|

�
|�ji| < ✏ (1.38)

20

for i 6= j. In addition,

h�+|�E |�+i =
D

2
�1X

i=0

�i|h�+|�ii|2 > 1� ✏/2. (1.39)

We can choose the phase of the eigenstates |�ii to ensure that h�+|�ii is real and non-negative. Letting
ai = h�+|�ii, we have ai � 0,

P
�ia2i > 1 � ✏/2, and aiaj < ✏ for i 6= j. Assume without loss of generality

that a0 is the largest of the ais. Then
P
�ia2i

P
�ia20 = a2

0
, so

a0 >
p
1� ✏/2 � 1� ✏/2. (1.40)

Thus
ai < ✏/a0 <

✏

1� ✏/2 (1.41)

for i 6= 0. Then

D
2
�1X

i=0

�ia
2

i
 �0 +

D
2
�1X

i=1

�i
✏

1� ✏/2 (1.42)

= �0 + (1� �0)
✏

1� ✏/2 (1.43)

=
✏+ (1� 3✏/2)�0

1� ✏/2 , (1.44)

since
P
�i = 1. Therefore,

�0 �
(1� ✏/2)2 � ✏

1� 3✏/2
� 1� ✏/2� ✏2. (1.45)

(assuming ✏ 1/3), which means X

i 6=0

�i = 1� �0 ✏/2 + ✏2 (1.46)

for i 6= 0.
We have now bounded all the terms we need, but we’d like a tighter bound on a0. We can do that by

going back and plugging in the bound on
P
�i.

k|�0i h�0|� |�+i h�+|k1 (1� �0) + k�0|�0i h�0|� |�+i h�+|k1 (1.47)

 (1� �0) + k
X

i 6=0

�i|�ii h�i|k1 + k�E � |�+i h�+|k1 (1.48)

 2✏+ 2✏2. (1.49)

But the 1-norm distance between two pure states is just given by

k|�0i h�0|� |�+i h�+|k1 = 2
p

1� |h�0|�+i|2, (1.50)

meaning
p
1� |h�0|�+i| ✏+ ✏2p

1 + |h�0|�+i|
 ✏+ ✏2. (1.51)

Thus, in the Choi-Jamiolkowski isomorphism form of the channel, the state has one large eigenvalue,
for which the eigenstate is close to the maximally-entangled state, and the other eigenvalues are all small,
with the eigenstates far from the maximally entangled state |�+i. (Of course, they could be close to other
maximally entangled states.) We can recover a set of Kraus operators for the channel by letting

Ak|ai =
p
D�k (ha|⌦ I) |�ki (1.52)

21

for basis states |ai, extended linearly to the full Hilbert space HD. (Recall that |�ii is a state in HD ⌦HD,
so the right-hand side of equation (1.52) is in HD.) Then kAkk21 D�k, so

P
k 6=0
kAkk21 D✏(1/2 + ✏), as

desired.
To get the bound on A0, note that A0| i =

p
D�0h ⇤|�0i, where | ⇤i is the complex conjugate of | i in

the basis {|ai}. Furthermore, | i =
p
Dh ⇤|�+i. Then

kA0 � �0Ik1 = max
| i

|A0| i � �0| i| (1.53)

= max
| i

p
D�0|h ⇤|�0i � h ⇤|�+i| (1.54)

=
p
D�0||�0i � |�+i| (1.55)

=
p
D�0

p
2� 2Reh�+|�0i (1.56)

p
2D (✏+ ✏2), (1.57)

applying equation (1.51) in the last line, and recalling we have chosen h�+|�0i to be real. Thus,

kA0 � Ik1
p
2D (✏+ ✏2) + (✏/2 + ✏2) (1.58)

For the case of qubits and applying ✏ 1/3, the lemma gives kA0� Ik1 7✏/2 and
P

k 6=0
kAkk21 5✏/3

for k 6= 0. We will round to kA0 � Ik1 < 4✏ and
P

k 6=0
kAkk21 2✏ for k 6= 0.

Given lemma 1.3, we can use a similar approach for the general case as we did for the warm-up, which
was essentially classical. Channel Ei has Kraus operators Ai

k
, with Ai

0
close to the identity and Ai

k
small

for k 6= 0. The n-qubit independent channel E has Kraus operators which are all possible tensor productsN
i
Ai

ki
. Let F be the map whose Kraus operators are all tensor products

N
i
Ai

ki
with at most t values of i

for which ki 6= 0. Then

kF � Ek⌃
nX

r=t+1

X

|S|=r

Y

i2S

X

ki 6=0

kAi

ki
k2
1
. (1.59)

The sum over r represents the number of values of i for which ki 6= 0, and S is the set of indices for which
ki 6= 0. Since

P
ki 6=0
kAkik21 2✏, we get

kF � Ek⌃
nX

r=t+1

✓
n

r

◆
(2✏)r

✓
n

t+ 1

◆
(2e✏)t+1 (1.60)

by lemma 1.2.
Now F is not yet a t-qubit error map because the A0 terms include some errors. However, the A0 terms

are all near I, so we can expand them as Ai

0
= I + �Ai, with k�Aik1 < 4✏. Given a Kraus operator for F

A{ki}
=
N

i
Ai

ki
with r indices ki 6= 0, expand all Ai

0
s in this way and form A0

{ki}
by discarding all terms

in the expansion with more than t� r �Ai factors. The resulting Kraus operators are composed of sums of
terms with weight at most t, of which r non-identity factors come from ki 6= 0 terms, and the remaining
come from �Ai components of ki = 0 factors.

kA0

{ki}
�A{ki}

k1

0

@
Y

j|kj 6=0

kAkjk1

1

A
n�rX

s=t+1�r

X

|S|=s

Y

i2S

k�Aik1 (1.61)

0

@
Y

j|kj 6=0

kAkjk1

1

A
n�rX

s=t+1�r

✓
n� r

s

◆
(4✏)s (1.62)

✓

n� r

t+ 1� r

◆
(4e✏)t+1�r

0

@
Y

j|kj 6=0

kAkjk1

1

A . (1.63)

22

Let ⇢ be an arbitrary pure state, possibly entangled between HD and a reference system. Then

kA0

{ki}
⇢(A0

{ki}
)† �A{ki}

⇢A†

{ki}
k1 k(A0

{ki}
�A{ki}

)⇢(A0

{ki}
)†k1 + kA{ki}

⇢((A0

{ki}
)† �A†

{ki}
)k1 (1.64)

 2

0

@
Y

j|kj 6=0

kAkjk1

1

A kA0

{ki}
�A{ki}

k1 (1.65)

 2

✓
n� r

t+ 1� r

◆
(4e✏)t+1�r

0

@
Y

j|kj 6=0

kAkjk21

1

A . (1.66)

I have omitted the ⌦I terms a↵ecting the reference system in the first line; the equation is complicated
enough as is. In the second line, we have used the property that kA| ik kAk1 and bounded kA{ki}

k1
and kA0

{ki}
k1 by the norm of just the terms with kj 6= 0. If we sum over all {ki} with the same locations

for which kj 6= 0, we get

X
kA0

{ki}
⇢(A0

{ki}
)† �A{ki}

⇢A†

{ki}
k1 2

✓
n� r

t+ 1� r

◆
(4e✏)t+1�r(2✏)r. (1.67)

Finally, let G be the linear map with Kraus operators A0

{ki}
. In G, we have eliminated all Kraus operators

with more than t errors. Then we get a bound on kG � Fk⌃ by applying them to ⇢, and considering the
1-norm of the resulting state, which involves summing equation (1.66) over all possible values of {ki} with
at most t indices kj 6= 0 (those with more have already been excluded from F). We get

kG � Fk⌃ 2
tX

r=0

✓
n

r

◆✓
n� r

t+ 1� r

◆
(4e✏)t+1�r(2✏)r (1.68)

= 2
tX

r=0

✓
n

t+ 1

◆✓
t+ 1

r

◆
(4e✏)t+1�r(2✏)r (1.69)

 2

✓
n

t+ 1

◆
[(4e+ 2)✏]t+1. (1.70)

Combining this with equation (1.60), we get

kG � Ek⌃ 3

✓
n

t+ 1

◆
[(4e+ 2)✏]t+1. (1.71)

There is one final step needed. It is possible that G is no longer completely positive, since it could be
that kA0

{ki}
⇢(A0

{ki}
)†k1 > kA{ki}

⇢(A{ki}
)†k1, which could result in trG(⇢) > 1. We should therefore scale G

down to CG, for appropriately chosen constant C, to get a map that is guaranteed to be completely positive.
F is trace non-increasing, though, so

trG(⇢) 1 + kG � Fk⌃ 1 + 2

✓
n

t+ 1

◆
[(4e+ 2)✏]t+1 = 1/C. (1.72)

Then

kCG � Ek⌃ 3

✓
n

t+ 1

◆
[(4e+ 2)✏]t+1 + 1� C (1.73)

 5

✓
n

t+ 1

◆
[(4e+ 2)✏]t+1. (1.74)

23

1.4 A Peek Ahead: Errors During Computation

In part II, we’ll consider more general types of errors. In particular, quantum gates will be able to go wrong
in various ways, and errors will occur multiple times during a computation. As noted above, the quantum
channel picture is no longer completely general then, since the noise might be non-Markovian. Mostly we’ll
stick to Markovian noise, but even then matters are much more complicated. Since our control is no longer
reliable, we’ll have to deal with errors occurring even while we’re trying to fix them. However, there are
various subtler di�culties to contend with as well.

For one thing, we don’t know when an error occurs, so we can’t assume we do error correction immediately
after each error. In particular, an error might occur right before a gate that we had intended for some other
purpose. Then even if the gate itself works perfectly, it can cause the error to propagate, infecting an
additional qubit with the same error. In addition, the e↵ect of the gate can change the type of error. For
instance, a Z error that occurs before a Hadamard gate will change into a X error after the gate. This
phenomenon makes it much more di�cult to take advantage of information we know about the errors. For
instance, suppose the noise source is largely dephasing noise. We might want to use a code that is particularly
good at correcting dephasing noise, but if we use Hadamard gates in our circuit, some of the Z errors that
occur will have become X errors by the time we get around to correcting them, and our code won’t work
anywhere near as well as expected. A particularly insidious form of this phenomenon occurs when errors
happen during the implementation of a gate, which, after all, should take a non-zero time. Even if the
completed gate does not change the type of error, depending on how the gate is being implemented, the
partial gate may in fact alter the structure of the noise.

We’ll return to all these issues in part II, and discuss how to design fault-tolerant quantum circuits that
allow reliable error correction and computation on encoded states despite the complications.

24

Chapter 2

Redundancy Without Repetition:
Basics Of Quantum Error Correction

Now we are ready to start designing quantum error-correcting codes. A natural place to start for inspiration
is to look at the theory of classical error-correcting codes, and indeed it can give us some guidance. However,
we’ll rapidly see that there are some major di↵erences between classical and quantum error correction.

The simplest classical error-correcting code is the repetition code:

0 7! 000 (2.1)

1 7! 111. (2.2)

If we send this 3-bit encoding through a 1-bit error classical channel, it is clear that we will be able to correct
for any error that occurs on a single bit. If all three bits are the same, we know there hasn’t been an error,
while if one of the three is di↵erent, for instance 010, we know that the one that’s di↵erent is the one that’s
wrong. By enforcing a boring conformity among the bits, we can recover the original state. Recall that if
we use an independent channel instead of a 1-bit error channel, then there is some chance of 2 or 3 errors,
which would fool us. If there are two errors, the one bit that we think is wrong is actually the only bit that’s
correct, and our well-meaning attempt to fix it will actually complete the error, making all three bits wrong.
Luckily, the chance of two errors occurring is only O(p2) when the probability of an error on a single bit
is p (see section 1.3.2). When p is small, the chance of the encoded state ending up wrong is less than the
chance that an unencoded bit can make it unchanged through the channel.

Throughout this chapter, we’ll assume we have a t-qubit error channel. This is justified by theorem 1.1,
which tells us that if we actually have an independent channel, it is very close to a t-qubit channel, at least
when the error rate per qubit is low. We will actually reprove a version of theorem 1.1 with an easier proof
and better constants specifically applicable to quantum error-correctiong codes.

To make a quantum error-correcting code, we might want to imitate the classical repetition code, but
that instantly runs into a few problems. We’ll need to find a somewhat di↵erent way to protect our quantum
information, one that adds redundancy without repeating the state.

2.1 Quantum Error Correction? Ridiculous!

Why am I so dead-set against a quantum repetition code? Perhaps we could encode

| i 7! | i| i| i. (2.3)

If you’ve had much quantum information experience, you’ll immediately see the problem with this encoding:
it is forbidden by the No-Cloning Theorem.

25

1. No-cloning theorem prohibits repeating a quantum state.

2. Measuring the data while determining the error will destroy superpositions.

3. We must correct Y and Z errors in addition to X errors.

4. We must correct an infinite set of unitaries and also channels which decohere the state.

Table 2.1: Barriers to making a quantum error-correcting code.

Theorem 2.1 (No-Cloning Theorem). There is no quantum operation which maps an arbitrary state | i to
| i| i.

Proof. The problem is linearity. Suppose

|0i 7! |00i (2.4)

|1i 7! |11i. (2.5)

Then, because quantum operations must be linear,

| i = ↵|0i+ �|1i 7! ↵|00i+ �|11i. (2.6)

However, this is not equal to the cloned | i state:

| i| i = ↵2|00i+ �2|11i+ ↵�(|01i+ |10i). (2.7)

Another problem has to do with how we correct errors for the repetition code. Given a 3-bit state coming
out of the channel, we’d like to look at it and determine which of the three bits is di↵erent from the other
two. However, when dealing with quantum states, looks really can kill. Or if not kill, at least decohere,
destroying any superposition we have. And without the ability to be in a superposition, a qubit is no better
than a classical bit. Somehow, to make a quantum error-correcting code, we’ll need some way to correct
errors without looking too closely at what we’re doing.

Even if we can handle these problems, it’s clear that quantum error correction will be more complicated
than classical error correction. For a classical channel, basically all that can happen is a bit flip error, but
quantum codes are going to need to handle phase flip errors as well, not to mention Y errors. While the
3-qubit repetition code is good at correcting bit flip errors, it doesn’t do anything to help correct phase flips.
Actually, it makes phase flip errors more common since there are now three qubits which could have phase
flip errors instead of only one.

In addition to X, Y , and Z, we will also have to handle an infinite set of unitaries, such as the R✓ errors.
Then there are more general channels, such as the dephasing channel or depolarizing channel, which turn
pure states into mixed states. How can we come up with a correction operation that will turn the state from
a mixed state back into a pure state?

At this point, the prospects for a quantum error-correcting code look bleak. The di�culties we’ve
identified so far are listed in table 2.1. But don’t worry — there are solutions to all of these problems. If
there weren’t, this book would be a lot thinner.

2.2 The 3-Qubit Code(s)

We won’t try to handle all of these problems at once. Let’s focus first on points 1 and 2. We’ll try to make
a quantum version of the three-bit repetition code. The quantum code will encode a qubit, but only protect
against one kind of error, just like the classical three-bit code.

26

|0i
|0i
| i

|0i
|0i

Figure 2.1: Encoding and syndrome measurement circuit for the 3-qubit bit flip correction code.

2.2.1 Correcting Bit Flips for Superposition States

Suppose we apply the classical repetition encoding to the basis states and extend to arbitrary superpositions
by linearity:

↵|0i+ �|1i 7! ↵|000i+ �|111i. (2.8)

The first thing to notice is that this is an allowed encoding, and doesn’t violate the no-cloning theorem.
There is no rule against copying basis states — they act just like classical bits. The no-cloning theorem only
kicks in if you try to copy superpositions as well. Rather than encoding a superposition | i as three copies
of | i (which is impossible), we encode superpositions as entangled states. That takes care of di�culty 1.

Let’s look at what happens to this state when there’s been a bit flip error on the second qubit:

X2(↵|000i+ �|111i) = ↵|010i+ �|101i. (2.9)

(In this book, I shall use the notation X2 to indicate that the error X is acting on qubit 2. The same
notation applies for gates. However, sometimes I shall omit the subscripts and instead write out a tensor
product explicitly; in this case, that would be I ⌦X ⌦ I.)

As with the classical repetition code, the error can be identified by noticing that the middle qubit
is di↵erent from the first and third qubits. The critical point is that this is true for both branches of the
superposition. It is therefore possible to measure the fact that the second qubit is di↵erent without measuring
whether we have an encoded zero or an encoded one. If we don’t measure the data that’s encoded in the
code, we don’t destroy an encoded superposition. This is how we resolve the second barrier: we can measure
the error without measuring the information we’re trying to preserve.

2.2.2 Encoding Circuit and Error Syndrome Measurement

To understand this point in more detail, look at figure 2.1. The first part of the figure gives the encoding
circuit for the 3-qubit code. We start with one qubit in an arbitrary unencoded state and add two additional
qubits which become entangled with the first qubit. After the encoding, it is no longer particularly meaningful
to ask which was the original data qubit and which are the ones we added. They are now all treated on an
equal basis. The encoding of eqnrefeqn:threequbitbitflip is symmetric between all three qubits.

The second part of the circuit contains the error correction process. We wish to know whether one of the
qubits is di↵erent from the other two, and if so, which one is di↵erent. We can break that down into two
pieces: We ask whether the first two qubits are the same or di↵erent, and then we ask whether the second
and third qubits are the same or di↵erent. In other words, we wish to know the parity of the first two qubits
and the parity of the last two qubits. We will store the answers to these two questions on two more extra
qubits. Extra qubits like these that are used for this or any other helpful purpose during a computation are
known as ancilla qubits.

To tell whether two qubits are the same or di↵erent, the circuit in figure 2.1 uses two CNOT gates. If
they are the same, either neither CNOT flips the corresponding ancilla, or both do; if they are di↵erent,
exactly one of the CNOT gates flips the ancilla qubit. Thus, when we measure the ancilla qubit for one
of the parity measurements, the output we get is equal to the parity: 0 for same (even parity), and 1 for

27

opposite (odd parity). Notice that the result does not depend at all on the encoded state, simply whether
there is a bit flip error on the qubits we are measuring. That means the measurement can be done without
disturbing a superposition of the encoded data.

Together, the measurement results for the two ancillas form a bit string known as the error syndrome.
The error syndrome encapsulates all the information we have about the error. For instance, when the bit flip
error is X2, the error syndrome is 11 because both the first pair and the second pair of qubits are di↵erent.
Similarly, error syndromes 10 and 01 correspond to the errors X1 and X3, respectively, and error syndrome
00 tells us that there is no error. Thus, every possible error for a one-qubit bit flip channel is accounted for.
Once we know what the error is, we can simply correct it by performing another bit flip on the appropriate
qubit.

Notice that the choice of error correction circuit and corresponding error syndrome is not unique. For
instance, we could have measured the parity of the first and third qubits instead of measuring the parity
of the second and third qubits. This would have given us the same information, but the correspondence
between error syndromes and errors would have been shu✏ed. We could have measured the parities of all
three pairs of qubits, but in that case the error syndrome (which would be 3 bits long) would be redundant:
from any two error syndrome bits, we could deduce the third. It is not a coincidence that the number of
syndrome bits we need is equal to the number of extra qubits we added to the data in order to perform the
original encoding. This is a general property of quantum error-correcting codes, as discussed in chapter 3,
although there are certain cases where we don’t need all of the information encoded in the syndrome. (See
section 17.2 for a description of that case.)

2.2.3 Phase Error Correction

The three-qubit code described above corrects a single bit flip error, but cannot correct any phase flip errors.
It is also straightforward to make a code that works the other way: it corrects a single phase flip error, but
cannot correct any bit flip errors.

The key to making this code is to notice that the Hadamard transform H switches the role of X and Z
errors:

|0i $ |+i = 1p
2
(|0i+ |1i) (2.10)

|1i $ |�i = 1p
2
(|0i � |1i) (2.11)

X acting on the |0i, |1i basis is a bit flip, but in the |+i, |�i basis, it maps

X|+i = |+i (2.12)

X|�i = �|�i, (2.13)

acting as a phase flip. Similarly, Z switches |+i and |�i, so it acts as a bit flip in the Hadamard-rotated
basis.

Therefore, we can make a three-qubit phase correcting code by just applying H to every qubit in the
three-qubit bit flip correcting code:

|0i 7! |0i = |+i|+i|+i (2.14)

|1i 7! |1i = |�i|�i|�i, (2.15)

extended by linearity so that ↵|0i+�|1i 7! ↵|0i+�|1i. In this book, I shall use lines over a state or operator
to indicate the encoded version of the object.

If there is a single phase flip error, for instance, Z2, one of the three qubits will be di↵erent than the
other two in the Hadamard basis. E.g., Z2|0i = |+i|�i|+i. We can locate the error in just the same way as
before, except that now we should rotate the control qubits for the CNOTs in the error correction circuit by
a Hadamard transform to work in the correct basis. The modified encoding and error correction circuit is
pictured in figure 2.2.

28

|+i
|+i
| i H

|+i
|+i

H

H

Figure 2.2: Encoding and syndrome measurement circuit for the 3-qubit phase correction code.

2.3 The 9-Qubit Code

The three-qubit codes resolve the first two barriers from table 2.1, but to address the third di�culty, we’ll
have to add more qubits. In order to make a code that corrects a bit flip error or a phase error, we’ll encode
one qubit into nine qubits, mixing together the encodings from both the bit and phase correcting three-qubit
codes:

|0i 7! |0i = 1

2
p
2
(|000i+ |111i)(|000i+ |111i)(|000i+ |111i) (2.16)

|1i 7! |1i = 1

2
p
2
(|000i � |111i)(|000i � |111i)(|000i � |111i). (2.17)

Again, we extend the encoding by linearity to work on superpositions. The 9-qubit code was discovered by
Peter Shor and so is sometimes called the Shor code.

For the nine-qubit code, we will let the set of possible errors be {I,Xi, Yi, Zi|i = 1, . . . , 9}, so we can
have any single-qubit Pauli error. If we have an X error acting on a single qubit, that can be detected by
looking at a single group of three qubits to see if one qubit is di↵erent from the other two in the standard
basis. For instance,

X5|0i =
1

2
p
2
(|000i+ |111i)(|010i+ |101i)(|000i+ |111i), (2.18)

and the error correction circuit of figure 2.1 applied to the middle set of three qubits will identify the error
correctly. As before, once we identify the location of an X error, we can correct it by simply flipping the
appropriate bit back to its original state. Also as before, the circuit tells us nothing about the encoded state.

If we have a Z error on a single qubit, matters are a little more complicated, but work basically the same
way.

Z5|0i =
1

2
p
2
(|000i+ |111i)(|000i � |111i)(|000i+ |111i). (2.19)

Now we need to compare the three phases. Simply rotating into the Hadamard basis will not quite do it
this time (although it gets us close), since we have to take into account the fact that the phase is distributed
among a set of three qubits.

We will return to the nine-qubit code in chapter 3, and discuss exactly what to measure to find the error
syndrome, but for now, let us just notice that it is possible in principle to make the desired measurement.
The set of all correctly encoded states (the code space) forms a 2-dimensional subspace of the 29-dimensional
Hilbert space of nine qubits. The two-dimensional subspace where the first phase is di↵erent from the other
two (i.e., we have � + + or + � �) is spanned by Z1|0i and Z1|1i, and is orthogonal to the code space.
Similarly, the subspaces where the second phase is di↵erent or the third phase is di↵erent are also orthogonal
to the code space. Furthermore, these three erroneous code spaces are all orthogonal to each other. Thus,
there is a measurement we can make that will distinguish them, and identify whether we have no phase error
or one phase error, and if there is a phase error, on which set of three qubits it has occurred. Once we know
the correct set of three, we can undo the phase error by applying Z to one of the qubits in that set of three.

29

A little consideration will show you that this argument applies to Y errors as well. The X and Z error
correction procedures are essentially independent, and the argument that we can identify the block of three
qubits with a Z error applies equally well if there is an X error on one of the nine qubits. Thus, the nine-
qubit code can correct for both an X and a Z error. In particular, it can correct for a single-qubit Y error,
which corresponds to having an X and a Z on the same qubit. In the set of possible errors, we only allowed
single-qubit errors, but actually the code will still work if you extend the set of possible errors to allow one
X error and one Z error on any pair of qubits.

2.4 Correcting General Errors

The nine-qubit code addresses problem 3, but it suggests that problem 4 might be troublesome. In order
to correct a single bit-flip error, we needed 3 qubits, but to correct Y and Z errors as well, we went up to
nine qubits. To solve problem 4 and correct general single-qubit errors, we’ll need to handle an infinite set
of errors. Does this mean we will have to use infinitely many qubits? Hopefully not.

2.4.1 Continuous Phase Rotation Example

Let’s examine the specific case of the continuous phase rotation R✓ in more detail. We can rewrite

R✓ =

✓
e�i✓ 0
0 ei✓

◆
= cos ✓I � i sin ✓Z. (2.20)

Now suppose the usual nine-qubit code has experienced an error (R✓)i instead of the usual X, Y , or Z
error, but imagine that we do not know that and use the usual error correction circuit for the nine-qubit
code. We can figure out what happens to state by again applying the linearity of quantum mechanics.

(R✓)i| i = cos ✓I| i � i sin ✓Zi| i. (2.21)

We know what happens to I| i and Zi| i under the error correction circuit: First, we interact with some
ancilla qubits and determine the error syndrome corresponding to these errors, then we measure the ancilla
qubits. If |Iisyn and |Ziisyn are the error syndromes corresponding to the errors I and Zi, when we interact
with the ancillas, we get the following:

(R✓)i| i 7! cos ✓I| i|Iisyn � i sin ✓Zi| i|Ziisyn. (2.22)

Right now, we have an entangled state between the code qubits and the ancilla qubits. When we measure
the ancilla register, we’ll collapse the superposition, getting one of two results:

Prob.(cos2 ✓) : I| i|Iisyn (2.23)

Prob.(sin2 ✓) : Zi| i|Ziisyn. (2.24)

Something miraculous has happened: now we have either an I error (i.e., no error at all) or a Z error, and
the outcome of the error syndrome tells us which and where the error is. We can then correct it in the usual
way. Somehow, by pretending that we had an I, X, Y , or Z error, we made it actually true that the error
was one of those. It’s a triumph of wishful thinking.

For the nine-qubit code, the same procedure works with arbitrary single-qubit unitaries, and actually
works for any Kraus operator Ak. Indeed, this is not a property of just the nine-qubit code, but of quantum
error-correcting codes in general: correcting I, X, Y , and Z errors is su�cient to correct general errors. At
this point, we could easily prove this for the nine-qubit code, but it is worthwhile to prove the generalization.
To do that, we will want to first define precisely what a quantum error-correcting code is.

30

2.4.2 Definition of a Quantum Error Correcting Code

Generally speaking, a quantum error-correcting code is a subspace of a larger Hilbert space. Typically, that
subspace has been chosen in some complicated entangled way in order to have special properties when errors
occur on states from the code space. Therefore, it is most sensible to define a quantum error-correcting code
together with the set of errors it corrects. Also, we’ll frequently want to consider the subspace as a Hilbert
space encoding some quantum data, so we’ll define the subspace as a map from a smaller Hilbert space into
the big Hilbert space.

Definition 2.1. A quantum error-correcting code (U, E) (or QECC for short) is a partial isometry U :
HK ! HN with the set of correctable errors E (consisting of linear maps E : HN ! HM) with the following
property: 9 quantum operation D : HM ! HK such that 8E 2 E , 8| i 2 HK ,

D(EU | i h |U†E†) = c(E, | i)| i h |. (2.25)

U is known as the encoding operation for the code (or the encoder), and D is the decoding map (or decoder).
D is also known as the recovery operation. We say that the QECC corrects E if E 2 E .

Sometimes, we don’t consider a specific encoding map, and refer to Image(U) (more precisely known as
the code space) as the QECC. A codeword is any state in the code space. Often, a QECC is mentioned
without an explicit set of correctable errors, which should be determined by context. Sometimes the error
set simply does not matter. When it does matter but is not specified, the set of correctable errors is often
the set of all t-qubit errors for the largest possible t; except sometimes it is instead the set of the most likely
errors in the system. HK is sometimes referred to as the logical Hilbert space and HN is the physical Hilbert
space. If E is the set of all t-qubit errors, we say that U (or Image(U)) is a t-error correcting code, or that
it corrects t errors.

In the above definition (and elsewhere in the book), HD is a Hilbert space of dimension D. A partial
isometry is like a unitary in that it preserves inner products, but might not be invertible because it may
map a Hilbert space to a Hilbert space of strictly larger dimension. Of course D actually maps matrices on
HM to matrices on HK . Since E can be a general linear map, not necessarily unitary, EU | i might not be
normalized properly, which is why we need the c(E, | i) factor in equation (2.25). The definition explicitly
allows c(E, | i) to depend on | i, but it turn outs that it does not (see section 2.5). It does depend on E,
however.

To prove this, and in many other contexts, it is helpful to treat the decoding map as a unitary. This can
be done via the Stinespring dilation, by purifying D. To do so, we must add an ancilla register. Let the input
ancilla to D be of dimension D and let the output ancilla have dimension D0. Then HM ⌦HD

⇠= HK ⌦HD0 .
HD0 plays the role of the error syndrome. Call the purification V : HM⌦HD ! HK⌦HD0 . Now, U | i = | i,
and when the QECC corrects E 2 E ,

V (E| iN ⌦ |0iD) =
p
c(E, | i) | iK ⌦ |A(E, | i)iD0 (2.26)

I have put subscripts on the kets to help you keep track of which Hilbert spaces they belong to. There might
be a phase on the RHS, but it can be absorbed into the ancilla state |A(E, | i)i.

Proposition 2.2. In definition 2.1, c(E, | i) is independent of | i, as is |A(E, | i)i when we purify the
decoder.

Proof. Consider two codewords | i and |�i. Imagine we purify the decoder to the unitary V , so

V E| i ⌦ |0i =
p
c(E, | i) | i ⌦ |A(E, | i)i (2.27)

V E|�i ⌦ |0i =
p
c(E, |�i) |�i ⌦ |A(E, |�i)i. (2.28)

By linearity and the definition of a QECC applied to the superposition codeword ↵| i+ �|�i,

V E(↵| i+ �|�i)⌦ |0i = ↵
p
c(E, | i) | i ⌦ |A(E, | i)i+ �

p
c(E, |�i) |�i ⌦ |A(E, |�i)i (2.29)

=
p
c(E,↵| i+ �|�i) (↵| i+ �|�i)⌦ |A(E,↵| i+ �|�i)i. (2.30)

31

These two expressions can only be equal if |A(E, | i)i = |A(E, |�i)i = |A(E)i (or the discarded ancilla will be
entangled with the output state) and c(E, | i) = c(E, |�i) = c(E) (or the decoded state for the superposition
will be wrong). The conceptual point here is that in order to preserve the coherent superposition in the
decoder’s output, there cannot be any information about the encoded state left in the ancilla, and the
amplitudes (and thus norms) of di↵erent encoded states have to match, or the Hilbert space will get distorted.

Note that the set of correctable errors is not a unique invariant property of an encoding map or code
space, which is why I included it as part of the definition. The same code space could be used to correct
di↵erent sets of errors. For instance, the 3-qubit phase correction code can correct the set E = {I, Z1, Z2, Z3},
but it also corrects the set E = {I, Z1Z2, Z1Z3, Z2Z3}. In the former case, we interpret the non-zero error
syndromes as caused by a single phase error, whereas in the latter case, we only consider two-qubit errors.
Since Z1 has the same error syndrome as Z2Z3 but they correspond to di↵erent logical states, we have to
make a choice between them and cannot include both in the set of correctable errors at the same time. That
is, E = {I, Z1, Z2Z3} is not a possible set of correctable errors for the 3-qubit phase correction code.

There are many variations of the terms defined above. For instance, code space is sometimes coding
space, code subspace, etc., and sometimes it is the encoded subspace. However, the encoded subspace
also sometimes refers to HK , which can also be called the data or encoded data. As defined above, D
incorporates both the error correction procedure and the “unencoding” process of returning the data to HK ,
but sometimes they are considered separately.

The decoder D incorporates whatever processing is necessary to correct and decode the state. For
instance, it may incorporate a measurement of the error syndrome, and application of a correction operation
conditional on the classical bits resulting from the syndrome measurement. The decoder D may not, however,
be unique. Its behavior is completely determined on the subspace spanned by E| i, where E 2 E and | i
is a codeword, but outside of that subspace, D can act arbitrarily, and the distinctions between di↵erent
decoders can be important in a number of contexts, such as when studying the e�ciency of the decoder, or
its behavior on errors outside E , or when considering fault tolerance.

Note that if we define a QECC just as a subspace instead of an encoding map, we haven’t lost much
information. In particular, the set of correctable errors is the same for all encoders:

Proposition 2.3. Suppose we have two di↵erent encoders U1, U2 : HK ! HN with Image(U1) = Image(U2).
Then (U1, E) is a QECC i↵ (U2, E) is a QECC.

Proof. Because U1 and U2 are partial isometries with the same image, they can only di↵er by a unitary
V : HK ! HK :

U2 = U1V. (2.31)

If we use decoder D1 for encoder U1, then V † �D1 will serve as the decoding map for U2:

V †D1(EU2| i h |U †

2
E†)V = V †D1(EU1V | i h |V †U †

1
E†)V (2.32)

= V †(c(E, V | i)V | i h |V †)V (2.33)

= c(E, | i)| i h |. (2.34)

In the definition of a QECC, we have let the dimensions K, M , and N of the various Hilbert spaces
involved be arbitrary, although N � K or no QECC is possible. Nevertheless, there are some common
restrictions. Frequently we assume K = 2k and N = 2n, so there are k logical qubits (or encoded qubits)
and n physical qubits. Sometimes we work with q-dimensional qudits instead of qubits, so K = qk and
N = qn. Occasionally we have even more general situations, where K and N might use di↵erent bases or
not be powers at all. When there is a tensor factorization of the overall Hilbert space, but I don’t want to
be too specific about whether the individual factors are qubits, qudits, or maybe even di↵erent sizes from
each other, I will refer to the registers, with each register being one tensor factor. A single error then a↵ects
a single register, whatever its size.

32

Most often M = N , so errors map the physical Hilbert space to itself. There is little lost by assuming
this, since we can generally ignore any unused states in HN or HM without negative consequence. The main
time when it matters is when errors occur repeatedly on the state before we perform error correction, as
happens, for instance, in fault-tolerant quantum computation. In that case, you really need M = N , so that
you can sensibly apply the same error over and over again.

One special case worth mentioning is that of erasure errors. Recall that an erasure error formally maps
a qubit into a qutrit, so to treat erasure errors in the most precise way, we would take N = 2n and M = 3n.
However, most often we imagine that a “stop-leak” gate of some sort is performed before the decoder. The
stop-leak gate will map the third |?i state of each qutrit to some state, perhaps a random one, of the
corresponding qubit. Then we can consider an erasure error as mapping a qubit to a qubit, but with some
additional classical information indicating that the qubit has undergone an error.

This is maybe a good place for an extremely important digression on the terminology of error correction.
Specifically, I want to discuss the use of hyphens. Wait, did I say “important?” I meant “unimportant.”
But I am going to discuss hyphens anyway. In English, hyphens are occasionally used in compound nouns
but not that frequently. Where they are used is to make compound adjectives. Thus, we have a hyphen in
“error-correcting code” and “fault-tolerant computation” but not in “error correction” and “fault tolerance,”
unless one of the component words happens to get split between lines. (Notably, though, there is no hyphen
for the “quantum” part, so “quantum error-correcting code.”) Certainly, many scientists are not native
speakers of English, so they have a good excuse for making this mistake. But you no longer have an excuse.

2.4.3 Linearity of Quantum Error Correction

Now we are ready to generalize the phenomenon we observed in section 2.4.1.

Theorem 2.4. If (U, E) is a QECC, then (U, E 0) is a QECC, where E 0 = span E is the linear span of E.

In other words, if a QECC can correct E and F , then it can also correct ↵E + �F .

Proof. Basically, the idea is to duplicate the argument used in section 2.4.1 for the general case. We haven’t
defined the error syndrome for a general QECC, but we do have the decoding map to work with. We will
purify it to V so that we can work with only unitary maps.

The QECC corrects E,F 2 E , so

V (E| iM ⌦ |0iD) = cE | iK ⌦ |sEiD0 (2.35)

V (F | iM ⌦ |0iD) = cF | iK ⌦ |sF iD0 . (2.36)

One di↵erence from section 2.4.1 is that |sEi and |sF i don’t need to be orthogonal. Also note that the c’s
from definition 2.1 would be the squares of cE and cF .

By linearity,

V [(↵E + �F)| iM ⌦ |0iD] = ↵cE | iK ⌦ |sEiD0 + �cF | iK ⌦ |sF iD0 (2.37)

= | iK ⌦ (↵cE |sEiD0 + �cF |sF iD0). (2.38)

Tracing out HD0 , we find that the decoder map is of the desired form, with

c(↵E + �F, | i) = k↵cE |sEi+ �cF |sF ik2. (2.39)

2.4.4 Correcting Paulis Implies Correcting All Errors

As a corollary of theorem 2.4, we can simplify the condition for a code to correct t errors:

Corollary 2.5. If a QECC set of correctable errors includes all tensor products of I, X, Y , and Z of weight
t or less, it is a t-error correcting code.

33

Proof. The set of all errors with support on a given set of t qubits is the set of 2t ⇥ 2t matrices acting on
those qubits. Tensor products of I, X, Y , and Z acting on those t qubits form a basis for this set of matrices.
Therefore, an arbitrary weight t error can be written as the sum (with appropriate coe�cients) of weight t
tensor products of I, X, Y , and Z, and an arbitrary t-qubit error can be written as a sum weight t errors.
The corollary then follows from theorem 2.4.

As a consequence, we find that the nine-qubit code is a 1-error correcting code. Applying the definitions,
we find that it encodes one logical qubit into nine physical qubits.

2.4.5 QECCs and Error Channels

We have finally answered all four objections to the existence of quantum error-correcting codes. However,
it is worth thinking a little more carefully about what happens when we have a decoherent error that maps
pure states to mixed states. For example, suppose that we have a dephasing channel with error probability
p acting on qubit i. Then the pure codeword state | i becomes:

| i h | 7! (1� p)I| i h |I + pZi| i h |Zi, (2.40)

which is a mixture of the pure states | i and Zi| i. Now, we know that the full error correction procedure
corrects these two pure states:

| i 7! | i|Iisyn (2.41)

Zi| i 7! | i|Ziisyn (2.42)

By the linearity of density matrices, that means that the final state after the dephasing channel followed by
error correction is:

(1� p)| i h |⌦ |Ii hI|syn + p| i h |⌦ |Zii hZi|syn = | i h |⌦ [(1� p)|Ii hI|syn + p|Zii hZi|syn] . (2.43)

That is, the decoded logical qubit ends up as a pure state, but the overall state is still mixed: the randomness
introduced by the error ends up in the error syndrome, or in the ancilla Hilbert space HD0 in the proof of
theorem 2.4.

Recall that a t-qubit error channel is one for which there exists a Kraus decomposition where each Kraus
operator is a sum of weight t linear operators. By theorem 2.4 and the argument above for the dephasing
channel, any code that corrects arbitrary t-qubit linear errors will therefore also correct arbitrary t-qubit
error channels.

What about independent channels?

Theorem 2.6. Let I be the 1-qubit identity channel and E = ⌦n

i=1
Ei be an n-qubit independent channel,

with kEi� Ik⌃ < ✏ t+1

n�t�1
, and let U and D be the encoder and decoder for a QECC with n physical qubits

that corrects t-qubit errors. Then

kD � E � U � Ik⌃ < 2

✓
n

t+ 1

◆
(e✏)t+1. (2.44)

In other words, a QECC that can correct t-qubit errors also corrects small independent error channels
up to a very good approximation. A similar statement immediately follows from theorem 1.1. This should
thus be viewed as a specialization of theorem 1.1 with better constant factors and a much easier proof.

Proof. The strategy is straightforward: Expand E as a sum of a t-qubit error map (not normalized) and an
additional small term. The t-qubit error map is corrected by the code due to linearity, and then we just have
to bound the size of the additional term to prove the theorem.

Since kEi � Ik⌃ < ✏, we can write Ei = I + �Ei, with k�Eik⌃ < ✏. Now,

E = F + G, (2.45)

34

where

F =
tX

r=0

X

|S|=r

O

i2S

�Ei (2.46)

G =
nX

r=t+1

X

|S|=r

O

i2S

�Ei (2.47)

are the sums over all tensor factors of t and > t of the �Eis, respectively. (The tensor with I on other
qubits is implicit.)

The first term F is a sum of terms acting on at most t qubits. Each term in the sum is not a completely
positive map. In fact, �Ei is not even positive. However, �Ei is a di↵erence of two completely positive maps,
and therefore

F(⇢) =
X

k

↵kAk⇢A
†

k
, (2.48)

where the ↵k coe�cients can be either positive or negative real numbers and each Ak acts on at most k
qubits. By theorem 2.4 (and the linearity of density matrices, as for the dephasing channel example), the
QECC corrects F .

By proposition 2.2, the scaling factor c(E, | i) in definition 2.1, the definition of a QECC, does not
depend on | i, which implies that

D � F � U = cI (2.49)

for some constant c.
Meanwhile,

kGk⌃
nX

r=t+1

X

|S|=r

Y

i2S

k�Eik⌃ (2.50)

nX

r=t+1

✓
n

r

◆
✏r (2.51)

✓

n

t+ 1

◆
(e✏)t+1 = � (2.52)

by lemma 1.2.
Now, E , D, and U are CPTP maps, so kD � E � Uk⌃ = 1. Thus,

1�� kD�E �Uk⌃�kD�G �Uk⌃ kD�F �Uk⌃ = kcIk⌃ = c kD�E �Uk⌃+kD�G �Uk⌃ 1+�. (2.53)

That is, |1� c| �. Therefore,

kD � E � U � Ik⌃ = kD � F � U +D � G � U � Ik⌃ (2.54)

= k(c� 1)I +D � G � Uk⌃ (2.55)

 |c� 1|+ kGk⌃ (2.56)

 2�. (2.57)

2.5 The Quantum Error Correction Conditions

2.5.1 Su�cient Conditions (Non-degenerate Orthogonal Coding)

Recall the argument that we used to show that the nine-qubit code could correct phase errors. Very little
about it was specific to the nine-qubit code. We said that phase errors generated subspaces which were or-
thogonal to the code space and to each other, and that therefore there was a measurement that distinguished

35

them. We can use this same argument to give a general su�cient condition to have a QECC: Suppose that
Q ✓ HN is the code space, and let E(Q) be the subspace formed by acting on Q with E. Then we want
that for any pair of errors E1, E2 2 E , the subspace E1(Q) is orthogonal to E2(Q). Then we will be able to
make a measurement that identifies which subspace we are in and therefore identifies the error.

To be sure we have a QECC, we need a little bit more. After identifying the error, we need to be able to
reverse it. That is only possible if E|Q is a unitary map from Q to E(Q). E|Q is unitary i↵ h |E†E|�i = h |�i
for all | i, |�i 2 Q. Thus, we get the su�cient condition that (Q, E) is a QECC if 8| i, |�i 2 Q, 8Ea, Eb 2 E ,

h |E†

a
Eb|�i = �abh |�i. (2.58)

A code that satisfies this condition could be called a non-degenerate orthogonal code, although the term
“orthogonal code” is not widely used.

2.5.2 The QECC Conditions

However, by looking at the nine-qubit code, we can already see that equation (2.58) is not a necessary
condition. If E1 = Z1 and E2 = Z2, then equation (2.58) fails since E1| i = E2| i. We need to generalize
slightly:

Theorem 2.7 (QECC Conditions). (Q, E) is a QECC i↵ 8| i, |�i 2 Q, 8Ea, Eb 2 E,

h |E†

a
Eb|�i = Cabh |�i. (2.59)

Note that Cab does not depend on | i or |�i.

Proof. (: Recalling theorem 2.4, we might as well pick a useful spanning set for E and restrict attention to
that spanning set. Taking the adjoint of equation (2.59) and putting in |�i = | i, we find that C†

ab
= C⇤

ba
,

i.e., the matrix C is Hermitian. Therefore Cab is diagonalizable, and by choosing an appropriate spanning
set {Fa} for E we can actually diagonalize Cab. (Note that it is not necessarily true that Fa 2 E , but that
is not particularly relevant, it just means that the original set E is smaller than the maximal set of possible
errors the code can correct.)

We have
h |F †

a
Fb|�i = da�abh |�i. (2.60)

This is almost equation (2.58), but the coe�cient da can be di↵erent from 1. (da is an eigenvalue of Cab,
so it must be real.) However, it is still true that the di↵erent subspaces F (Q) are orthogonal to each other,
so we can make a measurement that determines which error Fa we have. It is not true that Fa|Q must be
unitary, but if da is nonzero, Fa|Q can be written as a unitary followed by a uniform rescaling. The decoding
then gives the original state rescaled by da. This is allowed by definition 2.1.

If da is zero, then Fa|Q cannot be inverted, since there is no state left. Formally, we are still OK, since in
definition 2.1, we would just get that c(Fa, | i) = 0. Physically, this means that the error Fa never occurs.
It has probability proportional to h |F †

a
Fa| i, which is 0.

Therefore, equation (2.59) gives su�cient conditions to have a QECC.

): Recall that by proposition 2.2, c(E, | i) and |A(E, | i)i don’t depend on | i. More generally, if we
purify the decoder to V , we get a unitary transformation, which preserves inner products:

h |E†

a
Eb|�i = (h |⌦ h0|)E†

a
V †V Eb(|�i ⌦ |0i) (2.61)

=
p
c(Ea)c(Eb) (h |⌦ hA(Ea)|)(|�i ⌦ |A(Eb)i) (2.62)

=
p
c(Ea)c(Eb) hA(Ea)|A(Eb)ih |�i. (2.63)

This is equation (2.59) with Cab =
p
c(Ea)c(Eb)hA(Ea)|A(Eb)i.

36

2.5.3 Degenerate Codes

The di↵erence between equation (2.58) and equation (2.59) consists in the fact that Cab might not be �ab.
When Cab has maximum rank, this di↵erence has no deep meaning, since we have just made a bad choice
of basis errors. As in the proof of theorem 2.7, we can choose a di↵erent set of errors with the same span to
diagonalize Cab, and we can even rescale to make Cab = �ab.

When Cab has non-maximal rank, we cannot do this. If the error set E is not linearly independent, Cab

cannot have maximal rank, since a linearly dependent set of errors will produce a linearly dependent set of
rows in Cab. The interesting case is when E is linearly independent. It is possible then to still have a QECC
with non-maximal rank for Cab. This is known as a degenerate code.

Definition 2.2. Suppose (U, E) is a QECC and E is linearly independent. Then the code is degenerate if
rank(Cab) < |E|. A code (U, E) (for linearly dependent E) is degenerate if (U, E 0) is degenerate, where E 0 is
a minimal spanning set for E . If a code is not degenerate, it is non-degenerate.

We have already seen an example of a degenerate code: the nine-qubit code. The essence of degeneracy
is that di↵erent errors will produce the same result (or at least linearly dependent results) when acting on
a codeword. In the nine-qubit code, any two Z errors acting on the same set of 3 qubits will produce the
same result. For instance,

Z1|0i = Z2|0i =
1

2
p
2
(|000i � |111i)(|000i+ |111i)(|000i+ |111i) (2.64)

Z1|1i = Z2|1i =
1

2
p
2
(|000i+ |111i)(|000i � |111i)(|000i � |111i). (2.65)

2.5.4 Distance

The most common situation when designing a QECC is to let the set of possible errors be all t-qubit errors.
It is therefore worth examining theorem 2.7 more explicitly for a t-error correcting code. When Ea and Eb

are both weight t errors, then E†
a
Eb is a weight 2t error.

Definition 2.3. Let C ✓ HN be a QECC. The distance of C is the minimum weight d of an error F such
that

h |F |�i 6= c(F)h |�i, (2.66)

where | i and |�i run over all possible pairs of codewords of C.

Note that the notion of distance implies that the Hilbert space is broken up into qubits because weight is
defined in terms of qubits. Naturally, we can easily generalize the distance to work with a code over qudits
of dimension q by defining weight in terms of the number of qudits in the support of an operator.

We get the following corollary of theorem 2.7:

Corollary 2.8. A distance d code corrects b(d� 1)/2c errors.

Inverting this formula, we find that to correct t errors, a code needs distance 2t + 1. If the distance is
even, the extra point is “wasted” for this application, but as we shall see in a moment, the extra point of
distance can be helpful in alternative applications.

The three central properties of a QECC are the size of the logical subspace, the number of physical
qubits, and the distance, so there is a notation encapsulating those properties.

Notation 2.4. A QECC which encodes HK into H2n and has distance d is denoted as an ((n,K, d)) code.
If the physical Hilbert space is n qudits each of dimension q, it is an ((n,K, d))q code. If the distance is
unknown or irrelevant, it is an ((n,K)) code or an ((n,K))q code.

This notation is derived from an analogous one for classical error-correcting codes, which will be intro-
duced in chapter 4. The classical notation uses single parentheses, and the double parenthesis indicates that
we have a quantum error-correcting code.

37

Sometimes when we discuss a code we consider it to have a distance less than its true distance or to
correct fewer errors than the maximum number it can correct. This is just a convenience indicating that we
are ignoring some of the error-correcting capability of the code. However, the true distance of a QECC does
give us the tightest estimate of the number of errors it can correct — that is, the converse of the corollary
also holds. In order to get the definition of distance, we need F to run over all errors of weight < d, but
the QECC conditions applied to a t-error correcting code only gives us equation (2.66) for errors of the form
E†

a
Eb, which does not include all possible weight 2t errors. However, equation (2.66) is linear in F , so it is

su�cient to check the formula for a basis of the set of weight 2t errors, and the set of errors of the form
E†

a
Eb does include such a basis.
By similar reasoning, you get the same notion of distance if you alter the definition of distance to use all

d-qubit errors or just weight d tensor products of I, X, Y , and Z.
When describing a code without an explicit set of correctable errors, I said in the definition that you are

supposed to determine the set of correctable errors by context. Typically, we will choose the error set to be
the set of t-qubit errors, which makes the distance of a code one of its most critical properties. When the
error set is given implicitly, we can define degeneracy in terms of the code’s capability as a t-error correcting
code.

Definition 2.5. Let Q ✓ HN be a QECC with distance d = 2t+1. Then Q is degenerate if it is degenerate
when the set of correctable errors is all t-qubit errors.

If the distance is even, 2t+2, and there is no more structure, it makes the most sense to define degeneracy
by also considering the set of correctable errors to be t-qubit errors, but for certain families of codes (such
as stabilizer codes, discussed in chapter 3), we can do better.

2.5.5 Quantum Error Detection and Erasure Errors

The distance is useful information about a QECC partially because it tells you how many errors the code can
correct, but also because it encapsulates some additional error-correction-related properties of the code. In
particular, the distance also tells you about the code’s ability to detect errors without correcting them and
about the code’s ability to correct erasure errors. These applications can take advantage of even distance
codes, whereas correcting general t-qubit errors only needs odd distance codes.

Definition 2.6. An encoder U (defined as for a QECC) and a set of detectable errors E form a quantum
error-detecting code if they have the following property: Let ⇧ be the projector on the code space. Then
⇧E| i = c(E, | i)| i, for all E 2 E and all codewords | i. The code space is defined as the image of U , as
for a QECC, and we frequently refer to the code space as defining the error-detecting code instead of the
encoder.

Based on the definition of an error-detecting code, the measurement (⇧, I � ⇧) will either project us
back on the original state (with some probability |c(E, | i)|2) or will identify that an error occurred. This
condition can be easily rewritten in similar terms to the QECC conditions:

Theorem 2.9. (U, E) is a quantum error-detecting code i↵

h |E|�i = c(E)h |�i (2.67)

for all codewords | i and |�i and all E 2 E. A code with distance d detects arbitrary (d� 1)-qubit errors.

Based on this theorem, we can understand the distance of the code as the minimum number of qubits
on which we can act to produce an undetectable error, i.e., an error with a component taking a codeword to
a di↵erent codeword. (An error taking a codeword to itself is considered “detectable” by the definition.)

Proof. (: We can write ⇧ =
P

| ii h i| where the sum runs over a basis | ii for the code space Q. We can
then calculate ⇧E| i using equation (2.67) to see that we have a quantum error-detecting code.

38

): Equation (2.67) follows immediately from the definition of a quantum error-detecting code if we can
prove that c(E, | i) does not depend on | i. This can be done by considering a superposition ↵| 1i+�| 2i,
as in proposition 2.2.

The definition of distance then shows that a distance d code detects d� 1 errors.

While I have presented quantum error-correcting codes and quantum error-detecting codes as di↵erent
things, clearly there is a very close connection. A code able to correct t errors will also be able to detect
2t errors, and vice-versa. Detecting errors and correcting errors are really just two di↵erent applications for
the same code, and henceforth, I won’t make a distinction between a code designed to correct errors and one
designed to detect errors. Both will be referred to as QECCs.

There is no unique maximal set of correctable errors for a QECC, but there is a unique maximal set of
detectable errors. The quantum error-correction conditions involve a product of two errors, and there may
be more than one set of errors that will run over all possibilities for the product. However, equation (2.67)
is only linear in the error, so we can define a unique set of detectable errors.

Definition 2.7. Given a subspace Q, its set of detectable errors is

{E s.t. h |E|�i = c(E)h |�i 8| i, |�i 2 Q}. (2.68)

If EC is the set of correctable errors and ED is the set of detectable errors for a code, then the QECC
conditions can be rephrased as E2

C
✓ ED.

A code’s ability to correct erasure errors can be understood just by applying the regular QECC conditions.
The interesting twist in this case is that we can apply the side classical information we have about the location
of the errors to correct twice as many errors:

Theorem 2.10. A QECC with distance d can correct d� 1 erasure errors.

Proof. The best way to think about an erasure-correcting code is as a set of QECCs which all have the same
encoder. Each code is associated with a di↵erent error set, depending on where the erasure errors took place.
Since we don’t know when doing the encoding where the errors are, we have to use the same encoder in all
cases. When decoding, however, we know where the errors are (although not what kind of errors they are),
so we can choose a decoder based on the actual error set — all possible errors on the actual set of qubits
erased.

Therefore we need a single code space that satisfies the QECC conditions for any error set of the form ES ,
which is the set of all possible errors with support on the set S of at most t qubits. But E2

S
= ES since the

product of two errors with support on S still has support on S. For a distance d code, the set of detectable
errors includes all (d � 1)-qubit errors, so when t d � 1, all sets ES are subsets of the set of detectable
errors.

2.5.6 Alternate Forms of the Quantum Error Correction Conditions

There are a number of variants of the QECC conditions which are useful in di↵erent contexts. You have just
seen one relating a correctable set of errors with the set of detectable errors for a code. A few more appear
in the following proposition:

Proposition 2.11. The following are equivalent to the QECC conditions given in theorem 2.7:

1. For all codewords | i, all pairs Ea, Eb 2 E,

h |E†

a
Eb| i = tr(| i h |E†

a
Eb) = Cab. (2.69)

2. If span(E) = E: For any pair of codewords | i, |�i, any error E 2 E,

h |E†E|�i = C(E)h |�i. (2.70)

39

3. If span(E) = E: For any codeword | i, any error E 2 E,

tr(| i h |E†E) = C(E). (2.71)

4. Let {| ii} be a basis for the code space. For any i and j and for any pair Ea, Eb 2 E,

h i|E†

a
Eb| ji = Cab�ij . (2.72)

Proof. The QECC conditions from equation (2.59) immediately imply all four of these variant conditions,
so we only need to show the reverse direction.

To show that the standard QECC conditions follow from the first variant above, pick arbitrary |�1i and
|�2i in the code space and consider | i = ↵|�1i + �|�2i for di↵erent values of ↵ and �. |�1i and |�2i may
not be orthogonal, so we have

1 = |↵|2 + |�|2 + 2Re(↵⇤�h�1|�2i). (2.73)

Now, | i is also in the code space, and

Cab = h |E†

a
Eb| i (2.74)

= |↵|2h�1|E†

a
Eb|�1i+ |�|2h�2|E†

a
Eb|�2i+ ↵⇤�h�1|E†

a
Eb|�2i+ ↵�⇤h�2|E†

a
Eb|�1i (2.75)

= (|↵|2 + |�|2)Cab + (↵⇤�h�1|E†

a
Eb|�2i+ ↵�⇤h�2|E†

a
Eb|�1i). (2.76)

If we first plug in ↵ = � = 1/
p
2(1 + Reh�1|�2i), we find

h�1|E†

a
Eb|�2i+ h�2|E†

a
Eb|�1i = Cab(h�1|�2i+ h�2|�1i). (2.77)

Plugging in ↵ = �i� = 1/
p
2(1� Imh�1|�2i), we get

h�1|E†

a
Eb|�2i � h�2|E†

a
Eb|�1i = Cab(h�1|�2i � h�2|�1i). (2.78)

Putting these two equations together, we find

h�1|E†

a
Eb|�2i = Cabh�1|�2i, (2.79)

as desired.
The second and third variants use a similar argument for Ea and Eb. The proof of the fourth version is

left as an exercise.

Applying a similar argument to definition of the set of detectable errors, we find that an operator E is
detectable i↵ tr(⇢E) does not depend on the codeword ⇢. This has an interesting interpretation: it says
that an operator is detectable if and only if measurement of that operator reveals no information about the
logical state of the code. Certainly, if measuring an operator does reveal information about the logical state,
it will create errors in the encoded state. What is perhaps surprising is that first, that some element of that
error cannot be detected, and second, that revealing encoded information is the only thing that prevents an
error from being detectable.

Another version of this insight appears when we apply the QECC conditions specifically to erasure errors.

Proposition 2.12. Let E be a set of erasure errors, each one corresponding to a set of erased qubits (or
qudits). Then Q corrects E i↵ ⇢S is the same for all logical states | i whenever S 2 E. Here S is a subset
of qubits that can be erased and ⇢S is the encoded state restricted to S.

Note that the proposition just says that Q can correct for erasures on the set S i↵ the codeword on S
has no information about the encoded state. Another interesting feature of this is that the ability to correct
for erasures only refers to single sets, not pairs of sets, whereas more generally the QECC conditions refer to
pairs of errors. This means that any QECC has a unique maximal set of erasure errors that it can correct,
whereas, as I mentioned before, there is not a unique set of general errors that can be corrected — there is
some tradeo↵ between correcting di↵erent kinds of errors.

40

Proof. As in the proof of theorem 2.10, we think of the code as a set of QECCs labelled after-the-fact by the
set of erased qubits. We specialize to a single set S 2 E and want to show that Q corrects erasures on S i↵
⇢S is independent of the encoded state. Once we fix S, correcting erasures on S is equivalent to correcting
arbitrary linear operators supported on S.

Let Ea = |ki hj| and Eb = |ki hi| where i, j, and k are bitstrings labelling basis vectors for the qubits
just in S. We use variant 1 of the QECC conditions from proposition 2.11. Since Ea and Eb are always
supported on S,

tr(| i h |E†

a
Eb) = hi|⇢S |jihk|ki (2.80)

= (⇢S)ij . (2.81)

As we let i and j vary over all possible basis states for S, equation (2.69) says that ⇢S does not depend on
which codeword | i we have, proving the forward direction of the proposition.

The reverse direction follows easily from variant 1 or variant 3 of proposition 2.11: If ⇢S is independent
of | i, then taking the trace of ⇢ with operators on S will also give something independent of | i.

2.6 What Makes a Good QECC?

Before we get any further in our discussion of quantum error-correcting codes, it is worth stopping to think
about what we want out of a code. The first thing that comes to mind is that we want it to be good at
correcting errors, so we want the set E of correctable errors to be large. When we’re dealing with a t-error
channel, we want the distance of the QECC to be large.

In order to correct errors, we have to add some extra qubits. For instance, to make the 9-qubit code, we
had to add 8 extra qubits to encode 1. That 9 : 1 ratio seems pretty bad, so we’d like to find codes that
use less overhead. In other words, we want k, the number of encoded qubits, to be large, and n, the number
of physical qubits, to be small. Certainly we need n > k, but we’d like the rate k/n to be as close to 1 as
possible. It’s not clear a priori whether it’s better to have a code with large k or small k, so we’d like good
examples of codes for any value of k.

In general, if we fix t (the number of errors corrected) and let k get larger, we can make k/n larger too.
However, this is rarely a sensible thing to do. As n gets larger, there are more opportunities for errors, so
the expected number of errors gets larger. A better plan is to fix t/n when we vary n. In that scenario,
there is a definite limit on the rate k/n that can be achieved, and we’d like to get as close to it as possible.
We’d also like to know, theoretically, what the best possible rate is so that we know what to shoot for when
designing codes. A family of codes that has both k/n and t/n as constants when n gets arbitrarily large is
known as a good family of codes, and such code families are known.

The three parameters n, k, and d encapsulate the most interesting properties of a code, but not the only
interesting ones. In part II, we’ll talk about fault-tolerant quantum computation, and we’d like codes that
are good for doing fault-tolerant protocols. We’d like a code that has a nice succinct classical description —
describing even a single state on n qubits could require specifying 2n amplitudes, and to specify a QECC we
might need to list all 2k states in a basis for the code subspace. Preferably, the n and k values of the code
will be in the correct size range for the application we have in mind — we wouldn’t want to have to add lots
of extra logical qubits in order to use an otherwise nice code.

We’d also like the encoding and decoding operations to be implementable with a reasonable number of
quantum gates. Frequently, when there is a short description of the code, the encoder can be performed with
a small circuit. For instance, this is the case for the stabilizer codes which will be introduced in chapter 3.
Ideally, the encoder would run in time O(n) for a code with n physical qubits, and that is harder to achieve.
(An arbitrary stabilizer code takes time ⌦(n2/ log n) to encode.) We might want additional properties, for
instance that the encoding circuit can be implemented easily in a two-dimensional layout.

Decoding is a much more sticky problem. Even codes with a simple description may have a very di�cult
decoder. For the 9-qubit code, we had an error syndrome which identified the error. The error syndrome
is not well-defined for all QECCs, but even if we restrict attention to codes with an error syndrome, we
are faced with the syndrome decoding problem of determining the actual error given the error syndrome.

41

The syndrome decoding problem is NP-hard for most broad classes of codes. (This is true even for classical
error-correcting codes.) When we come up with new codes, we’d like ones for which the decoding problem
is not nearly as hard. Again, the ideal solution would be a code for which the syndrome decoding problem
can be solved in linear time. Such codes exist, but they are somewhat rare.

This is a rather long wish list of properties we’d like out of a code. It’s actually possible to satisfy many
of them at the same time, but we don’t currently know of any QECCs that are perfect in all respects. In
other words, choosing a code is a matter of trade-o↵s. We’ll want to use one code for some purposes and a
di↵erent code for other purposes, depending on which property is most desirable for our current goal.

One thing to bear in mind when looking for a new code is that codes which look di↵erent may have pretty
much the same properties. For instance, if you switch the first and second qubits of a code, you probably
have a di↵erent subspace than you did before, but it doesn’t really deserve the name of a new code. We
capture this intuition with the notion of equivalent codes:

Definition 2.8. Two QECCs C and C 0 on n physical qubits are equivalent if C 0 can be produced from C
by performing some set of single-qubit unitaries and by permuting the qubits.

The notion of equivalence can of course be extended to codes on a qn-dimensional Hilbert space as well.
Two equivalent codes have the same basic properties.

Proposition 2.13. If C and C 0 are equivalent, then C and C 0 have the same number of logical qubits and
the same distance.

It’s not necessarily true that C and C 0 correct exactly the same set of errors, since the local unitaries
and permutations of the qubits can scramble up the errors. However, it’s always true that an equivalence
will map errors into errors of the same weight. It’s also true that a fast decoding procedure for C will give
a fast decoding procedure for C 0, so the codes don’t di↵er in computational complexity either.

When you’re looking for new codes, if you find a code that’s equivalent to a known code, you probably
shouldn’t consider it to be new. It’s not always straightforward to tell if two codes are equivalent, however.
The safest thing is to find codes with new (hopefully better) parameters ((n,K, d)) than preexisting codes.

42

Chapter 3

Will The Real Codeword Please
Stand Still?: Stabilizer Codes

The treatment of QECCs in the last chapter was very general, but a bit unwieldy, particularly when it comes
to finding new codes. We’d like a better method of discussing, manipulating, and finding QECCs, even if
it comes at the cost of restricting somewhat the codes we can talk about. This chapter introduces the class
of stabilizer codes, which have some nice properties and are much more tractable for most purposes than
a general QECC. Stabilizer codes are built around a group of symmetries of the code that can distinguish
between correct codewords and states with errors: The incorrect states will change under the action of the
symmetry, while the correct ones will stay put.

3.1 The 9-Qubit Code Revisited

3.1.1 Error Syndrome Measurement for the 9-Qubit Code

The 9-qubit code is a stabilizer code, so I’ll introduce the basic idea of a stabilizer code with some further
examination of the nine-qubit code. Let’s consider more carefully exactly what we measure when we measure
the error syndrome for the nine qubit code. There are two parts to it: We measure each set of three qubits
to see if one is di↵erent in the standard basis, and then we compare the three phases of the three sets of
three qubits to see if one of the phases is di↵erent from the other two.

Recall that to determine if one of three qubits is di↵erent, we make two measurements. One measurement
determines the parity of the first two qubits, and the other tells us the parity of the second and third qubits.
Let us put that in a more quantum language: Determining the parity of two qubits is the same as measuring
the eigenvalue of Z ⌦ Z on those qubits.

Z ⌦ Z =

0

BB@

+1 0 0 0
0 �1 0 0
0 0 �1 0
0 0 0 +1

1

CCA

00 (even)
01 (odd)
10 (odd)
11 (even)

(3.1)

Eigenvalue +1 corresponds to even parity (syndrome bit 0) and eigenvalue �1 corresponds to odd parity
(syndrome bit 1). Thus, within each set of three, to figure out if one qubit is di↵erent in the standard basis,
we should measure Z ⌦ Z ⌦ I and Z ⌦ I ⌦ Z.

We also need to determine whether two sets of three have the same phase or opposite phase. We’d like to
phrase this as measurement of an eigenvalue. It should probably involve X, since the eigenvalues of X tell
us the phase in |0i± |1i, but we actually have an entangled state. To determine the phase of |000i ± |111i
we should instead measure the eigenvalue of X ⌦X ⌦X. To determine whether two sets of three have the
same phase or opposite phase, we should thus measure the eigenvalue of the tensor product of six X’s on

43

|+i H

Figure 3.1: a) A non-fault-tolerant measurement procedure for X ⌦X ⌦X ⌦X ⌦X ⌦X.

Z Z
Z Z

Z Z
Z Z

Z Z
Z Z

X X X X X X
X X X X X X

Table 3.1: The generators of the stabilizer for the nine-qubit code. Blank spaces represent I operators.

the six relevant qubits. Remember, we want to learn whether the phases are the same or di↵erent without
learning the actual value of each phase.

In case you’re curious as to how one would actually measure this eigenvalue, you can look at figure 3.1.
The question of how to measure the eigenvalue of a tensor product of arbitrary Paulis will be discussed in
detail in section 12.1. Most of the focus of that section is on how to do the measurement fault-tolerantly,
but it starts by discussing how to make a non-fault-tolerant measurement.

3.1.2 The Stabilizer for the 9-Qubit Code

The error syndrome for the 9 qubit code is 8 bits long: 2 bits for each set of three, identifying a bit flip
error within that group of qubits, plus 2 additional bits telling us if and where a phase error has occurred.
Putting together the list of all the operators whose eigenvalues give us those syndrome bits, we get the
list in table 3.1. Each row corresponds to one operator, and the operator in column i indicates how that
operator acts on qubit i. Blank spaces should be interpreted as I. Thus, the first row is the operator
Z ⌦ Z ⌦ I ⌦ I ⌦ I ⌦ I ⌦ I ⌦ I ⌦ I. In other stabilizers, sometimes I will include the Is and sometimes
omit them, whichever is most aesthetically appealing. (OK, maybe clarity plays a role too. And whimsy,
definitely whimsy.)

As I mentioned in section 2.2, the choice of what qubits to measure for the error syndrome is not unique.
For instance, we could have compared the parity of the first and third qubits. The parity would then be given
by the eigenvalue of the operator Z1Z3. Notice that Z1Z3 is the product of the first two rows of table 3.1,
and naturally the eigenvalue of the product will be the product of the eigenvalues. In general, we could
use any product M of the operators listed in the table. The eigenvalue of M will tell us some information
about the errors, but it won’t be new information, since the eigenvalue of M can be determined from the
eigenvalues of the operators used in the product.

Really, the operators we can measure to tell us about the error form a group, known as the stabilizer of
the nine-qubit code. The eight operators listed in table 3.1 are the generators of the stabilizer. Choosing a

44

di↵erent way of defining the error syndrome of the code corresponds to choosing a di↵erent set of generators
of the stabilizer.

Notice that we use tensor products of Zs to identify X (bit flip) errors, and we use tensor products of
Xs to identify Z (phase flip) errors. The pattern here is that the errors anticommute with the stabilizer
elements used to find them, and it is this property that makes stabilizers useful for discussing quantum
error-correcting codes.

3.2 Pauli Group

I warned that you would be sick of the Pauli operators by the end of this book, and this chapter will get you
started. Stabilizer codes are built around the Pauli operators, as you can perhaps see from the example of
the nine-qubit code. It’s therefore worth examining them in more detail.

Definition 3.1. The Pauli group Pn is composed of tensor products of I, X, Y , and Z on n qubits, with
an overall phase of ±1 or ±i.

I will refer to elements of the n-qubit Pauli group as “Pauli operators,” “Pauli errors,” or just “Paulis”
in the future; if I need to make a distinction between P1 and Pn, I will do so explicitly.

The Pauli group, as its name suggests, is a group: It is closed under multiplication since Y = iXZ,
and similarly, the product of any two of X, Y , and Z is equal to the third with an overall factor of ±i. In
addition, X2 = Y 2 = Z2 = I. Any tensor product of Paulis is its own inverse, i.e., it squares to I, and
if there is an overall phase factor of ±i, it instead squares to �I. (I use the one-qubit I and the n-qubit
identity I interchangeably.)

The one-qubit Paulis anticommute with each other

XZ = �ZX (3.2)

Y Z = �ZY (3.3)

XY = �Y X. (3.4)

Of course, I commutes with X, Y , and Z, and any Pauli commutes with itself. More general pairs (P,Q) of
operators from Pn always either commute (PQ = QP) or anticommute (PQ = �QP). The di↵erence from
the single qubit case is that for P1, only trivial pairs commute (when one Pauli is I or both are the same
Pauli), but for n > 1, there are non-trivial commuting pairs. For instance, X ⌦X commutes with Z ⌦ Z.
I will sometimes use the notation [P,Q] = PQ � QP for the commutator and {P,Q} = PQ + QP for the
anticommutator.

Pn has 4n+1 elements since there are 4n n-fold tensor products of I, X, Y , and Z, and 4 overall phases
they could have. However, for many purposes, we can ignore the phase, giving us e↵ectively 4n distinct
Paulis. If I wish to ignore the phase, I will refer to P̂n. Thus, P̂n

⇠= Pn/{I, iI,�I,�iI}. The elements of
P̂n are sets of 4 operators of the form {±P,±iP}, with P some n-qubit tensor product of I, X, Y , and Z.
Each element of P̂n can thus be associated with an unsigned Pauli operator P , and it is more convenient by
far to refer to elements of P̂n in terms of the associated Pauli rather than as a set of Paulis with signs.

Definition 3.2. Let P 2 Pn. Then P̂ 2 P̂n is the element of P̂n corresponding to P . Similarly, if S is a
subset of Pn, then Ŝ is the subset of P̂n consisting of P̂ for all P 2 S.

I have introduced these conventions separating Pn and P̂n in order to be mathematically precise. In
some cases, we need to work with elements or subsets of Pn, and in some cases, to get the details completely
correct, it is better to work with P̂n. However, almost always, the distinction between the two is a small
technical detail. My advice is to ignore the di↵erence between Pn and P̂n unless you get confused.

Any Pauli operator has eigenvalues +1 and �1. Each eigenspace is exactly half the Hilbert space. That
is, the +1 and �1 eigenspaces have dimension 2n�1.

One feature of the Pauli group already mentioned is that Pn spans the space of all n-qubit linear opera-
tions. The weight t Paulis span the set of t-qubit errors. As discussed in corollary 2.5, this property means
that to have a t-error correcting QECC, it su�ces to correct all weight t Pauli operators.

45

This section has only discussed the most basic properties of the Pauli group. It has many more useful
properties, some of which we will encounter in future sections of the book. Don’t be surprised, however, if
someday you are trying to solve a problem and discover a new property of the Paulis that is not mentioned
in this book. In group theory, the Pauli group is an extraspecial group, and it truly deserves that name.

3.3 Stabilizer Codes

3.3.1 Definition and Basic Properties of the Stabilizer

Given a general quantum error-correcting code, we can define its stabilizer in more or less the same way as
we did for the nine-qubit code:

Definition 3.3. Given a QECC T ✓ H2n , the stabilizer S(T) is

S(T) = {M 2 Pn|M | i = | i 8| i 2 T}. (3.5)

In other words, the stabilizer is composed of the Pauli operators for which all codewords are +1 eigen-
states. In principle, one could define a stabilizer consisting of all unitaries which fix every codeword, but it
turns out to be most useful to concentrate on the Pauli operators.

Proposition 3.1. The stabilizer S(T) of a nonempty QECC T has three basic properties:

a) �I /2 S(T)

b) S(T) is a group

c) S(T) is Abelian

The property of being Abelian is the least obvious, but it makes sense since we want a set of operators
which have the codewords as simultaneous eigenstates. Normally, for this to be possible, the operators should
commute; in general, they only need to commute on a subspace, but for Pauli operators this is only possible
if they truly commute.

Proof.

a) �I has no +1 eigenstates, so it cannot be in the stabilizer.

b) If M,N 2 S(T), it is clear that their product is also in S(T): For any | i 2 T ,

MN | i = M | i = | i. (3.6)

c) By the argument for property 2, MN | i = NM | i for any | i 2 T , M,N 2 S(T). Thus, [M,N] annihilates
the codewords. Paulis either commute or anticommute. If M and N anticommute, then [M,N] = 2MN ,
which is again an element of Pn, and therefore has no 0 eigenvalues. Therefore, the only option is that M
and N commute.

It turns out to be most useful, when dealing with stabilizers, to work the other way around. We are given
(or invent) a stabilizer with the properties we desire, and then use it deduce the code.

Definition 3.4. Let S ✓ Pn be an Abelian group, with �I /2 S. Then define the code space corresponding
to S by

T (S) = {| i s.t. M | i = | i 8M 2 S} (3.7)

In general, T ✓ T (S(T)), but when they are actually equal, the code has special properties.

46

X Z Z X I
I X Z Z X
X I X Z Z
Z X I X Z

Table 3.2: The generators for the five-qubit code.

Definition 3.5. If T is a QECC with T = T (S(T)), it is a stabilizer code.

Stabilizer codes are also sometimes known as symplectic codes, additive codes, or GF(4) additive codes
for reasons that will be discussed in section 3.5 and section 5.2.

If we define a code from its stabilizer, then it is always a stabilizer code. In other words, a stabilizer code
is one that could be defined just by giving its stabilizer. This is a consequence of the following proposition:

Proposition 3.2. S = S(T (S)).

I delay the proof until section 3.5 to keep you in suspense. Also, the proof will use a tool I won’t introduce
until then.

When dealing with stabilizer codes, I will frequently refer to the stabilizer S as the code instead of using
the rather unwieldy phrase “stabilizer of the code T (S).” When M 2 S, I will call M a “stabilizer element”
or some variant of that phrase. However, many people seem to find that terminology unwieldy too, and just
call M a “stabilizer.” I do not approve of that usage, but I can’t stop you if you want to say it.

Frequently we will want to pick a particular generating set {M1, . . . ,Mr} for the stabilizer, as we did for
the nine-qubit code. In a minimal generating set no generator is a product of other generators. When we
take a product of generators, the order does not matter since the generators commute. Also, note that since
�I /2 S, all elements of S must square to I, and any power of a generator greater than 1 can be reduced.
Therefore, the elements of the stabilizer are uniquely determined by taking a product

Mi1,...,ir =
Y

j

M
ij

j
, (3.8)

with ij 2 {0, 1}. This implies |S| = 2r.
Naturally, the set of generators is not unique, but when we do have a particular generating set to work

with, I will talk about its elements as “stabilizer generators” or just “generators.” When you describe a
stabilizer, almost always the easiest way to do so is by listing one particular set of generators. The generators
are enough to define the whole stabilizer, and it is much easier to list r generators than to list all 2r elements
of the stabilizer.

The code space of a stabilizer code is defined by requiring that all the eigenvalues be +1, but there
is nothing magical about the +1 eigenstates. After all, a �1 eigenstate of M is a +1 eigenstate of �M ,
which is still in Pn. Given any set of generators {Mi}, we could define the code equally well by taking
the �1 eigenstate, but switching Mi to �Mi. We can’t arbitrarily change the eigenvalues associated with
non-generators because the eigenvalues of the non-generators can be deduced from the eigenvalues of the
generators. The generators are independent of each other, so we can pick their eigenvalues freely, but once
we’ve done that, it defines the eigenvalues of all operators in the stabilizer. For more on this point, see
section 3.5.

I’ll conclude this subsection with a second example QECC to go with the nine-qubit code. This code has
five physical qubits, and is, unsurprisingly, known as the “five-qubit code.” The stabilizer for the five-qubit
code is given in table 3.2. The code is cyclic: if you permute the qubits cyclically, you’ll get the same
stabilizer. You can almost see this from table 3.2. Shifting by one qubit for generators one through three
gives you generators two through four. However, the fifth permutation Z ⌦Z ⌦X ⌦ I ⌦X is not one of the
generators. Nevertheless, it is still in the stabilizer, as the product of all four generators given in the table.
Even though it’s not a generator, it still has the same status in the code as the four operators that are listed.
Indeed, we could have chosen any four of these five operators as a set of generators without changing the
code.

47

3.3.2 Projection Operator on a Stabilizer Code Subspace

In order to convert back from the representation of a stabilizer code in terms of its stabilizer to one as
a subspace of a larger physical Hilbert space, we have definition 3.4, but it is sometimes helpful to have
something more concrete. In particular, we’d like a projection operator that defines the subspace.

The codewords are supposed to be +1 eigenvectors of every element of the stabilizer, although it is
su�cient to check that they are +1 eigenvectors of the stabilizer generators. The projector on the +1
eigenspace of generator Mi is (I +Mi)/2. Therefore, the projector on the code space of S is

⇧S =
1

2r

rY

i=1

(I +Mi), (3.9)

when the stabilizer has r generators. Only states that are codewords — +1 eigenvectors of all generators
— will avoid being annihilated by ⇧S, and any codeword will be left alone by ⇧S, as desired. Note that the
order of the generators in the product does not matter since they all commute.

We can rewrite the projector ⇧S in an interesting way by multiplying out the product. We get a sum
of terms, each of which consists of a distinct product of the generators {Mi}. Based on equation (3.8), the
products of the generators give us all elements of the stabilizer:

⇧S =
1

2r

X

M2S

M. (3.10)

We can come up with actual codewords for the code by applying ⇧S to states in the physical Hilbert
space and renormalizing. We might get 0, if the state we started with is orthogonal to the code space, but
frequently we’ll get a real codeword. For instance, for the five-qubit code, we can apply the projector to
|00000i and |11111i to get two orthogonal codewords which can serve as a basis for the code space:

|0i = |00000i+ |10010i+ |01001i � |11011i+ |10100i � |00110i � |11101i � |01111i
+ |01010i � |11000i � |00011i � |10001i � |11110i � |01100i � |10111i+ |00101i

(3.11)

|1i = |11111i+ |01101i+ |10110i � |00100i+ |01011i � |11001i � |00010i � |10000i
+ |10101i � |00111i � |11100i � |01110i � |00001i � |10011i � |01000i+ |11010i.

(3.12)

I got these codewords by working my way through all 16 elements of the stabilizer for the five-qubit code
(products of the generators given in table 3.2) and applying them to the starting states. You need to be
careful of the signs involved, but otherwise the process is straightforward if tedious.

3.3.3 Distance and Size of a Stabilizer Code

When a stabilizer code is given either as a subspace or via the stabilizer, the number of physical qubits n is
immediately obvious. The other two central properties (number k of logical qubits and distance d) are not
so obvious, but can be deduced directly from the stabilizer.

Proposition 3.3. If the stabilizer S on n physical qubits has |S| = 2r (i.e., S has r generators), then T (S)
has dimension 2n�r. That is, there are k = n� r logical qubits.

Intuitively the result is easy to understand. The first generator of the stabilizer divides the Hilbert
space into a +1 eigenspace and a �1 eigenspace of equal size. The codewords live in the +1 eigenspace.
Each additional generator divides the subspace available for codewords in half again, so the total available
dimension is 2n�r. Non-generators do not divide the space since their eigenvalues can be derived by looking
at the eigenvalues of the generators. This argument is not a proof, since we would need to show that the
additional generators divide not just the full Hilbert space in half, but also all the smaller subspaces defined
by the earlier generators. The actual proof is straightforward, but less intuitive:

48

Proof. The dimension of T (S) is equal to the trace of ⇧S, the projection operator onto T (S). Now,

tr⇧S =
1

2r

X

M2S

trM. (3.13)

However, trP = 0 for all Paulis P except for the identity. Thus,

tr⇧S =
tr I

2r
=

2n

2r
. (3.14)

You can check the nine-qubit code in this formula: 9 physical qubits, 8 stabilizer generators, and 1
encoded qubit. For the five-qubit code, we have four generators, so again there should be 1 encoded qubit,
with the basis codewords we saw above.

There’s one special case which is not, strictly speaking, a QECC, but is interesting nonetheless. Yes, it’s
true, there are some things which are interesting other than quantum error correction. When the stabilizer
has n generators on n qubits, proposition 3.3 would tell us we have 0 encoded qubits, which is a Hilbert
space of dimension 1. That is, it is a single state, up to normalization.

Definition 3.6. A stabilizer state is the code space of a stabilizer with n generators on n qubits.

Since r = n is the maximum number of generators you can have, a stabilizer state is an extreme limit
of a QECC. Some constructions of QECCs will alter the number of encoded qubits from another code, and
sometimes a stabilizer state can be the starting or ending point of such a construction. Also, stabilizer states
are fairly common in the theory of quantum information, even discounting states arising from quantum error
correction. For instance, the GHZ state |000i+ |111i and the Bell states |00i±|11i, |01i±|10i are stabilizer
states.

To understand how to deduce the distance of a stabilizer code, let us go back to the nine-qubit code and
recall how it handled errors. The generators of the stabilizer were used to give us bits of the error syndrome.
In particular, some generators were able to signal the presence of certain errors while missing other errors,
but by looking at the full set of generators, we were able to identify all of the single-qubit errors.

I mentioned that the property responsible for determining whether a generator M is useful for an error
E is anticommutation. Let us see how this works. Suppose M 2 S and E 2 Pn anticommutes with M . Then
for any | i 2 T (S),

M(E| i) = �EM | i = �E| i. (3.15)

| i was a +1 eigenvector of M — that is the definition of the code space — but E| i is a �1 eigenvector.
Conversely, if E commutes with M then

M(E| i) = EM | i = E| i. (3.16)

One advantage to dealing with the Pauli group is that these are the only choices. Either M and E commute
or they anticommute. If we have an error that commutes with M , M retains a +1 eigenvalue, whereas if the
error anticommutes with M , M ’s eigenvalue becomes �1, signaling that an error has occurred.

Definition 3.7. The normalizer N(S) of the stabilizer S is

N(S) = {N 2 Pn|NM = MN 8M 2 S}. (3.17)

If you know some group theory, you might recognize this as the definition of the centralizer of S (the set
of things that commute with all elements of S) rather than the normalizer (the set of things that preserve S
under conjugation), but because Paulis either commute or anticommute and �I 62 S, they are the same thing
for a stabilizer. I am choosing to call it the normalizer rather than the centralizer because the normalizer
relates to logical operations, and this is an important function of N(S), as we shall see shortly in section 3.4.2.

49

Since the stabilizer is Abelian, S ✓ N(S) always. Indeed, N(S) also contains �S and ±iS. Since we worry
about eigenvectors of S, changing the sign of an operator in the stabilizer is important, but N(S) is about
errors, and global phase no longer matters. Therefore, we will usually want to work with N̂(S).

The normalizer tells us which errors can be detected by the stabilizer code. If a Pauli E is outside the
normalizer N(S), then P | i has an eigenvalue �1 for some M 2 S, and thus is detected by measuring the
eigenvalues of the stabilizer elements. Note that this is true for any codeword | i. Also note that it is
su�cient to measure the generators of the stabilizer: If N commutes with M1 and M2, it also commutes
with M1M2. Thus, if N commutes with all generators of S, then N 2 N(S).

When E 2 N(S), then E| i has eigenvalue +1 for all M 2 S, and therefore E| i 2 T (S) for codewords
| i. You might think that that means it is an undetectable error, but there is actually another class of Paulis
that is “detectable” by definition 2.7. If E 2 S, then, while it’s true that E| i 2 T (S) for any codeword | i,
it’s also true that E| i = | i, so E is not actually an “error”: it acts like the identity on the code space,
leaving codewords unchanged. Ignoring global phases, we can say the same if Ê 2 Ŝ.

Putting this together, we get a characterization of the detectable errors for a stabilizer code.

Theorem 3.4. The set of undetectable errors for a stabilizer code S is N̂(S) \ Ŝ. The distance of S is
min{wtE|Ê 2 N̂(S) \ Ŝ}.

The slanty line is a “set minus” operation. That is, N̂(S) \ Ŝ consists of those elements of N̂(S) that are
not in Ŝ.

Proof. We can prove the first statement directly from the definition of the set of detectable errors (defini-
tion 2.7). The second statement will then follow immediately from the definition of distance. We need to
consider three cases for E. In cases 1 and 2, | i and |�i are arbitrary codewords.

1. Case 1: Ê 2 Ŝ. Then for some choice of phase, E 2 S and E|�i = |�i, so

h |E|�i = h |�i, (3.18)

and c(E) = 1. Ê is detectable.

2. Case 2: Ê /2 ˆN(S). Then 9M 2 S such that {M,E} = 0 (for any choice of phase of E), so M(E|�i) =
�E|�i, as per equation (3.15). Then

h |E|�i = h |MEM |�i = �h |E|�i = 0, (3.19)

since M2 = I for stabilizer elements. Thus c(E) = 0 and E is detectable.

3. Case 3: Ê 2 N̂(S) \ Ŝ. Since E /2 S, 9 codeword |�i such that E|�i 6= |�i. Let | i = E|�i. Since
E 2 N(S), | i is also a codeword. However,

h |E|�i = 1 =
1

h |�i h |�i, (3.20)

whereas
h�|E|�i = h�| i = (h�| i)h�|�i. (3.21)

Comparing equations (3.20) and (3.21) to definition 2.7 tells us that Ê is not detectable unless |h�| i| =
1, meaning E|�i = ei✓|�i. Furthermore, by equation (3.21), Ê is undetectable unless ✓ is the same for
all |�i. But that is not possible, since that would imply Ê 2 Ŝ.

The key point here is that when E 2 N̂(S) \ Ŝ, then E maps some codewords to di↵erent codewords.
That’s the essence of an undetectable error, because the code has no way of knowing if a codeword is the
original encoding of the state or the result of the action of the error on a di↵erent codeword.

Moving now to correcting errors, we find

50

X X X X
Z Z Z Z

Table 3.3: The stabilizer for the four-qubit code.

Theorem 3.5. The stabilizer code S corrects a set of errors E ✓ Pn i↵ Ê†F̂ /2 N̂(S) \ Ŝ for all E,F 2 E.

The theorem follows immediately from theorem 3.4 by comparing definition 2.7 with theorem 2.7. Recall
that by the linearity of QECCs, and particularly corollary 2.5, it su�ces to consider Pauli errors to understand
the error-correcting capabilities of the code, at least when we are interested in correcting t-qubit errors.

For stabilizer codes, we have a slightly di↵erent notation than the more general ((n,K, d)) notation that
applies to arbitrary QECCs. Since the encoded subspace has a dimension that’s always a power of 2, we
write the code in terms of the number of encoded qubits k rather than the dimension K = 2k of the logical
Hilbert space. We also use square brackets to indicate that we are dealing with a stabilizer code.

Notation 3.8. A stabilizer code with n physical qubits, k logical qubits, and distance d is denoted as an
[[n, k, d]] code. If the distance is unknown or irrelevant, it is an [[n, k]] code.

We know that the nine-qubit code corrects a single-qubit error, so it must have distance at least 3. In
fact, there are some 3-qubit Paulis (such as X1X2X3) in N̂(S) \ Ŝ for the code, so the distance is exactly 3.
Thus, the nine-qubit code is a [[9, 1, 3]] code. The five-qubit code also turns out to have distance 3, so it is a
[[5, 1, 3]] code. Note that these codes are also ((9, 2, 3)) and ((5, 2, 3)) codes, but the more specific notation
for a stabilizer code is generally used for them. As it happens, the five-qubit code is the smallest distance 3
code. You’ll see the proof of that, as well as other techniques for proving limits on QECCs, in chapter 7.

You might wonder about distance 2 codes, since all the QECCs we have seen so far have distance 3.
Distance 2 codes tend to be much simpler, but they can still be interesting. After all, a distance 2 code can
detect one error or correct one erasure. The smallest distance 2 code is a [[4, 2, 2]] code given in table 3.3.
It is not hard to see that any one-qubit Pauli will anticommute with one or both of the two generators, but
there are some two-qubit Paulis (e.g., X ⌦X ⌦ I ⌦ I) that commute with both. Thus, the code has distance
2.

3.3.4 Degeneracy and Stabilizer Codes

When is a stabilizer code degenerate? In the proof of theorem 3.4, we implicitly calculated the matrix Cab.
In particular, we found that Cab = 0 if E†F /2 N(S) and Cab = 1 if E†F 2 S. Any set of Paulis is linearly
independent, so we just need to check if the resulting Cab has maximum rank.

If E†

1
E2 2 S, then E†

1
F 2 S, E†

2
F 2 S, so in this case the rows (or columns) of Cab associated with E1

and E2 are the same. When E†

1
E2 /2 S, then only one (or neither) of E†

1
F and E†

2
F can be in S, so in this

case the rows associated with E1 and E2 cannot have 1s in the same column. Thus, we get the following
proposition:

Proposition 3.6. A stabilizer code S is degenerate for the error set E i↵ 9E1, E2 2 E with E†

1
E2 2 S.

As with general QECCs, we can define degeneracy as a property of the code subspace without referring
to specific set of errors by considering the distance. In the case of stabilizer codes, motivated by the above
analysis, we can also sensibly define degeneracy when the code is used for error detection rather than error
correction.

Definition 3.9. A stabilizer code S with distance d is degenerate if 9M 2 S, M 6= I, with wtM < d.

Note that this is slightly more general than the generic notion of a degenerate code. A stabilizer code
with distance d = 2t+2 can be degenerate if S contains any elements of weight 2t+1, but degeneracy wasn’t
defined for general non-stabilizer QECCs of even distance.

51

Looking once more at the stabilizer of the nine-qubit code (table 3.1), it is immediately obvious that it
is a degenerate code. There are many generators of weight 2 and the code has distance 3. However, it is
not always obvious from looking at the generators whether a stabilizer code is degenerate or not. It may be
that the set of generators given to you all have high weight, but there is some product of the generators that
does not. The five-qubit code is non-degenerate because all of the operators in the stabilizer have weight 4,
but to see that you need to do some work.

3.4 Cosets and Error Syndromes

3.4.1 The Error Syndrome and the Stabilizer

For the nine-qubit code, we figured out the stabilizer by thinking about what we wanted to measure for the
error syndrome. Each generator corresponded to a bit of the error syndrome. In fact, this is completely
general:

Definition 3.10. Suppose S is a stabilizer code with generators M1, . . . ,Mr and | i is an eigenvector (not
necessarily with eigenvalue +1) of all N 2 S. The error syndrome of | i is an r-bit string with ith bit 0 if | i
is a +1 eigenvector of Mi and ith bit 1 if | i is a �1 eigenvector of Mi. The error syndrome �(E) : Pn ! Zr

2

is the error syndrome of E|�i for any codeword |�i. When the stabilizer associated with a syndrome is in
doubt, we will write �S(E).

If P,Q 2 Pn, then c(P,Q) = 0 if P and Q commute and c(P,Q) = 1 if they anticommute. (c(P,Q) :
Pn ⇥ Pn ! Z2.)

For a Pauli, bit i of the error syndrome is the same as c(E,Mi). Note that the syndrome of E will be
the same no matter what codeword | i we choose to evaluate. This follows from equations (3.15) and (3.16)
and means that Pauli errors map the code space, which is a subspace with +1 eigenvalue for all stabilizer
elements, to a subspace that has a di↵erent set of eigenvalues, but for which each eigenvalue is still shared
for all states in the subspace.

The subspaces derived this way are also error-correcting codes, but they are associated with di↵erent
eigenvalues of the stabilizer. We can reinterpret them as traditional stabilizer codes (with all +1 eigenvalues)
by replacing Mi with �Mi whenever the ith syndrome bit is 1. Note that there are 2r possible values of the
error syndrome, and each subspace is isomorphic to the code space, which has dimension 2k. When there
are n physical qubits, r = n� k. Also, all the subspaces of di↵erent error syndromes are orthogonal to each
other, since they have di↵erent eigenvalues. Thus, the full Hilbert space H2n decomposes as a direct sum of
the 2n�k subspaces associated with di↵erent syndromes.

Proposition 3.7. The c(P,Q) and �(E) functions have the following properties. In all cases, + refers to
binary addition.

a) c(P1P2, Q) = c(P1, Q) + c(P2, Q).

b) c(P,Q) = c(Q,P).

c) �(EF) = �(E) + �(F).

These are straightforward to verify.
The various error syndromes are associated with di↵erent cosets of the normalizer in Pn.

Proposition 3.8. Let E,F 2 Pn, and S be a stabilizer. Then F and E are in the same coset of N(S) i↵ E
and F have the same error syndrome.

Proof.
): If E and F are in the same coset, then F = EN , with N 2 N(S). Let M 2 S. Then c(F,M) =

c(E,M) + c(N,M). But N 2 N(S), so c(N,M) = 0. Therefore the error syndromes of E and F are the
same.

52

syndrome 00
no correction

syndrome 01
correct as E

syndrome 10
correct as F

syndrome 11
correct as G

S X

Z Y

ES EX

EZ EY

FS FX

FZ FY

GS GX

GZ GY

Figure 3.2: Cosets of the normalizer and stabilizer in the Pauli group. The errors E, F , and G are chosen
as canonical errors for the syndromes 01, 10, and 11.

(: The argument works the other way too: Let N = E†F . If the error syndromes of E and F are the
same, then c(N,M) = 0 for all M 2 S. Therefore, N 2 N(S).

In much the same way as the full Hilbert space can be written as a direct sum of subspaces associated
to di↵erent syndromes, the whole Pauli group can be partitioned into cosets of N(S), each associated with a
di↵erent syndrome. All the cosets are the same size and there are 2r of them. As a consequence, we know
the size of the normalizer:

Proposition 3.9. |N(S)| = 4 · 2n+k when S has n physical qubits and k logical qubits.

3.4.2 Cosets inside the Normalizer

We can similarly analyze the cosets of S in N(S).

Proposition 3.10. Let N1, N2 2 N(S). Then N1 and N2 are in the same coset of S i↵ N1| i = N2| i for
all codewords | i.

Proof. N1| i = N2| i i↵ | i is a +1 eigenstate of M = N†

1
N2. This is true for all codewords | i i↵ M 2 S.

However, N1 and N2 are in the same coset of S i↵ N2 = N1M with M 2 S.

Recall that when N 2 N(S), then N | i is a codeword for any input codeword | i. Thus, N is a logical
operation: it always maps codewords to (possibly di↵erent) codewords. Since the di↵erent representatives of
a coset of S act the same way on codewords, they are all di↵erent realizations of the same logical operation.
Thus, the set N(S)/S is of particular interest, since it consists of the distinct logical operations performed
by the normalizer. (S is a normal subgroup of N(S) by definition, so we can take this quotient without any
di�culties.)

Theorem 3.11. Let S be a stabilizer with n physical qubits and k logical qubits. Then N(S)/S ⇠= Pk.

The quotient group N(S)/S can be taken to be the logical Pauli group, performing Paulis on the encoded
qubits. The proof of theorem 3.11 will be in section 3.5.

We can also look at cosets of S in the full Pauli group Pn, as in figure 3.2. Each coset of N(S) breaks
up into cosets of S, so we can associate each coset of S in Pn with an error syndrome, inherited from the
coset of N(S) which it sits within. If we pick a particular representative E of the coset of N(S), then we can
again identify the coset of S with a logical operation P 2 N(S)/S; the interpretation of the coset is then a
combination of the logical operation P and the error E.

When we perform decoding on a stabilizer code, we do just this. For each error syndrome s, we assign
a particular error Es with �(Es) = s. If our syndrome measurement gives s, we assume the error actually

53

X Z Z X I
I X Z Z X
X I X Z Z
Z X I X Z

X X X X X X
Z Z Z Z Z Z

Table 3.4: The generators for the five-qubit code supplemented by representatives for logical Paulis.

X X X X
Z Z Z Z

X1 X X I I
X2 X I X I
Z1 I Z I Z
Z2 I I Z Z

Table 3.5: The stabilizer for the four-qubit code supplemented by representatives for logical Paulis.

was Es and correct that. If the error was actually some E0 with the same syndrome, we hope that Es and
E0 are in the same coset of S. If not, there has been a logical Pauli error, the one associated with the actual
coset of S in which E0 lies.

Theorem 3.12. If S is a non-degenerate stabilizer code, the error syndromes of all errors in the correctable
error set E are distinct. If S is a degenerate code, E and F have the same error syndrome i↵ Ê†F̂ 2 Ŝ.

Proof. By proposition 3.8, two errors E 6= F 2 E have the same error syndrome i↵ they are in the same
coset of N(S), meaning E†F 2 N(S). But both errors are correctable, and by theorem 3.5, Ê†F̂ 62 N̂(S) \ Ŝ,
so E†F 2 N(S) i↵ Ê†F̂ 2 Ŝ. Thus, the error syndromes of two correctable errors E and F are the same i↵
Ê†F̂ 2 Ŝ. If this ever occurs, the code is degenerate.

Applying this theorem is one way to see that the five-qubit code has distance 3 and is non-degenerate.
There are 15 possible one-qubit errors (X, Y , Z on each of five qubits), plus the identity. There are 4
generators, so there are 16 error syndromes. If you list the syndromes of the 16 errors, you’ll find that each
one is unique. There are no syndromes left over, so the five-qubit code is known as a perfect code.

It is frequently helpful to also pick representatives of the cosets of S in the normalizer. These repre-
sentatives don’t have an interpretation in error correction, but they do give us concrete realizations of the
logical Pauli group, which is helpful in fault-tolerant computation. For now, they are simply convenient
computational tools. We don’t actually need to pick representatives for every coset of S. Since N(S)/S has
a group structure itself, it is su�cient to pick representatives of generators of N(S)/S and let the generators
of other cosets be determined by multiplication. In other words, we can pick representatives for Xi and Zi

for i = 1, . . . , k. (The subscript i here means the operator acts on the ith logical qubit, not the ith physical
qubit.) I have done this for the five-qubit code and the four-qubit code in tables 3.4 and 3.5. Then, for
instance, you can get Y for the five qubit code to be iXZ = Y ⌦ Y ⌦ Y ⌦ Y ⌦ Y .

You need to be careful when assigning cosets to elements of the logical Pauli group. Remember, N(S)/S ⇠=
Pk, and we’d like to realize this through a choice of representatives for the generating cosets. This means
that the commutation and anticommutation relationships of the logical Paulis must be realized through the
coset representatives. For instance, the coset representatives for Xi and Zi must anticommute, while the
coset representative of Xi must commute with the representatives for Xj or Zj (j 6= i).

We could in principle do the same thing for Pn/N(S), choosing representative errors only for the basis
error syndromes and deducing the other errors by multiplication. However, in most cases, this is not a good
thing to do. If our goal is to correct t errors for the maximum possible t, what we’d like to do instead is

54

choose the lowest weight error in each coset of N(S) as its representative. If we rely on multiplication to tell
us the coset representatives, we’ll frequently get errors of higher weight than necessary, and then there will
be some lower weight errors that won’t get corrected properly.

3.4.3 Maximum Likelihood Decoding

I’d like to depart briefly from the convention of most of this chapter, for which we had some fixed set E of
errors that we’d like to correct, and we won’t settle for anything less than correcting all of them. For the
purposes of this subsection, assume we instead have some n-qubit Pauli channel, with P 2 Pn occurring
with probability pP .

Given a stabilizer code S, we’d like to find a decoding procedure which minimizes the probability of error
when the code goes through a Pauli channel. As discussed above, a decoding procedure can be understood
as assigning to each error syndrome s a Pauli Qs. When we measure s, we assume the actual error was Qs

and so perform the correction by inverting that error. If the actual error was something else, we may end
up with the wrong state. In particular, if the true error P was in a di↵erent coset of S than Qs was, we’ll
end up with some logical Pauli operation.

Thus, we can calculate the probability of logical error by summing over the cosets of S and N(S).

Proposition 3.13. Let Cs be the coset of N̂(S) with error syndrome s. Q̂sŜ is the coset of Ŝ containing the
canonical error Q̂s with syndrome s, so Q̂sŜ ✓ Cs.

a) The probability of error syndrome s (regardless of whether we correctly identify the error) is

ps =
X

P̂2Cs

pP . (3.22)

b) The probability of having syndrome s and no logical error (i.e., error correction is successful) is

ps,OK =
X

P̂2Q̂sŜ

pP . (3.23)

c) The total probability of successfully decoding the state is

pOK =
X

s

X

P̂2Q̂sŜ

pP . (3.24)

There is no interaction between the di↵erent error syndromes. If we change Qs for one value of s, the
only change to pOK comes through the change to ps,OK. We can therefore treat each syndrome separately
to maximize ps,OK. It doesn’t matter which element of the coset QsS we choose, only which coset we choose
within Cs.

In order to maximize the probability of successfully decoding, for each syndrome s, we should choose the
coset QsS which maximizes ps,OK. As given by equation (3.23), that just means we look at each coset and
add up the probability of all Paulis in the coset. Then we choose the coset with the highest value to be the
representative coset for s.

The maximum likelihood decoder should be contrasted with the decoder that optimizes the distance, for
which we choose the coset containing the lowest-weight Pauli. If we have an independent Pauli channel, the
two procedures frequently, but not always, give the same answer: When the probability of error per qubit is
small, a specific low-weight error will have higher probability than a specific high-weight error. However, a
coset which contains one low-weight error and a bunch of high-weight errors may be less likely than a coset
which contains a large number of medium-weight errors.

Getting the exactly optimal decoder, in the sense of always picking the most likely coset, is usually a
computationally challenging task. Often, therefore, we are willing to settle for a good approximate decoder
that gets pOK to be close to the optimal value but with a much smaller computational cost.

55

In the Pauli group Binary symplectic representation
P 2 Pn vP = (xP |zP) 2 Zn

2
⇥ Zn

2

Multiplication Addition
c(P,Q) vP � vQ
Phase No equivalent
Stabilizer S Weakly self-dual subspace S
Normalizer N(S) Dual subspace S? (under �)
Minimal set of generators for S Basis for S

Table 3.6: Equivalence between the Pauli group and its binary symplectic representation.

3.5 Binary Symplectic Representation

3.5.1 The Symplectic Representation of Paulis

One of the most useful techniques when dealing with stabilizer codes is to ignore the phases of Paulis and
work with P̂n instead of Pn. We lose a couple of things by doing this. One is the ability to define the code
space, which seems like a serious loss, but isn’t really — as discussed above, the other eigenspaces of the
stabilizer have the same error correction properties as the code space. The other missing thing is the ability
to tell whether Paulis commute or anticommute, since P̂n is an Abelian group. This is a much greater loss,
so we’ll need to find a substitute.

The structure of P̂n is very straightforward. There are 4n elements, and all pairs commute under multi-
plication. Therefore, P̂n

⇠= Z2n
2
. The group operation for Z2n

2
is usually written as addition. Conventionally,

we choose to represent elements of P̂n as two n-bit binary vectors, one representing the “X” component and
one representing the “Z” component.

Definition 3.11. The binary symplectic representation of P̂n is an isomorphism between P̂n and Zn

2
⇥ Zn

2
:

P $ vP = (xP |zP). The ith component of xP is 0 if P acts on qubit i as I or Z and 1 if P acts on qubit i
as X or Y . The ith component of zP is 0 if P acts on qubit i as I or X and 1 if P acts on qubit i as Y or
Z. That is,

I
X
Y
Z

 !

(0|0)
(1|0)
(1|1)
(0|1)

(3.25)

For instance, X ⌦ I ⌦ Y $ (1 0 1|0 0 1). The “symplectic” refers to the substitute for commutativ-
ity/anticommutativity:

Definition 3.12. The symplectic form (or symplectic product) on Zn

2
⇥Zn

2
is (x1|z1)�(x2|z2) = x1·z2+x2·z1,

where the dot product is the usual scalar product in the vector space Zn

2
and addition is modulo 2.

Proposition 3.14. vP � vQ = c(P,Q) for P,Q 2 Pn.

Proof. This can be checked exhaustively for a single qubit. For more than one qubit, note that both � and
c(·, ·) are equal to the parity of their single-qubit results. Therefore, since they are equal for single qubits,
they are also equal for n qubits.

Combining the symplectic form with the binary symplectic representation recovers the primary structure
of the Pauli group. We can switch back and forth between the two representations to use whichever one is
the most convenient at the moment. The conversion process is summarized in table 3.6. The one thing that
is lost in the transition is the phase of a Pauli, so you must be careful whenever dealing with something that
depends on that.

Some of the conversions need a little more explanation. There were three conditions for S to be a
stabilizer: that �I /2 S, that S is a group, and that S is Abelian. Since phase is lost when converting to

56

X
Z

0

BBBBBB@

1 0 0 1 0
0 1 0 0 1
1 0 1 0 0
0 1 0 1 0
1 1 1 1 1
0 0 0 0 0

������������

0 1 1 0 0
0 0 1 1 0
0 0 0 1 1
1 0 0 0 1
0 0 0 0 0
1 1 1 1 1

1

CCCCCCA

Table 3.7: The binary symplectic representation of the stabilizer and logical Pauli operators for the five-qubit
code.

the binary symplectic representation, the first condition is irrelevant. The second condition means that S
becomes a linear subspace in Zn

2
⇥Zn

2
, and the third means that v�w = 0 8v, w 2 S. This analysis and the

conversion of the normalizer prompts the following definition:

Definition 3.13. Let V be a linear subspace of Zn

2
⇥ Zn

2
. The dual of V (with respect to �) is V ? = {w 2

Zn

2
⇥ Zn

2
|w � v = 0 8v 2 V }. A subspace is self-dual if V ? = V . A subspace is weakly self-dual if V ✓ V ?.

Table 3.7 gives the five-qubit code in binary symplectic representation, including the logical X and Z
operators.

Conversion can go the other way too. For instance, it is convenient to define a notion of a set of Paulis
being independent based on the standard definition for binary vector spaces:

Definition 3.14. A set of Paulis {P1, . . . , Pm} is independent i↵ the vectors {vP1 , . . . , vPm} are linearly
independent.

A set of Paulis is independent unless one of them is a product of others; this is equivalent to saying that
a set of 2n-bit binary vectors is independent unless one of them is a sum of others. Since the binary vector
space is 2n-dimensional, the maximum number of independent Paulis is 2n, which is equal to the number of
generators of the Pauli group.

3.5.2 Linear Algebra Lemma

The power of the binary symplectic representation is that we can use standard results from linear algebra to
prove a number of properties of the Pauli group and stabilizers. In particular, we have the following lemma:

Lemma 3.15. Let {P1, . . . , Pm} be an independent set of Paulis on n qubits, and let s be an m-bit vector
with components si. Then 9Q 2 Pn with c(Pi, Q) = si. In fact, there are 22n�m such Paulis.

Proof. Converting to the binary symplectic representation gives us m linearly independent vectors vi, and
we wish to find vector w such that vi � w = si. Each of these conditions is a linear equation, and since
the vectors vi are independent, the system of linear equations is non-singular. There are m equations in a
2n-dimensional vector space, so the space of solutions has dimension 2n�m. It is a binary vector space, so
that corresponds to 22n�m solutions.

An important consequence of the lemma is that it tells us about the decomposition of the full physical
Hilbert space into subspaces associated with the di↵erent error syndromes. I’ve already discussed this
decomposition, but the missing piece is given by the following corollary of lemma 3.15:

Proposition 3.16. Let S be a stabilizer with generators {Mi}. Then for any error syndrome s, 9P 2 Pn

with �(P) = s.

That is, not only is every Pauli outside N(S) associated with an error syndrome, but every possible error
syndrome is associated with some Pauli.

57

3.5.3 Consequences of the Lemma

Now it’s time for some of the proofs I owe you. There is proposition 3.2, which claims S = S(T (S)), and
theorem 3.11, which says N(S)/S ⇠= Pk.

First, here is the proof that N(S)/S ⇠= Pk:

Proof of theorem 3.11. The most straightforward way to show this is by sequentially picking coset representa-
tives for the cosets corresponding to Xi and Zi. The Pauli group Pk is determined, like any finitely-presented
group, by its generators and relations between them. In the case of the Pauli group, the relations are

c(Xi, Xj) = 0 (3.26)

c(Zi, Zj) = 0 (3.27)

c(Xi, Zj) = �ij . (3.28)

It is su�cient to consider only the generating cosets, since we can let the representatives of a product of
cosets be the product of the representatives, as discussed in section 3.4.2. Provided we can choose Xi and
Zi with the correct commutation relations, that gives us an injective map of Pk into N(S)/S. We know that
|N(S)| = 4 · 2n+k = |S||Pk|, so an injection has to be isomorphism.

Suppose we’ve chosen some independent set of Xi’s and Zi’s with the correct commutation relations,
and we wish to choose one more. The new logical Pauli must be in N(S), so in particular, it must commute
with all generators of the stabilizer. Second, it has a defined commutation relation with the already chosen
logical Paulis. By lemma 3.15, there exists a Pauli that satisfies all of these constraints.

The only remaining thing to check is that the new logical Pauli can be chosen to be independent of
the prior ones. To simplify the analysis, let us first pick all the Xi’s, then the Zi’s. When we are picking
Zj , it satisfies di↵erent commutation relations than all previously selected logical Paulis. In particular, Zj

anticommutes with Xj , unlike all the previous logical Paulis and all the stabilizer generators. Thus, Zj must
be independent.

When we pick Xj , this argument doesn’t apply, since the new one will commute with all stabilizer
generators and all previous logical Paulis. However, there are n� k stabilizer generators and at most k � 1
logical Paulis already chosen, for a total of at most n� 1 constraints. By lemma 3.15, there are thus at least
2n+1 possible solutions. The group generated by the stabilizer and previous logical Paulis contains only 2n�1

operators, so there are possible choices for Xj that are independent of the previous choices.

Finally, we can prove proposition 3.2, showing that S = S(T (S)):

Proof of proposition 3.2. If M 2 S, then certainly M | i = | i for any | i 2 T (S), so S ✓ S(T (S)). We need
to show that if N /2 S, then N /2 S(T (S)). If N /2 N(S) then N | i (for any codeword | i) has a di↵erent
eigenvalue for some M 2 S, and is therefore orthogonal to the code space, which in turn means N /2 S(T (S)).

If S has n generators, that is all we need. Otherwise, if r < n, we still need to show that if N 2 N(S) \ S,
then 9| i 2 T (S) such that N | i 6= | i. By lemma 3.15, we can choose aM 2 N(S)\S such that {M,N} = 0.
Consider the modified stabilizer S0 formed by adding M to S as a new generator. S0 has r + 1 generators,
so its code space has dimension 2k�1 (by proposition 3.3). Since k � 1, there is at least one state | i (up to
normalization) in the code space of S0. | i is left fixed by all elements of S0, and in particular by the elements
of S ⇢ S0. Thus, | i 2 T (S). However, N anticommutes with M , which is in the stabilizer of | i. Therefore,
N | i has eigenvalue �1 for M , and in particular is orthogonal to | i. It follows that N /2 S(T (S)), which
proves the proposition.

58

Chapter 4

Maybe I Should Have Started Here:
Classical Error Correction

In chapter 3, we saw the formalism of stabilizer codes, but we didn’t see how to find new stabilizer codes.
Indeed, finding new codes is a tricky topic. Already in the theory of classical error correction, it is quite
di�cult to find good new codes. Luckily, there are a few ways of taking already-discovered classical codes
and turning them into quantum codes. That is not the subject of this chapter.

This chapter is instead about the theory of classical error-correcting codes. Naturally, I won’t have time
to go into complete detail on classical error correction, so I will focus on the particular points of the theory of
classical error correction which have most relevance to QECCs. One purpose is to give you the background
for chapter 5, which is about converting classical codes into quantum codes. The other reason is that it
can give you a deeper understanding of the theory of QECCs and of stabilizer codes, since there are many
parallels — and some critical di↵erences — between the theories of classical and quantum error correction.

For those who are familiar with the theory of classical error correction, this chapter is likely to be
somewhat boring, but I hope it won’t be a complete waste of time. In particular, I will try to point out the
parallels between classical coding theory and those aspects of quantum coding theory that we’ve seen so far.
Some you may have already noticed yourself, but perhaps there are some parallels you missed.

4.1 Classical Error Correction in General

4.1.1 Abstract Description of a Classical Code

A general classical error-correcting code can be defined, much as we did for a QECC, as an encoding map.

Definition 4.1. A classical error-correcting code (e, E) is a map e : [1 . . .K] ! [1 . . . N] with a set of
correctable errors E (consisting of maps E : [1 . . . N] ! [1 . . .M]) with the following property: 9 map
d : [1 . . .M]! [1 . . .K] such that 8E 2 E , 8x 2 [1 . . .K],

d(E(e(x))) = x. (4.1)

The map d is the decoder for the code and e is the encoder for the code. Frequently, the code is just referred
to as C, the image of the encoder e in [1 . . . N].

I have written this to be completely analogous to the definition I gave for a QECC. The only real di↵erence
is that quantum states live in a Hilbert space, and maps between them should be quantum operations, or at
least linear maps, whereas classically, we can consider states from any set and arbitrary functions between
the sets as the encoder, decoder, and errors. But remember that classical codes are actually just a special
case of quantum codes. The apparent extra constraint of linearity is really an extra freedom to include
superpositions of basis states, whereas classical codes can only contain basis states.

59

000

111

000

001

010

100

011

101

110

111

non
e

3rd

2nd
1st

1st

2nd
3rd
none

Figure 4.1: Codewords of the repetition code with errors on a single bit never get confused.

Ultimately, a classical error-correcting code is a just a set of objects (frequently bit strings), and the
errors diversify those objects. The goal of the decoder is to get back to the original object. We have an
uncorrectable error when two di↵erent logical objects x and y get confused: E(e(x)) = F (e(y)). If that
never happens, a decoder exists: the sets Sx = {E(e(x))|E 2 E} are all distinct, so we can define a function
mapping all elements of Sx to x unambiguously.

This condition has no precise analogy for quantum codes. In some sense equation (2.58) is similar, if we
interpret the correct quantum analogue of “di↵erent” as “orthogonal.” Equation (2.58) says that orthogonal
quantum states and di↵erent errors must produce orthogonal states, but for QECCs, that is only a su�cient
condition, not a necessary one. From that point of view, QECCs seem somewhat more generous than classical
error-correcting codes, since they don’t require that it is possible to exactly determine the error. On the
other hand, if you did exercise ??, you saw a condition which can be broken up into two parts. When i 6= j,
it says that we should never confuse di↵erent quantum states under an error; that seems analogous to the
condition for classical error correction. But then there is an additional non-trivial condition for a QECC
when i = j, which makes the quantum code seem more stringent than the classical one. The extra condition
can be interpreted as saying that the environment should not learn anything about the logical subspace for
a QECC. Classically, of course, it is harmless if the environment simply learns the encoded data, provided
it doesn’t change it. In the quantum case, learning about the data necessarily involves changing it.

4.1.2 Distance of a Classical Code

As with quantum codes, frequently we focus on codes where the encoded state N can be broken up into
smaller pieces, N = qn, and where M = N . We consider [1 . . . N] as the direct product of n copies of [1 . . . q].
I will refer to each [1 . . . q] factor as a register, a component, or a coordinate. In the common case where
q = 2, I may just refer to the ith bit (or physical bit) of the code. Sometimes I may even forget myself
and accidentally refer to the ith qubit. In the quantum case, I’ll use these same terms, but I try to avoid
component since it also can refer to the component in some direction in the overall Hilbert space. In the
classical case, the terminology comes from treating [1 . . . qn] as an n-dimensional vector space over the finite
field GF(q). We’ll get back to that approach in section 4.2.

Also, we tend to focus on cases where E is composed of errors of weight t or less. The classical definitions

60

of weight and support are just the same as the quantum ones: the error E acts trivially on all but the
coordinates in the support of E, and the weight of E is the size of the support. When we have a classical
channel which causes errors independently on each coordinate with a small probability p, then the probability
of having errors of weight t + 1 or greater is O(pt+1), much as in the quantum case. If we can find a code
that simply corrects all errors of weight t or less, then with high probability, we’ll get the correct state when
we decode.

Definition 4.2. The distance of a classical error-correcting code C ✓ ZN (with N = qn) is

min{wt(E)|9x 6= y 2 C,E(x) = y.} (4.2)

A classical code with distance d encoding K possible states in n registers of size q is an (n,K, d)q code.
When q = 2, we just write (n,K, d).

In other words, the distance is the minimum number of coordinates that have to be changed to get from
one codeword to another. The quantum distance can be understood in the same way, but there are more
subtleties in the quantum case.

As with quantum codes, the distance tells us how many errors we can correct:

Proposition 4.1. A classical code with distance d can:

1. correct general errors on up to b(d� 1)/2c coordinates,

2. correct erasure errors on up to d� 1 coordinates, or

3. detect errors on up to d� 1 coordinates.

4.2 Classical Linear Codes

General classical codes are unwieldy to deal with, just as are general quantum codes. The class of linear
codes is very analogous to stabilizer codes — it is a much more tractable subclass of classical error-correcting
codes, and many of the most interesting known codes are, in fact, linear codes.

For a linear code, we assume N = qn, as above. For this section, I will further assume q = 2, and treat
[1 . . . N] as an n-dimensional vector space over Z2. In section 4.4, I will return to the q 6= 2 case.

4.2.1 Generator Matrix and Parity Check Matrix

By considering ZN = Zn

2
as a vector space, we add an additional linear structure, and a linear code exploits

that structure.

Definition 4.3. An error-correcting code C ✓ Zn

2
is a linear code if x, y 2 C) x+ y 2 C.

A linear code is thus a linear subspace of Zn

2
. We can choose a basis x1, . . . , xk for the code, and all other

vectors in the code will be linear combinations of the xi’s. Since x + x = 0 8x 2 Zn

2
, the only question is

which subset of the basis vectors are added together to make a codeword. There are thus 2k codewords in
total and k encoded bits.

Definition 4.4. The generator matrix GC of a linear code C is a matrix with row i equal to xi.

The generator matrix can be used to define the encoder of C:

Proposition 4.2. Let C ✓ Zn

2
be a linear code with k encoded bits and generator matrix G. Then the linear

map v 2 Zk

2
7! GT v 2 Zn

2
is the encoder for C. In other words, x is a codeword of C i↵ x = GT v for some

v 2 Zk

2
.

In order to check for errors, we measure the parities of bits in the codeword.

61

Definition 4.5. Suppose the linear code C has generator G. A parity check matrix HC for C is a matrix
with row i equal to yi 2 Zn

2
, where Gyi = 0 8i, and the set {yi} is a maximal linearly independent set with

this property.

The parity check matrix of a code is not unique, but it is still frequently referred to as “the” parity check
matrix. You can take any linear combinations of rows of the parity check matrix, and provided the new set
of rows remains linearly independent, it will still function as a parity check matrix.

Theorem 4.3. If C has k encoded bits and n physical bits, then GC is a k⇥n matrix and HC is an (n�k)⇥n
matrix. GCHC

T = 0 and HCGC
T = 0.

Proof. The only property which is not completely trivial is that HC has n � k rows. The constraints
GC

T yi = 0 form a set of k non-singular linear equations on n bits, so the solution space has dimension n�k.
Thus, a maximal set of {yi} will consist of n� k of them.

Using the linear structure of Zn

2
, we can represent a set of bit flip errors as a vector e 2 Zn

2
, with 1 for

those bits which have been flipped and 0 for those bits which have not been flipped. Under this convention,
wt e is the weight of the error. If we start with bit string x and the error e occurs, we now have the bit string
x+ e.

The virtue of the parity check matrix is that it filters out the codewords and just tells us about the errors.
Suppose x 2 C undergoes error e. Then, using linearity and proposition 4.2,

HC(x+ e) = HCx+HCe = HCGC
T v +HCe = HCe. (4.3)

Definition 4.6. The error syndrome of an error e for linear code C is HCe.

All of this probably sounds a bit familiar, since stabilizer codes and classical linear codes are closely
related. The stabilizer of a stabilizer code is very analogous to the parity check matrix for a linear code,
although the stabilizer also has some vague similarity to the generator matrix (in that the projector on the
code space is formed from the stabilizer). In fact, linear codes are a special case of stabilizer codes, and the
parity check matrix can be realized as the stabilizer:

Theorem 4.4. Let C be a linear code with parity check matrix H, and let C correct the set of errors E ✓ Zn

2
.

Define a stabilizer code S to have stabilizer with binary symplectic representation (0|H). Then S corrects the
set of errors {(e|0)|e 2 E} and for any x 2 Zn

2
, x 2 C i↵ |xi 2 S.

In other words, we form a stabilizer by replacing the 1s in H with Zs, with each row of the parity check
matrix becoming a generator of the stabilizer. The resulting stabilizer code corrects the same errors as C
and has the same basis codewords. The one di↵erence is that the stabilizer code encodes a quantum state,
so superpositions such as |x1i + |x2i are also codewords of S, even though the combination is meaningless
when considering a classical code. The proof of the theorem is straightforward, and is left as an exercise.

The non-uniqueness of the parity check matrix is just the same as the non-uniqueness of the generators
of a stabilizer. Replacing a row of the parity check matrix with a linear combination of rows is equivalent to
replacing a generator of the stabilizer with a product of generators.

The best analogy for the rows of the generator matrix are the logical Paulis in N(S)/S. For a stabilizer
code, the coset representatives are non-unique, which is not an issue for classical codes. It is true that
the generator matrix is not completely unique — we can take a di↵erent encoder, which corresponds to a
di↵erent generator matrix. However, this is a di↵erent phenomenon, and corresponds to labeling the cosets
in N(S)/S with di↵erent logical Paulis rather than choosing di↵erent representatives of them.

4.2.2 Distance of a Linear Code

For a linear code, the distance has a somewhat nicer form than for a general classical error-correcting code.

Proposition 4.5. The distance of a linear code C is min{wt(e)|e 2 C, e 6= 0}.

62

Proof. The general definition of distance is as min{wt e|x 6= y 2 C, x+ e = y} (with the error rewritten from
definition 4.2 to take advantage of linearity). But when x, y 2 C, e = x+y is also in C since C is linear. Any
e 2 C can be realized this way by simply choosing any x 2 C and letting y = x+ e, which will automatically
be in C, again since C is linear. x 6= y is equivalent to e 6= 0.

Notation 4.7. An (n, 2k, d) linear code is denoted as an [n, k, d] code.

For a linear code, the codewords themselves are the undetectable errors: adding a non-trivial codeword
to another codeword results in a new codeword, and if you add a non-codeword to a codeword, you always
get a non-codeword. For a set of errors to be correctable, any pair of errors must not add up to a codeword:

Theorem 4.6. A linear code C corrects the error set E i↵ e + f /2 C for all e 6= f 2 E. Equivalently,
HCe 6= HCf 8e 6= f 2 E (i.e., all errors in E have di↵erent error syndromes).

Proof. If all errors in E have di↵erent error syndromes, than the code certainly can correct for E using the
following procedure: Given an erroneous codeword x + e, apply the parity check matrix to get HCe. Since
the error syndromes are unique, we can identify e and then recover x = (x+ e) + e.

If e+ f 2 C then HC(e+ f) = HCe+HCf = 0. Conversely, if e+ f /2 C, then HC(e+ f) 6= 0. This is
true because the parity check matrix is formed from a maximal set of vectors annihilated by the generator
matrix. When e + f /2 C, then the set of solutions of GCyi = 0 and of (e + f) · yi = 0 is only n � k � 1
dimensional, whereas the parity check matrix has n� k rows. Thus, e+ f /2 C i↵ HCe 6= HCf .

Finally, if e+ f 2 C for some pair e 6= f 2 E , then the code cannot correct E . For instance, given x 2 C,
let y = x+ (e+ f), which will also be in C. Then x+ e = y + f , so if this string shows up, there is no way
to tell whether it should be decoded to x (with error e) or y (with error f).

The combination e+ f is reminiscent of the combination E†F that appears in theorem 3.5 giving the set
of correctable errors for a stabilizer code. Comparing further, you can see that for a classical code, C \ {0}
plays the role of N̂(S) \ Ŝ for a stabilizer code. Indeed, if you apply the transformation theorem 4.4 to code
C to get stabilizer S, and then calculate N̂(S) \ Ŝ, you find that it includes the conversion of C \ {0}. That’s
not all it contains, but it is a good exercise to work this out yourself.

Importantly, there is no good classical analogue to the concept of a degenerate quantum code. All
classical codes are non-degenerate, and the presence of degenerate quantum codes complicates quantum
coding theory.

4.2.3 Example: Hamming Codes

One example of a linear code is the repetition code 0 7! 000, 1 7! 111. It is linear because 000 + 000 = 000,
000 + 111 = 111, and 111 + 111 = 000. The generator matrix is

G =
�
1 1 1

�
, (4.4)

and the parity check matrix is

H =

✓
1 1 0
1 0 1

◆
(4.5)

The three-bit repetition code (a [3, 1, 3] code) can of course be generalized to d-bit repetition codes, which
have parameters [d, 1, d], but there is another interesting generalization, starting from the observation that
in the parity check matrix for the three-bit repetition code, every column is di↵erent.

Supposing we want to correct only 1-bit errors. If wt e = 1, with the only 1 in the ith coordinate, then
for any parity check matrix H, He — the error syndrome of e — will be the ith column of H. Thus, if we
pick all columns of H to be di↵erent, the error syndromes of all 1-bit errors will be di↵erent. We should not
pick an all 0s column since we want the no error case (e = 0) to have error syndrome 0.

If we fix the number of rows of H to be r, we can choose up to 2r � 1 distinct columns by letting them
run over all nonzero r-bit strings. This gives a Hamming code:

63

Definition 4.8. The [2r � 1, 2r � r� 1, 3] Hamming code is the code whose r⇥ (2r � 1) parity check matrix
has as columns all possible r-bit strings.

Notice that here we have defined the Hamming code by choosing a parity check matrix, much as for a
stabilizer code, we choose the stabilizer to define the code. In this case, you can derive the set of actual
codewords as {x|Hx = 0}. There are r linear constraints on 2r � 1 bits, so the linear space of solutions is
(2r � r � 1)-dimensional, giving the number of encoded qubits in the definition.

As a concrete example, when r = 3, we get a [7, 4, 3] code. It has parity check matrix

0

@
1 1 1 1 0 0 0
1 1 0 0 1 1 0
1 0 1 0 1 0 1

1

A , (4.6)

and can be taken to have generator matrix
0

BB@

1 1 1 1 1 1 1
1 1 1 1 0 0 0
1 1 0 0 1 1 0
1 0 1 0 1 0 1

1

CCA . (4.7)

4.2.4 Example: Reed-Muller Codes

Looking at the generator matrix for the 7-bit Hamming code, it has a somewhat nice form. The form gets
even nicer if you add an extra bit which is 1 for the first row and 0 for the others:

0

BB@

1 1 1 1 1 1 1 1
1 1 1 1 0 0 0 0
1 1 0 0 1 1 0 0
1 0 1 0 1 0 1 0

1

CCA . (4.8)

Now every codeword has weight 0, 4, or 8. This is an example of a Reed-Muller code, specifically R(1, 3).
It is an [8, 4, 4] code.

Definition 4.9. The 1st order Reed-Muller code R(1,m) is a linear code with n = 2m physical bits. It has a
generator matrix whose rows are the all-1s vector and the vectors vi (i = 1, . . . ,m), where the jth coordinate
of vi is equal to the ith bit of j, when j is expanded in binary (and assuming j runs from 0 to n� 1).

For instance, for n = 4, v1 = (0011) and v2 = (0101). The generator matrix is

0

@
1 1 1 1
0 0 1 1
0 1 0 1

1

A (4.9)

It is a [4, 3, 2] code. Note that in equation (4.8), the order of the bits is reversed relative to this convention.

Theorem 4.7. R(1,m) is a [2m,m+ 1, 2m�1] code.

Proof. Each of the vectors vi has weight exactly n/2 (n = 2m), as exactly half the numbers 0, . . . , n� 1 will
be 1 in any given bit location. We can also easily show that any sum of s > 0 of the vis will have weight
exactly n/2: The sum will be 0 or 1 in the jth location i↵ the XOR of the corresponding bits of j is 0 or
1. For instance, for v1 + v3, take the XOR of the first and third bits of j. We then let j run over from
0, . . . , n � 1. As we do this, the set of bits we are looking at can take on every possible set of values, and
furthermore, each set of values appears the same number of times, corresponding to every set of values for
the other bits. In particular, any particular assignment of the s bits we are interested in shows up 2n�s

times. For half of these assignments, the XOR will be 0, and for the other half, the XOR will be 1. Thus
the weight of the sum we are looking at is exactly n/2.

64

The all-1s vector has weight n, and the all-1s vector added to any vector of weight n/2 is again a vector
of weight n/2. Thus, the code has distance n/2 = 2m�1.

This argument also shows that all the rows of the generator matrix are independent, since no linear
combination gives 0. Therefore, the code has m+ 1 encoded bits, the same as the number of rows.

Definition 4.10. The rth order Reed-Muller code R(r,m) has as rows of its generator matrix all products of
up to r of the vectors vi given in definition 4.9, where product means the bitwise product (1 in a coordinate
i↵ all vectors in the product are 1 at that coordinate) The all-1s generator is also included. (It can be
considered as the product of 0 of the vi’s.)

For instance, R(2, 2) has the additional generator v1v2 = (0001), giving the generator matrix

0

BB@

1 1 1 1
0 0 1 1
0 1 0 1
0 0 0 1

1

CCA (4.10)

R(2, 2) is a [4, 4, 1] code, which actually means it contains all 4-bit vectors. R(2, 3) is more interesting, with
generator matrix 0

BBBBBBBB@

1 1 1 1 1 1 1 1
0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1
0 0 0 0 0 0 1 1
0 0 0 0 0 1 0 1
0 0 0 1 0 0 0 1

1

CCCCCCCCA

(4.11)

R(2, 3) is an [8, 7, 2] code.

Theorem 4.8. R(r,m) is a [2m, N(r,m), 2m�r] code, where

N(r,m) = 1 +

✓
m

1

◆
+

✓
m

2

◆
+ · · ·+

✓
m

r

◆
. (4.12)

Proof. We must show that the code has N(r,m) encoded bits and has distance 2m�r.
Number of encoded bits: R(r,m) is spanned by a product of vectors for each subset of up to r

elements of the numbers 1, . . . ,m. Counting them gives the formula for N(r,m). However, we do need to
show that these are linearly independent to see that this is also the number of encoded bits.

Consider the extreme case of R(m,m). The generator matrix for R(r,m) is contained in the top rows of
that for R(m,m), so it is enough to show that the generator matrix for R(m,m) has full rank. N(m,m) =
2m = n, so the rows are linearly independent i↵ they span the whole vector space.

We can imagine arbitrary vectors on 2m bits as functions from m bits to one bit, as follows: for the jth
bit of the vector, interpret j as the input of the function, with the output of the function given by the jth
bit. (For instance, the vector 0110 is the function f(00) = 0, f(01) = 1, f(10) = 1, f(11) = 0.) In this
interpretation, vi is the function “take the ith bit of the input.”

The product of multiple vectors vi1 , . . . , vis is the function “take the AND of bits i1, . . . , is of the input,”
and the sum of products is the XOR of these ANDs. We can write an arbitrary function from m bits to 1
bit as the XOR of ANDs of up to all m bits, so all possible vectors are in the code R(m,m). Therefore all
products of the vis are linearly independent.

Distance: It is easy to see that the product of any r vectors vi has weight n/2r = 2m�r, as the product
is 1 in the jth location i↵ the AND of the corresponding bits of j is 1, which happens for only a fraction
1/2r of the possible values of j. We also have to check the distance, however, for the sums of these products,
and it is not clear that taking the sum cannot cause the weight to decrease.

65

To show that the distance of R(r,m) is indeed 2m�r, we perform induction on r and m. We have already
calculated the distance for R(1,m) in theorem 4.7. As m � r, we also want as a base case to show it for a
given r for the smallest possible value of m, namely R(r, r). In this case, there is nothing really to show, as
the distance from the formula is 1, which is indeed the weight of the product of all r vi vectors, and there is
no possibility of having a shorter distance.

Claim 4.9. Assume the distance of R(r � 1,m) is 2m�r+1 and the distance of R(r,m) is 2m�r. Then the
distance of R(r,m+ 1) is 2m+1�r.

Proof of claim. We can consider any given sum of basis vectors, and break it up into a term where none
of the products includes the vector v1 and a term where all of the products include v1. Now, if we restrict
attention to the first 2m coordinates, the second term is uniformly 0 and the first term is a vector from
R(r,m), which we already know has weight at least 2m�r unless it is the 0 vector.

If we restrict attention to the last 2m coordinates, v1 is always 1, so it can be ignored, and the second
term is the sum of products of at most r� 1 vectors, and is thus a vector from R(r� 1,m). The first term is
the same on the last 2m coordinates as it was on the first 2m coordinates, and is again a vector from R(r,m).
But R(r � 1,m) ✓ R(r,m), so the sum of a term from R(r � 1,m) and a term from R(r,m) is in R(r,m),
and therefore the last 2m coordinates have weight at least 2m�r by the inductive hypothesis unless the last
2m coordinates are all 0.

If the first term is the 0 vector, we actually have a vector from R(r � 1,m) on the last 2m coordinates,
which therefore has weight at least 2m�r+1 unless it is 0. To get 0 on the last 2m coordinates, either both
terms are 0 (in which case the whole vector is 0), or the first and second terms must cancel on the last 2m

coordinates. In order to cancel the second term, the first term must actually be a vector from R(r � 1,m)
on each half of the coordinates, which again means the vector on each half of the coordinates has weight
2m�r+1.

That is, we have three cases (assuming the overall vector is not 0): In case one, the first term is 0,
in which case the last 2m coordinates have weight 2m�r+1. In case two, the first and last 2m coordinates
will each have weight at least 2m�r. In case three, the last 2m coordinates have weight 0, but the first 2m

coordinates have weight 2m�r+1. In all of these cases, we know that the overall vector has weight at least
2m+1�r, completing the induction for the distance.

If we have proven the formula for distance for r � 1 and all m, then we can use induction on m. The
base case is R(r, r) and we use the claim to prove the distance formula for this specific value of r and all m.
This then allows us to use induction on r and the base case of R(1,m) to prove the distance formula for all
values of r and m.

4.3 Dual Codes

4.3.1 Definition of a Dual Code

Definition 4.11. If C is a linear code, the dual code C? is

C? = {y 2 Zn

2
|x · y = 0 8x 2 C}. (4.13)

The dual code switches the role of the generator and parity check matrices: The generator matrix of C?

is the parity check matrix of C and the parity check matrix of C? is the generator matrix of C. (Note that

(C?)
?
= C.) It follows that the dual code of an [n, k, d] code is an [n, n� k, d0] code. The distance d0 does

not in general have to be related to the distance d.
We also saw a definition of a dual code when discussing the binary symplectic representation of a stabilizer

code. The dot product appears in this definition and the symplectic form appeared in that one, but otherwise
they are the same.

We can also define self-dual codes and weakly self-dual codes in the same way as in section 3.5. That is,
a self-dual code is equal to its dual, and a weakly self-dual code is contained in its dual.

66

4.3.2 Dual Codes for the Examples

For the 7-bit Hamming code, we’ve already worked out the generator and parity check matrices. Looking
at the 8 vectors in the span of the rows of the parity check matrix of the 7-bit Hamming code, we see that
all the nonzero vectors in the dual code have weight 4. The dual code of the [7, 4, 3] is thus a [7, 3, 4] code.
We’ve already seen that the 7-bit Hamming code is related to a Reed-Muller code. The dual is too — if take
R(1, 3) and drop the all-1s vector, one bit is always zero. If we then discard that bit, we get the dual of the
7-bit Hamming code.

This is true in general:

Theorem 4.10. Take R(1,m), remove the all-1s vector, and then puncture it: drop the bit that is always
0. The resulting [2m � 1,m, 2m�1] code is the dual of the [2m � 1, 2m �m� 1, 3] Hamming code.

Proof. First, let us check the parameters of the punctured Reed-Muller code. Dropping the all-1s vector
removes one encoded bit, leaving m logical bits. Removing codewords does not decrease the distance, and
since the remaining vectors all have weight 2m�1, it does not increase it in this case either. Dropping a bit
that is always 0 also does not change the distance, giving the parameters [2m � 1,m, 2m�1].

We are left with a generator matrix which has m rows v1, . . . , vm. The jth bit of vi is the ith bit of the
binary representation of j, so the jth column of the generator matrix is exactly the binary representation of
vi. This was how we constructed the parity check matrix of the [2m � 1, 2m �m � 1, 3] code, which is the
generator of the dual.

Naturally, this also means that the duals of the Reed-Muller codes R(1,m) are related to the Hamming
codes. In the special case of R(1, 3), it was related both to the 7-bit Hamming code and to its dual. That
is because R(1, 3) is a self-dual code. Most Reed-Muller codes are not self-dual, but R(1, 3) is not the only
one that is. More importantly, the dual of every Reed-Muller code is another Reed-Muller code.

Theorem 4.11. The dual of R(r,m) is R(m� r � 1,m) (r m� 1).

Proof. Let us take the dot product of two basis vectors w 2 R(r,m) and w0 2 R(r0,m). The dot product is
the parity of the pointwise product ww0. But w is the pointwise product of up to r of the vi vectors, and w0

is the pointwise product of up to r0 of the vi vectors, so ww0 is the pointwise product of up to r + r0 of the
vi vectors. Suppose we eliminate redundant vis that appear twice in the product, leaving us with s r+ r0

vectors vi that appear in at least one of the two products w and w0. We already know from theorem 4.8 that
such a product has weight exactly 2m�s. Therefore the dot product of w and w0 (the parity of the pointwise
product) is 0 unless s = m, which is only possible if r + r0 � m. Therefore, R(m � r � 1,m) is orthogonal
to R(r,m), and is contained in its dual.

Now, R(r,m) encodesN(r,m) =
�
m

0

�
+
�
m

1

�
+· · ·+

�
m

r

�
bits by theorem 4.8, so its dual encodes 2m�N(r,m)

bits. But R(m� r � 1,m) encodes
✓
m

0

◆
+

✓
m

1

◆
+ · · ·+

✓
m

m� r � 1

◆
=

✓
m

m

◆
+

✓
m

m� 1

◆
+ · · ·+

✓
m

r + 1

◆
(4.14)

bits. Therefore, N(r,m) +N(m� r� 1,m) = 2m, and R(m� r� 1,m) is not only contained in the dual of
R(r,m), it is the same size as the dual, and therefore equals the dual.

Corollary 4.12. When m = 2r + 1, the Reed-Muller code R(r,m) is self-dual. When m � 2r + 1, R(r,m)
is weakly self-dual.

4.4 Non-Binary Linear Codes

While binary codes, with the number of physical states N = 2n, are the most common sort of error-
correcting code, non-binary codes, which have other values of N , are also used. Some non-binary codes are
quite important in the theory of quantum error correction, so we’ll quickly cover the concepts here. We
won’t get to non-binary quantum codes until chapter 8, but we’ll use some facts about non-binary classical
codes even when discussing QECCs over qubits.

67

4.4.1 Linear Codes Over Finite Fields

When using the binary generalization of linear codes, we usually assume that N = qn, and q = pm is a
prime power. We want q to be a prime power because then there is a finite field GF(q) of size q, and we can
consider [1 . . . N] to be a vector space of dimension n over GF(q). (See appendix C for an introduction to
finite fields.)

Definition 4.12. An error-correcting code C ✓ GF(q)n is a linear code if x, y 2 C) ↵x+ �y 2 C for any
↵,� 2 GF(q). C is an additive code if x, y 2 C) x+ y 2 C.

For binary linear codes, we only needed to worry about adding together codewords, but for non-binary
linear codes, multiplication by scalars from the field GF(q) must also keep us within the code. If adding
codewords gives a codeword but multiplication by scalars does not necessarily do so, then the code is merely
additive. For bits, additive implies linear because the only scalars are 0 and 1, but for larger fields, there are
more options.

We can again consider the possible errors to be vectors in GF(q)n. If an error e acts on a string x, the
resulting state is x+ e, as before. Bear in mind, however, that there are q� 1 di↵erent errors that can a↵ect
each register.

Non-binary linear codes have generator and parity check matrices defined in the same way as for binary
codes, and the distance is also defined in the same way. We use the notation [n, k, d]q for a non-binary linear
code with n physical registers, each of size q. The only di↵erence in the basic properties of the code is that
we now need to be careful of the distinction between addition and subtraction, which are the same for a
binary code. In particular,

Theorem 4.13. A non-binary linear code C corrects the error set E i↵ e � f /2 C for all e 6= f 2 E.
Equivalently, HCe 6= HCf 8e 6= f 2 E (i.e., all errors in E have di↵erent error syndromes).

We can define the dual code for a non-binary code in just the same way as for a binary code using the
dot product for a vector space over GF(q).

4.4.2 Example: Hamming Codes

The Hamming codes have a natural generalization to non-binary fields. Our goal in designing non-binary
Hamming codes is again to choose the columns of the parity check matrix so that all single-qubit errors
have di↵erent error syndromes. However, we need to be careful because there is now more than one possible
single-bit error per register. If ei is the error that is 1 in location i and 0 elsewhere, then ei has syndrome
equal to the ith column of the parity check matrix. When ↵ 2 GF(q), ↵ei has error syndrome equal to ↵
times the ith column of the parity check matrix. Therefore, the correct generalization of the Hamming code
is not to ensure just that all columns are di↵erent; instead, we want that no column of the parity check
matrix is a scalar multiple of another for any scalar in GF(q).

For instance, GF(4) has 4 elements 0, 1, !, and !2. Therefore, we have a [5, 3, 3] Hamming code over
GF(4) with the following parity check matrix:

✓
0 1 1 1 1
1 0 1 ! !2

◆
(4.15)

Notice that we don’t include columns (0,!) or (0,!2) since they are scalar multiples of (0, 1), but that we
include all columns of the form (1,↵), since no two of them are scalar multiples. We don’t, however, then
need to include any columns (!,↵) or (!2,↵).

Following this logic, we find the non-binary Hamming codes:

Theorem 4.14. There exists a [(qr � 1)/(q � 1), (qr � 1)/(q � 1) � r, 3]q code for any prime power q and
any r > 1. These codes are known as Hamming codes.

68

Proof. There are r rows in the parity check matrix. We wish to choose (qr�1)/(q�1) columns so that none
is a scalar multiple of another. Note that

(qr � 1)/(q � 1) = 1 + q + · · ·+ qr�1. (4.16)

We will proceed by induction on r, the number of rows in the parity check matrix. If r = 1, we just have
the parity check matrix (1), which gives a [1, 0, 1]q code. It is a special case.

Next, we assume that we have a parity check matrix for r � 1. For the r-row matrix, we can choose the
first column to be all 0s except for the last row, which is 1. Then any column for which the first r�1 entries
are 0 will be a scalar multiple of this column. The remaining columns are of the form (v,↵), where v is a
column of the parity check matrix for the Hamming code for q and r � 1, and ↵ is any element of GF(q).
When v 6= v0 are two di↵erent columns of the r � 1 Hamming code parity check matrix, than v 6= �v0, so
it’s certainly true that (v,↵) 6= �(v0,↵0). Thus, we don’t get columns which are scalar multiples that have
di↵erent entries in the first r � 1 entries. We should also compare (v,↵) with (v,↵0), but since the first r
entries are not all 0, the only possible scalar factor between them is 1, which implies that ↵ = ↵0. Thus, this
scheme gives independent columns, as desired. We can pick (qr�1�1)/(q�1) columns of the r�1 Hamming
code, and q entries for the last row in the column, plus we have the first column (0, 0, . . . , 0, 1). The total
number of columns is thus

1 + q[(qr�1 � 1)/(q � 1)] = 1 + q(1 + q + · · ·+ qr�2) = 1 + q + · · ·+ qr�1 = (qr � 1)/(q � 1), (4.17)

as desired.

4.4.3 Example: Reed-Solomon Codes

Reed-Solomon codes are a useful class of codes which are based on polynomials over finite fields.

Definition 4.13. Let ↵1, . . . ,↵n be n distinct elements of GF(q), and let k n. A Reed-Solomon code is

{(f(↵1), . . . , f(↵n))|f is a polynomial of degree < k}. (4.18)

The encoder for this code equates the input (�0, . . . ,�k�1) to the polynomial

f(x) = �0 + �1x+ �2x
2 + · · ·+ �k�1x

k�1. (4.19)

Reed-Solomon codes are widely used for practical purposes, for instance to encode DVDs to protect
against minor damage and in QR codes in case some part of the code can’t be read. They are useful because
they have a large distance and are easy to encode and decode. But who cares about that stu↵? It’s all
very 20th-Century. The real reason Reed-Solomon codes are interesting is that they are useful for making
quantum codes, although we won’t see how until we discuss non-binary QECCs in chapter 8.

Theorem 4.15. A Reed-Solomon code with n points from GF(q) and polynomials of degree at most k� 1 is
an [n, k, n� k + 1]q code.

Proof. Directly from the definition we can see that there are n physical registers and k logical registers. The
distance is less obvious. The most straightforward way to see it is to consider correcting erasure errors.

Suppose that t registers have been erased. We are then left with n � t registers, which are the values
of the polynomial f evaluated at n � t di↵erent points. We know that f has degree at most k � 1, and
a degree k � 1 polynomial is determined by its value at any k points. To be more concrete, given any k
points, we have k di↵erent linear equations for the coe�cients �0, . . . ,�k�1. The equations are defined by the
Vandermonde matrix Vij = ↵j�1

i
. (I have assumed that the registers which are available correspond to the

points ↵1, . . . ,↵k for notational simplicity.) The Vandermonde matrix is non-singular — it has determinantQ
(↵i � ↵j) — so the equations have a unique solution.
In short, provided n � t � k, we can reconstruct f and decode the code. Thus, the code corrects n � k

erasure errors, so it has distance n�k+1. The distance can’t be higher than that, because if we have n�k+1
erasure errors, there are only k�1 points left, and there are multiple possible polynomials which go through
those points since we could choose any value for a kth point and still reconstruct a valid polynomial.

69

4.5 Hamming, Gilbert-Varshamov, and Singleton Bounds, MDS
Codes

To conclude the discussion of classical codes, we’ll discuss some basic limits on the existence of classical codes.
I won’t get to the quantum analogue of these bounds until chapter 7, but the bounds help to understand the
example codes that we’ve discussed. As you’ll see, the Hamming codes and Reed-Solomon codes are optimal
codes, giving a maximal k and d for minimum n.

4.5.1 Hamming Bound, Perfect Codes

One can set a simple upper bound by taking advantage of the requirement that the states must be distin-
guishable after errors.

Theorem 4.16 (Hamming bound). An (n,K, 2t+ 1)q code must satisfy

K

0

@
tX

j=0

(q � 1)j
✓
n

j

◆1

A qn. (4.20)

For large n,

(log
q
K)/n 1� (t/n) log

q
(q � 1)� hq(t/n), (4.21)

where

hq(x) = �x logq x� (1� x) log
q
(1� x). (4.22)

Proof. Let x be a vector in the code C, and let Sx be the set of all vectors at distance at most t from x.
(I.e., all strings that can be reached from x by altering up to t registers.) An error can take x to any string
in Sx, so we need that Sx \ Sy = ; when x 6= y. Otherwise, z 2 Sx \ Sy can’t be reliably decoded since it
could have come from either x or y before the error.

Let us count the size of Sx. We break Sx into subsets Sx,j which disagree with x on exactly j t
registers. Sx,j breaks down further into subsets which depend on which j registers disagree. There are

�
n

j

�

possible sets of registers which disagree, and for a fixed set of registers, the strings in Sx,j can take on any
value except for the values in x. There are q� 1 remaining choices for each of the j registers which disagree.
Thus, the total size of Sx,j is (q � 1)j

�
n

j

�
and the total size of Sx is

tX

j=0

(q � 1)j
✓
n

j

◆
. (4.23)

This is true for all x, and since Sx\Sy = ;, the total number of strings in the union of all sets Sx is K times
equation (4.23). This must be less than the total number of possible n-register strings, which is qn, giving
us equation (4.20).

To find the large n version of this equation, just take the logarithm base q. The hq term comes from the
log of the binomial coe�cient (lemma 4.17), and only the largest value of j = t contributes to the logarithm
for large n.

The formula for hq(x) is a fairly standard information-theoretic term, but it is su�ciently useful that I’ll
give a proof of it:

Lemma 4.17. For large n,

log
q

✓
n

j

◆
= �j log

q
(j/n)� (n� j) log

q
(1� j/n) + o(n). (4.24)

70

Proof.

log

✓
n

j

◆
= log(n!)� log(j!)� log[(n� j)!]. (4.25)

(Assume everywhere that the base of the logarithm is q.)
Taking the logarithm of Stirling’s formula and keeping only the terms at least linear in n, we have

log(m!) = m logm�m log e. (4.26)

Then

log

✓
n

j

◆
= (n log n� n log e)� (j log j � j log e)� [(n� j) log(n� j)� (n� j) log e] (4.27)

= j log n+ (n� j) log n� j log j � (n� j) log(n� j)� [n� j � (n� j)] log e (4.28)

= �j log(j/n)� (n� j) log[(n� j)/n]. (4.29)

The Hamming bound is also known as the sphere-packing bound. The name comes from the sets Sx,
which can be viewed as “spheres” using the distance measure which counts the number of registers in which
two strings di↵er. That metric is known as the Hamming distance. The spheres Sx are rather blocky for
spheres, but that’s what you get when you use a discrete distance.

The case when the Hamming bound is met exactly is somewhat interesting. First, it represents the best
possible code you can have for a given n and d = 2t + 1. Second, when it is a linear code, it means that
every error syndrome is used by an error of weight t or less.

Definition 4.14. A code which saturates the Hamming bound is perfect.

When t = 1, the condition for a perfect code is K[1 + (q � 1)n] = qn. Let us specialize to K = qk. Then
an [n, k, 3]q code is perfect if (q � 1)n = qn�k � 1. Letting r = n � k, we find that n = (qr � 1)/(q � 1),
k = n� r. These are exactly the parameters of the Hamming codes. The Hamming codes were designed to
use up every error syndrome, so it’s not surprising they are perfect codes, but now you can see that these
parameters are the only ones possible for distance 3 perfect codes.

4.5.2 Gilbert-Varshamov Bound

The Hamming bound tells us that codes above a certain level of e�ciency cannot exist — it is an upper
bound on the e�ciency of error-correcting codes. The Gilbert-Varshamov bound is a lower bound. It tells us
that e�cient codes do exist, provided we lower our standards a bit.

Theorem 4.18 (Gilbert-Varshamov bound). If n, K, and d satisfy

K

0

@
d�1X

j=0

(q � 1)j
✓
n

j

◆1

A qn, (4.30)

then an (n,K, d)q code exists. For large n, a code exists if

(log
q
K)/n 1� (d/n) log

q
(q � 1)� hq(d/n), (4.31)

with hq(x) given by equation (4.22).

The di↵erence between the upper bound given by the Hamming bound and the lower bound given by
the Gilbert-Varshamov bound is replacing t (the number of correctable errors) with d � 1 (the number of
detectable errors), which is 2t. The asymptotic (large n) versions of the two bounds for q = 2 are plotted in
figure 4.2, along with the Singleton bound (section 4.5.3). Of course, there may exist codes whose e�ciency
is in the region between the Hamming and Gilbert-Varshamov bounds, but this is not the generic case.

71

d/n

k/n
1

11/2

Figure 4.2: Classical Hamming bound (solid), Gilbert-Varshamov bound (dashed), and Singleton bound
(dotted) for large n, q = 2

Proof. We will pick the codewords sequentially, thus showing the theorem by induction on K.
For the first codeword, pick any string x1. Then exclude the Hamming sphere of radius d� 1 around x1,

that is, the set Sx1 of all strings that are distance d� 1 or less from x1. Choose the second codeword x2 to
be any string outside Sx1 . x2 has distance at least d from x1, so the code {x1, x2} has distance at least d.

In general, given any code {x1, . . . , xK�1} with distance at least d, exclude the radius d � 1 Hamming
spheres Sx1 , . . . , SxK�1 . Provided equation (4.30) is satisfied, there is at least one string not excluded. Choose
it (at random if there is more than one) as the Kth codeword xK . Then {x1, . . . , xK} also has distance at
least d, since xK is no closer than a Hamming distance d to any of the previous codewords.

The proof can be strengthened to say not just that there exist codes with the parameters (n,K, d)q, but
actually that a randomly chosen (n,K) code has distance at least d (with high probability for large n). The
Gilbert-Varshamov bound can also be improved to show the existence of codes with certain properties. For
instance, when K = 2k, there exists a linear code provided n, K, and d satisfy equation (4.30).

The proof of the Gilbert-Varshamov bound is sometimes referred to as non-constructive. Of course, in
a literal sense it is constructive, since if we try all codes with the given parameters, we will eventually find
one that works. In this context, the term means that it is not e�ciently constructive in at least one of two
ways. It can mean that picking a code according the algorithm implicitly given by the proof produces a
code whose description is exponentially large in n. In this case, that is true, since K = exp(O(n)) and each
codeword has to be listed separately, but if we use the version of the Gilbert-Varshamov bound applying to
linear codes, there is at least an e�cient description of the resulting code in terms of the generator matrix. It
could also mean that the algorithm for finding the code takes exponentially long in n. That is true both for
the general version and linear code version of the Gilbert-Varshamov bound, since checking that a particular
code has distance d takes exponentially long.

4.5.3 Singleton Bound

The Singleton bound is another upper bound, but it has a much simpler form than the Hamming bound. In
particular, the form of the Singleton bound is the same for all register sizes q.

Theorem 4.19 (Singleton bound). If an (n, qk, d)q code exists, then

n� k � d� 1. (4.32)

Proof. An (n, qK , d)q code corrects d� 1 erasure errors. For instance, if we discard the last d� 1 registers,
the remaining n� (d�1) registers can still be used to reconstruct all k logical registers. This is only possible

72

if n � (d � 1) � k since otherwise two di↵erent logical strings will be represented by the same string with
n� (d� 1) components.

Codes which saturate the Singleton bound have interesting properties, and therefore get their own name.

Definition 4.15. If an (n, qk, d)q code satisfies n = k + d� 1, it is a MDS code.

“MDS” stands for “maximum distance separable.” You can probably figure out the “maximum distance”
part of the name. The “separable” part means that k coordinates of the codewords can be taken to be the
logical registers when no errors are present. This is not a property that is possible for a quantum code,
since it would violate the no-cloning theorem (if k qubits contain the logical state, then the remaining qubits
contain no information about it, and would not be useful for error correction). I will still use the term
“quantum MDS codes” for codes satisfying the analogous quantum Singleton bound.

Checking the parameters, you’ll find that the Reed-Solomon codes are MDS codes. The repetition codes
[n, 1, n] are too. The Hamming codes with r � 3 are not — even though they are optimal for the Hamming
bound, they do not saturate the Singleton bound.

4.5.4 Properties of MDS Codes

The dual code of an [n, k, d] code is an [n, n�k] code, but its distance might be bad. A remarkable property
of MDS codes, and one that is very useful for making quantum codes, is that their duals also have good
distance.

Theorem 4.20. The dual of an MDS code is also an MDS code. In particular, the dual of an [n, k, n�k+1]
code is an [n, n� k, k + 1] code.

Proof. We wish to show that any codeword from the dual code has weight greater than k. This will show
that the distance of the dual code is at least k + 1, but it cannot be any higher than that by the Singleton
bound.

In terms of equations, we wish to show that if C is the original code and y is some string with 0 < wt y k,
then 9x 2 C such that y ·x 6= 0. Recalling the proof of the Singleton bound, let us erase d� 1 registers from
an MDS code, leaving only k remaining registers, which are chosen to include the support of y. Call R the
set of k registers we are considering. Since the logical state can be reconstructed from R, they must take
on every possible value. That is, for any string x0 with support within R, 9x 2 C such that x|R = x0. Let
y|R = y0. Since y0 6= 0, there certainly exists some x0 such that y0 · x0 6= 0, and then y · x 6= 0 whenever y has
support on R. Since R was an arbitrary set of size k, this shows that if y 2 C?, then wt y > k.

73

74

Chapter 5

Combining The Old And The New:
Making Quantum Codes From
Classical Codes

Now that we’ve covered the basics of both classical and quantum error-correcting codes, we’re ready to
try combining them. By borrowing some codes from the old theory of classical error-correcting codes,
we’ll be able to make brand new quantum error-correcting codes, thus marrying quantum and classical
error correction. But don’t be blue, I’m sure there are still plenty of interesting quantum codes left to be
discovered.

5.1 CSS Codes

5.1.1 CSS Construction and Parameters of a CSS Code

The first construction we’ll discuss gives us a class of codes known as CSS codes after their inventors
Calderbank, Shor, and Steane. The idea of CSS codes is to build on the observation that classical linear
codes are a special case of stabilizer codes. In theorem 4.4, we made a stabilizer code by taking the parity
check matrix for a classical linear code and replacing each 1 with a Z. The resulting stabilizer code corrects
the same set of bit flip errors as the original classical code. If you instead replace the 1’s in the parity check
matrix with X’s, you get a stabilizer code that corrects phase flip errors. In a CSS code, we do both: some
of the stabilizer generators come from one classical linear code C1 with the parity check matrix converted to
Z’s, and some generators come from a second linear code C2 which is used to correct phase errors.

Definition 5.1. A stabilizer code is a CSS code if there is a choice of generators for which the stabilizer’s
binary symplectic representation is of the form

✓
0
B

����
A
0

◆
, (5.1)

where A is a r1 ⇥ n matrix and B is a r2 ⇥ n matrix for some r1, r2. The generators of the form (b|0) are X
generators and the generators of the form (0|a) are Z generators.

In other words, some generators for a CSS code are tensor products of only X and I and some are tensor
products of only Z and I. This statement is of course dependent on the exact choice of generators. If you
pick a di↵erent set of generators by multiplying some of the X generators with some of the Z generators,
you will usually get generators which involve more than one of X, Y , and Z in the same operator. That
doesn’t mean the code is not a CSS code, only that you’ve picked a strange set of generators.

75

Z Z Z Z I I I
Z Z I I Z Z I
Z I Z I Z I Z
X X X X I I I
X X I I X X I
X I X I X I X

X X X X X X X X
Z Z Z Z Z Z Z Z

Table 5.1: The stabilizer and logical Paulis for the 7-qubit code.

The CSS construction allows us to take two classical codes and make a quantum code. As an example,
let’s form a 7-qubit code from the 7-bit Hamming code discussed in section 4.2.3. The second code will also
be the 7-bit Hamming code. Take the three rows in its parity check matrix and convert the 1’s to Z’s, getting
three generators of the stabilizer. Then take the rows a second time and convert the 1’s to X’s, getting three
more generators. The resulting stabilizer is shown in table 5.1.

What is the distance of the 7-qubit code? Using the Z generators of the stabilizer, we can detect and
identify any single-qubit bit flip error, since those generators are derived from a classical code which can do
so. The first three bits of the error syndrome tell us where a bit flip error is. Using the same logic, the last
three bits tell us where any single-qubit phase error has occurred. If there is a Y error, or indeed an X error
on one qubit and a Z error on another, then the error will show up in both the first three bits and the last
three bits of the error syndrome, identifying it as an error combining X and Z. Thus, the code can correct
any single-qubit X, Y , or Z error, and has distance 3.

How many encoded qubits do we have? Using proposition 3.3, we have n = 7 physical qubits and 6
generators, so there should be 1 encoded qubit. But hold on a minute. In order to have any encoded qubits,
we can’t just take an arbitrary set of Paulis and call them the generators of a stabilizer. In particular, to
have a stabilizer, we need to check that the generators we’ve written down commute with each other. The
Z generators automatically commute with each other and the X generators commute with each other, so
all we need to check is that every Z generator commutes with each X generator. In the case of the 7-qubit
code, they do. Therefore, the 7-qubit code is well-defined as a [[7, 1, 3]] code. The 7-qubit code is also known
as the Steane code, since Steane first proposed it.

In the case of the 7-qubit code, we derived both the X and Z generators from the same code, the [7, 4, 3]
Hamming code. For a more general CSS code, we don’t need to do that. We can use C1 to correct bit flip
errors and C2 to correct phase errors.

Theorem 5.1. Let C1 be an [n, k1, d1] classical linear code with parity check matrix H1 and C2 be an
[n, k2, d2] classical linear code with parity check matrix H2. Suppose C1

? ✓ C2. Let S be the CSS code with
stabilizer ✓

0
H2

����
H1

0

◆
. (5.2)

Then S is an [[n, k, d]] quantum code with k = k1 + k2 � n and d � min{d1, d2}.

There are a couple of things to notice about the statement of the theorem. You might think that the
condition C1

? ✓ C2 implies an asymmetry between C1 and C2, but that is not the case. Actually, the
theorem treats them on an equal basis because C1

? ✓ C2 , C2
? ✓ C1. Also, observe that if n > k1 + k2,

the theorem would predict a stabilizer code with a negative number of encoded qubits. That can’t be right,
and of course, it isn’t. When n > k1 + k2, it is not possible that C1

? ✓ C2.
While the theorem is phrased as just one way to make a CSS code, by comparing the theorem and the

definition of a CSS code, you can see that it is actually the only way to make a CSS code. In the future,
I’ll refer to the codes C1 and C2 of a general CSS codes, indicating the classical codes that produce the
Z generators and X generators, respectively. The choice of whether C1 has the X generators or the Z

76

generators is an arbitrary convention, and you may find the other choice in the literature. Also, sometimes
people will use the name “C1” when they mean what I am calling “C1

?.” Again, this is somewhat an
arbitrary convention.

Proof. The main thing we need to check is that the X generators commute with the Z generators. Any X
generator is of the form (x|0), where x 2 C2

?. It is in the dual since it is derived from a row of the parity
check matrix of C2. Any Z generator is derived from the parity check matrix of C1, so it has the form (0|z),
with z 2 C1

?. Then
(x|0)� (0|z) = x · z, (5.3)

with the usual binary inner product on the right. Thus, the stabilizer is Abelian i↵ x · z = 0 for all x 2 C2
?,

z 2 C1
?. Equivalently, we could say that if z 2 C1

?, then z 2 (C2
?)

?

. Since (C2
?)

?

= C2, that produces
the condition C1

? ✓ C2.
Now let us determine the parameters of S. H1 has n� k1 rows and H2 has n� k2 rows, so the stabilizer

has 2n� k1 � k2 generators. Therefore, it has n� (2n� k1 � k2) = k1 + k2 � n logical qubits. The code can
detect up to d1 � 1 bit flip errors using the Z generators, and it can detect up to d2 � 1 phase errors using
the X generators, and detecting bit flip errors does not in any way interfere with detecting phase errors.
Any Pauli of weight less than min{d1, d2} can be written as a product PQ, with P a tensor product of X
and I with weight < d1 and Q a tensor product of Z and I with weight < d2. The Pauli is non-trivial if at
least one of P and Q is non-trivial, in which case it can be detected by looking at the appropriate bits of
the error syndrome. Thus, the distance is at least min{d1, d2}.

From theorem 5.1, you can see why I made such a big deal about determining the duals of codes in
chapter 4. The [7, 4, 3] Hamming code contains its own dual, which is why we can use two copies of it
to make the 7-qubit code. We can get other CSS codes by using the other example classical codes. For
instance, let r > m � r � 1. Then R(r,m)? = R(m � r � 1,m) ⇢ R(r,m), and we can make a CSS code
with C1 = C2 = R(r,m). For instance, R(2, 4) is a [16, 11, 4] code, and using it for C1 and C2, we get a
[[16, 6, 4]] CSS code.

We don’t have to use the same code twice. For instance, we can let C1 = R(2, 4) and C2 = R(3, 4), which
is a [16, 15, 2] code. C2

? = R(0, 4), which is just the 16-bit repetition code. R(0, 4) ⇢ C1, so we can make a
CSS code, getting a [[16, 10, 2]] code. Of course, this particular construction is not ideal if we’re interested in
a distance 2 code, since by taking C1 = C2 = R(3, 4), we get a [[16, 14, 2] code, which has the same distance
but more encoded qubits. Still, it might be useful if we want a code that detects any single-qubit phase error
but can actually correct a bit flip error.

5.1.2 Degeneracy and CSS Codes

Theorem 5.1 says that the distance of S is greater than or equal to min{d1, d2}. Why not just equal to?
After all, since code C1 has distance d1, there is a bit flip error of weight d1 that cannot be detected by code
C1 and therefore the corresponding Pauli error has 0 error syndrome for S. Similarly, C2 has distance d2, so
there is also a Pauli with weight d2 which is a tensor product of Z and I and has 0 error syndrome. But for
a quantum code, 0 error syndrome is not enough to make an error undetectable. 0 error syndrome means
that the error is in N(S). An error is undetectable only if it is in N̂(S) \ Ŝ. That is, when a CSS code is
degenerate, its distance could be greater than one might expect simply by examining the two classical codes
that make it up.

For instance, the 9-qubit code is a degenerate CSS code. C1 is composed of three copies of the repetition
code. It has distance 3. However, C2 has the following parity check matrix:

✓
1 1 1 1 1 1 0 0 0
0 0 0 1 1 1 1 1 1

◆
. (5.4)

C2 contains strings such as (1, 1, 0, 0, 0, 0, 0, 0, 0) which have weight 2. Thus, C2 has distance 2. (It is easy
to check that any single-bit error will have nonzero error syndrome.) If we just took the distance to be
min{d1, d2}, we would think that the nine-qubit code had distance 2. However, the phase error formed from

77

the short codeword above is Z1Z2, which is in S. Similarly for all other weight 2 codewords of C2. This is
why the distance of the nine-qubit code can be 3.

5.1.3 Codewords of a CSS Code in Computational and Dual Basis

CSS codes also look nice when the codewords are written in the standard basis. The projector on the code
space is a product of two projectors ⇧1 and ⇧2. ⇧i is the projector on the +1 eigenspace of the generators
derived from Ci. ⇧1 thus projects on the subspace spanned by codewords of C1. ⇧2 can be written as a sum

⇧2 =
1

2n�k2

0

@
X

x2C2
?

Px

1

A , (5.5)

where Px is the Pauli with binary symplectic representation (x|0). The Paulis of this form (for x 2 C2
?) are

the stabilizer elements formed from products of the generators derived from the parity check matrix of C2.
Therefore, we can find the codewords of S by taking some codeword of C1 (which is all that can pass ⇧1)

and applying ⇧2. In general, we get something of the form

|u+ C2
?i =

X

v2C2
?

|u+ vi, (5.6)

for u 2 C1. Recall that C2
? ✓ C1 and C1 is linear, so u+ v 2 C1.

When are two such codewords |u+ C2
?i and |u0 + C2

?i equal?

0 = |u+ C2
?i � |u0 + C2

?i =
X

v2C2
?

|u+ vi �
X

v02C2
?

|u0 + v0i. (5.7)

This is only possible if every term in the first sum is cancelled by a term in the second sum. That is, when
v 2 C2

?, u + v = u0 + v0 for some v0 2 C2
?. Thus, u � u0 = v0 � v 2 C2

? since C2
? is linear. The states

|u+ C2
?i only depend on cosets of C2

? within C1, thus explaining the notation I chose to represent the
basis states.

C1 has 2k1 codewords and C2
? has 2n�k2 codewords, so C1/C2

? has 2k1+k2�n codewords, which is the
same as the dimension of S. The codewords |u+ C2

?i form a basis for the code space of the CSS code.
I claimed that in the CSS construction, the two classical codes used were treated equally, but in this

expansion, they certainly seem unequal. The solution lies in looking in the Hadamard rotated basis. The
Hadamard transform switches the role of X and Z, so you might expect that it switches the role of C1 and
C2. If you expected that, you are correct. Let’s calculate it explicitly:

H⌦n|u+ C2
?i =

X

v2C2
?

H⌦n|u+ vi (5.8)

=
X

v2C2
?

X

w

(�1)(u+v)·w|wi (5.9)

=
X

w

(�1)u·w
0

@
X

v2C2
?

(�1)v·w
1

A |wi (5.10)

=
X

w2C2

(�1)u·w|wi (5.11)

=
X

x2C2/C1
?

(�1)u·x
X

y2C1
?

|x+ yi (5.12)

=
X

x2C2/C1
?

(�1)u·x|x+ C1
?i (5.13)

78

|0i

Figure 5.1: A circuit to measure the parity of 4 qubits.

To get the fourth line, observe that if w 2 C2, then v · w = 0 always, but if w /2 C2, then v · w = 0 for half
of the values of v and v · w = 1 for the other half of the values of v. (It must be nonzero for some v since
w /2 C2. Call that v0. Then if v 2 C2

?, so is v + v0, but exactly one of v · w = 1 and (v + v0) · w = 1. Thus
we can pair the elements of C2

? such that within each pair one is orthogonal to w and one is not.)

In the next-to-last line, I have broken the sum over w into a sum over cosets of C1
? and a sum over

elements of the cosets. This is a sensible thing to do because u · w only depends on which coset w lies in of
C1

? in C2: If w0 = w + y, y 2 C1
?, then u · w0 = u · w + u · y, but u 2 C1, so u · y = 0.

In particular, if we have associated the basis codewords |u+ C2
?i with logical basis codewords, then we

recognize equation (5.13) as a Hadamard transform of the logical codewords, with the new basis codewords
|x+ C1

?i. In the standard basis, the CSS code consists of superpositions over cosets of C2
? in C1, while in

the Hadamard-rotated basis, it consists of superpositions over cosets of C1
? in C2.

5.1.4 Error Correction for a CSS Code

CSS codes are stabilizer codes, so any general technique for performing error correction on stabilizer codes will
work for CSS codes too. However, CSS codes have additional special structure which we can take advantage
of to get better error correction procedures. In section 12.3, I’ll discuss a fault-tolerant error-correction
procedure that is designed for CSS codes, but for now, I’ll just discuss a non-fault-tolerant scheme.

For a general stabilizer code, the bits of the error syndrome come from the eigenvalues of the stabilizer
generators. For a CSS code, the stabilizer generators break up into two parts, one from the code C1 and one
from the code C2. The first set of syndrome bits identifies bit flip errors, while the remaining syndrome bits
identify phase errors.

In the standard basis, the codewords are superpositions of codewords of C1, so we can measure the bit flip
syndrome by measuring the parity checks of C1. Of course, we must be careful to measure only the parity
checks and nothing more, since we don’t want to destroy any superposition of logical states. To measure
a parity check, you can add a single ancilla qubit in the state |0i and perform CNOT gates from all the
qubits involved in the parity check to the ancilla. Then measure the ancilla qubit and the outcome will be
the desired parity. See figure 5.1 for an example.

The bit flip syndrome we get this way is exactly the syndrome of the classical code code C1 if it underwent
the same bit flip error. In order to decode the syndrome and learn the actual error, we can just invoke the
classical procedure. If the code C1 has an e�cient syndrome decoding algorithm, then we get one for the bit
flip errors of the CSS code also.

For the phase errors, we can simply rotate into the Hadamard basis. Now the codewords are superpositions
of codewords of C2, and the phase errors have become bit flip errors. If, after the Hadamard transform, we
measure the parity checks of C2, that is the same as measuring the phase error syndrome for the CSS code.
The phase error syndrome is exactly the same as the error syndrome for C2 if it underwent bit flip errors
corresponding to the locations of the phase errors. Again, we can use the syndrome decoding algorithm for
C2 to identify the phase errors for the CSS code.

79

+ 0 1 ! !2

0 0 1 ! !2

1 1 0 !2 !
! ! !2 0 1
!2 !2 ! 1 0

⇥ 0 1 ! !2

0 0 0 0 0
1 0 1 ! !2

! 0 ! !2 1
!2 0 !2 1 !

Table 5.2: The addition and multiplication tables for GF(4).

5.2 GF(4) Codes and Stabilizer Codes

Now we’ll return to more general stabilizer codes. CSS codes have many nice properties, but they are not
perfect. For instance, general stabilizer codes can be more e�cient than CSS codes — the 7-qubit code is
the smallest CSS code that corrects 1 error, whereas the 5-qubit code, a stabilizer code, is the best QECC
of any type that corrects 1 error. While there are some non-stabilizer codes known that are slightly better
than any stabilizer code, the di↵erences are small for codes correcting Pauli channels.

In this section, I’ll therefore discuss a technique for adapting some classical codes to get stabilizer codes
which are not CSS codes. In order to do so, we’ll have to go to non-binary codes.

5.2.1 Correspondence Between GF(4) and the Pauli Group

The main “insight” of this particular technique is that the one-qubit Pauli group has 4 elements, and so does
the finite field GF(4). Amazing, no?

Really, we’re connecting P̂n, the Pauli group sans phases, with an n-dimensional vector field over GF(4).
For n = 1, we simply associate each element of the Pauli group with the elements of GF(4):

I $ 0 X $ 1
Z $! Y $!2 (5.14)

For n qubits, the ith tensor factor of P 2 P̂n becomes the ith component of a vector over GF(4) using the
rules in equation (5.14).

The conversion works much the same way as the conversion between P̂n and the binary symplectic
representation of the Pauli group. Multiplication in P̂n becomes addition in GF(4). The full correspondence
is summarized in table 5.3. It’s also worth recalling the addition and multiplication tables for GF(4), which
are given in table 5.2.

5.2.2 The GF(4) Symplectic Inner Product

As with the binary symplectic representation, we need to recover somehow the notation of commutation,
and again we turn to a symplectic inner product. We want some map from GF(4) ⇥ GF(4) to Z2 which
gives 0 when one input is 0 or both inputs are the same, and gives 1 otherwise. It turns out that the correct
formula is tr(ab). The a and trace operations are defined as follows for GF(4):

0 = 0 1 = 1
! = !2 !2 = !

tr 0 = 0 tr 1 = 0
tr! = 1 tr!2 = 1

(5.15)

You can check by trying all combinations that this formula works. The generalization to n-dimensional
vectors is then straightforward:

a ⇤ b = tr(a · b), (5.16)

where · is just the usual dot product. In the classical coding literature, this inner product is sometimes
known as the trace-Hermitian inner product.

80

In the Pauli group In GF(4)
I 0
X 1
Z !
Y !2

Multiplication Addition
c(P,Q) a ⇤ b = tr(a · b)
Phase No equivalent
No equivalent Multiplication
Unitary T (see chapter 6) Multiplication by !
Stabilizer S Weakly self-dual additive code S
Normalizer N(S) Dual S? (under ⇤)

Table 5.3: Equivalence between the Pauli group and GF(4).

5.2.3 Stabilizer Codes as GF(4) Codes

We can convert a stabilizer to sets of vectors over GF(4) just as we converted them to the binary symplectic
representation. We’d like to interpret the resulting set as a classical error-correcting code over GF(4).
Formally, there is no problem in doing so. However, what we get is not necessarily a linear code. Sometimes
we do get a linear code, as in the example of the five-qubit code (converted to a GF(4) code in table 5.4),
but it is not hard to come with stabilizer codes which don’t produce linear GF(4) codes.

Because P,Q 2 S) PQ 2 S, the GF(4) code S which we get is additive (closed under addition). However,
for it to be linear, S would also need to be closed under multiplication by !, and that is not necessarily true.
(It also needs to be closed under multiplication by !2, but that follows automatically if it is closed under
multiplication by !.)

The other condition we need to satisfy is that the stabilizer is Abelian. We can express this in terms of a
dual with respect to the symplectic product ⇤. The dual of an additive code is additive, and the dual of the
GF(4) conversion of a stabilizer is the GF(4) conversion of the normalizer. An additive code corresponds to
an Abelian group if it is weakly self-dual.

We now have the main components we need to convert GF(4) codes into stabilizer codes.

Theorem 5.2. Suppose C is an additive code over GF(4) which is weakly self-dual under ⇤. Then C can
be converted to a stabilizer S with parameters [[n, k, d]]. n is the number of physical registers in C. If C
contains K = 2r codewords, then k = n � r. The distance d of S is the smallest weight of a member of
C? \ C, and in particular, d is at least equal to the distance of C?.

Note that there are a number of peculiar things involved in the conversion. In some sense C? is more
closely analogous to the quantum code we get, since the distance of S is at least equal to the distance of C?.
However, the number of encoded qubits is a formula that does not show up at all in classical coding theory
(which is more interested in writing K = 4r

0
than K = 2r), and of course the distance can be even larger

than the distance of C? because of degeneracy. And it is important to bear in mind that the dual is taken
with respect to the symplectic product ⇤ rather than the usual inner product.

The upshot is that if we look at the most common classical GF(4) codes and try to convert them into
quantum codes, we won’t get the most general stabilizer code. But who cares about that? We only want
good codes, and if we can get them by looking at existing GF(4) codes, that’s good enough.

5.2.4 Linear GF(4) Codes

For linear GF(4) codes, the conditions in theorem 5.2 simplify somewhat. In particular, we have the following:

Proposition 5.3. If C is a linear GF(4) code, then its dual with respect to the inner product x · y is the
same as the dual with respect to ⇤.

81

1 ! ! 1 0
0 1 ! ! 1
1 0 1 ! !
! 1 0 1 !

Table 5.4: The five-qubit code converted to a GF(4) code.

Proof. We wish to show that x · y = 0 8y 2 C i↵ x ⇤ y = 0 8y 2 C. The forward direction is trivial, so we
only need to show the backwards direction.

Suppose tr(x · y) = 0, but x · y = 1. Then x · (!y) = ! and x ⇤ (!y) = tr(x · (!y)) = 1. Therefore, since
C is linear, if x ⇤ y = 0 8y 2 C, then x · y = 0 8y 2 C.

This simplifies the procedure of checking for weakly self-dual codes because we can use the dual under
the standard inner product and then take the conjugate rather than have to compute the dual under the
unusual symplectic inner product ⇤.

5.2.5 Example: Perfect Qubit Codes

Now let’s look at some concrete examples of constructing stabilizer codes from GF(4) codes. It turns out
that the GF(4) Hamming codes have the right properties, or rather their duals do.

Theorem 5.4. The duals (with respect to the standard inner product) of the Hamming codes over GF(4)
can be converted to stabilizer codes. The dual of the [(4r � 1)/3, (4r � 1)/3� r, 3]4 Hamming code becomes a
[[(4r � 1)/3, (4r � 1)/3� 2r, 3]] qubit stabilizer code.

Notice that the resulting stabilizer code encodes (4r�1)/3�2r qubits whereas the Hamming code encodes
(4r � 1)/3� r GF(4) registers. This is a consequence of using a base of 2 instead of 4 to count registers, as
mentioned in the discussion of theorem 5.2.

Proof. The Hamming codes are linear, so we need to show that a Hamming code contains its dual relative
to x · y. Looking at the construction of the non-binary Hamming codes in the proof of theorem 4.14, we see
that if we discard the last row of the parity check matrix, the first column is all 0, and then every other
column is repeated four times. That means that the inner product of any two of these rows will be zero,
since we end up adding the same thing four times.

Next, we should show that we also get 0 if we take the inner product of the last row with another row i.
Since the first column of row i is 0, we can ignore the first column. The other columns break up into sets of
four, within which row i has some value a repeated four times, while the last row runs over all the values in
GF(4): 0, 1, !, and !2. Whatever the value of a,

a0 + a1 + a! + a!2 = a(0 + 1 + ! + !2) = 0. (5.17)

That proves that the parity check matrix of the Hamming code can be converted into a stabilizer. The
number of encoded qubits follows from theorem 5.2.

The dual (with respect to x · y) of the dual (with respect to the standard inner product) of a Hamming
code is just the conjugate of the Hamming code, produced by replacing x with x everywhere in the code.
The conjugate of a code has the same distance as the code since taking the conjugate does not change the
weight, and therefore, the stabilizer codes we have derived have distance at least 3. In fact, these codes are
non-degenerate, so the distance is exactly 3.

We get codes with parameters [[5, 1, 3]], [[21, 15, 3]], [[85, 77, 3]], etc. The [[5, 1, 3]] code produced this way
(shown in table 5.5) is equivalent to the [[5, 1, 3]] code we discussed before. Note that while the classical
[5, 3, 3]4 Hamming code has two rows in its parity check matrix, the quantum [[5, 1, 3]] code has four generators
of its stabilizer. The vectors v, !v are considered linearly dependent for a code over GF(4), so we only need

82

0 1 1 1 1
1 0 1 ! !2

I X X X X
I Z Z Z Z
X I X Z Y
Z I Z Y X

Table 5.5: The parity check matrix of the five-bit GF(4) Hamming code and the five-qubit code derived from
it.

to include one of them in the parity check matrix, but they convert to Paulis which are independent when
considered as operators on qubits, so we need to list them both in the stabilizer.

This family of quantum codes is interesting because, like the classical Hamming codes they are derived
from, the codes in this family use up all of the error syndromes. The [[(4r � 1)/3, (4r � 1)/3 � 2r, 3]] code
has 2r stabilizer generators, so 4r error syndromes. There are 3n + 1 = 4r zero and one-qubit errors, and
the code is non-degenerate, so each syndrome is used exactly once.

It is unclear what the correct definition of a perfect degenerate QECC should be, but a non-degenerate
quantum code is perfect if the number of correctable errors is exactly equal to the number of error syndromes.
Thus, the QECCs derived from the GF(4) Hamming codes are perfect qubit codes.

83

84

Chapter 6

Symmetries Of Symmetries: The
Cli↵ord Group

When dealing with stabilizer codes, it is helpful to restrict attention to a set of quantum gates that is
guaranteed to treat the code nicely. There exists a unitary operation that will take any subspace (for
instance, a quantum error-correcting code) into any other subspace of the same dimension. Sometimes
that’s exactly what you want. However, if you’ve taken the e↵ort to work with a code with a nice tractable
description in terms of its stabilizer, you don’t want your work ruined by using a poorly-thought-out unitary.
In general, quantum gates will map the code space of a stabilizer code into some other code, which might
not be a stabilizer code.

The Cli↵ord group is a group of unitary gates that is specifically chosen so that it does not do this. If
you start with a stabilizer code and perform a Cli↵ord group gate, you will always have another stabilizer
code. The key to this is using only unitary operations which can be thought of as permutations of the Pauli
group. A Cli↵ord group operation then just switches one stabilizer into another.

6.1 Definition of the Cli↵ord Group

6.1.1 Motivation for the Cli↵ord Group

Suppose we perform the unitary U on a state | i from a stabilizer code S. What happens to the stabilizer?
Suppose M 2 S, so M | i = | i. We want to find M 0 for which U | i is a +1 eigenstate. It turns out the
correct choice is M 0 = UMU †:

M 0U | i = UMU †U | i = UM | i = U | i, (6.1)

since U is unitary. Running over all M in the stabilizer, we find that S0 = {UMU †|M 2 S} is a set of
operators for which all states U | i are +1 eigenstates (where | i is any element of T (S)).

We’d like to say that S0 is the new stabilizer of the code, with code space U(T (S)). However, the catch
is that without any additional constraint on U , S0 might contain many non-Paulis, and the stabilizer is
supposed to be a subset of Pn. In addition, the true stabilizer of the subspace U(T (S)) might contain
additional Paulis that are not in S0. Furthermore, U(T (S)) might not be a stabilizer code — the Paulis in
S(U(T (S))) might be insu�cient to specify the subspace. (Recall definition 3.4.)

The Cli↵ord group is a set of unitaries that does not have these complications. It maps stabilizers to
stabilizers. Fortunately, the Cli↵ord group contains many interesting quantum gates; unfortunately, it is not
enough for a universal quantum computer. The Cli↵ord group is su�cient for encoding stabilizer codes, and
gives a good start on fault-tolerant operations, but eventually we will need to go beyond it.

85

6.1.2 Definition of the Cli↵ord Group and Variants

Definition 6.1. The Cli↵ord group Cn on n qubits is the normalizer of Pn in the unitary group U(2n). That
is,

Cn = {U 2 U(2n)|UPU † 2 Pn 8P 2 Pn}. (6.2)

The name “Cli↵ord group” is not particularly illuminating, perhaps. It is motivated by the idea that
there might be a connection of some sort to Cli↵ord algebras, but the connection is not very close. To add
to the confusion, you might encounter the term “Cli↵ord group” in the mathematics literature referring to a
di↵erent group. In quantum information papers, Cli↵ord group refers to definition 6.1 or one of its variants
defined below. You might also encounter the terms “normalizer group,” “symplectic group” (or operations),
or sometimes “stabilizer operations” for Cn. None of these terms is completely satisfactory, and “Cli↵ord
group” is the most widespread, so I will use that.

The Cli↵ord group contains all gates of the form ei✓I, and if U 2 Cn, then ei✓U 2 Cn. As with the Paulis,
global phase is frequently not significant for Cli↵ord group elements. Indeed, it is less likely to matter for
the Cli↵ord group. Anticommutation is less important in the Cli↵ord group than it is in the Pauli group, so
we will usually consider not the full Cli↵ord group, but the Cli↵ord group with phases removed.

By definition, the Pauli group Pn is a normal subgroup of Cn. Sometimes it is better to consider the
Cli↵ord group with the Pauli subgroup modded out. The Pauli group only contains the phases ±1,±i, so
even once the Pauli group is gone, there are still additional phases to worry about. Typically, we will want
to remove those as well.

Definition 6.2.

Ĉn = Cn/{ei✓I} (6.3)

Čn = Ĉn/P̂n. (6.4)

I will refer to these variants as the “Cli↵ord group,” sometimes without specifying which one I mean.
Usually it doesn’t much matter, or can be deduced from context (or both).

6.1.3 Example Cli↵ord Group Elements

Now let’s look at some Cli↵ord gates. We know the Pauli group is a subgroup of Cn, so that gives us one set
of examples. The Cli↵ords are defined to act on Pn by conjugation, and, as you’ll see shortly, the best way
of characterizing an element of the Cli↵ord group is usually by giving the action under conjugation. Suppose
we have P 2 Pn ⇢ Cn. What does it do to another Pauli Q under conjugation?

PQP † = (�1)c(P,Q)QPP † = (�1)c(P,Q)Q. (6.5)

Thus, Q 7! ±Q, with the sign determined by whether P and Q commute or anticommute. The e↵ect of
conjugating by a Pauli is to rearrange the signs of other Paulis without changing their identity. This is easy
to square with what we know about stabilizers from chapter 3: Applying the error P will move us from
the +1 eigenspace of Q to the �1 eigenspace of Q i↵ P and Q anticommute. Moving to the �1 eigenspace
is equivalent to modifying the stabilizer to contain �Q instead of Q, which is the way we understand the
action of Cli↵ord group elements.

Another gate in the Cli↵ord group is the Hadamard transform H. As we’ve discussed, the Hadamard
transform switches the role of X and Z. This can be made concrete by looking at the conjugation action of
H. You can work it out by multiplying together the matrices, but I’ll just tell you the answer:

HXH = Z (6.6)

HYH = �Y (6.7)

HZH = X. (6.8)

86

H† = H, so I’ve skipped the adjoints in the above equations. As you can see, the action of H is indeed to
switch X and Z. The e↵ect on states is to switch Z eigenstates with X eigenstates:

|0i (stabilizer Z)$ |+i = |0i+ |1i (stabilizer X) (6.9)

|1i (stabilizer �Z)$ |�i = |0i � |1i (stabilizer �X) (6.10)

While its action on Y is not as dramatic as its action on X and Z, H does not leave Y completely alone.
Instead, it changes the sign of Y , so +1 eigenstates of Y get switched with �1 eigenstates of Y :

1p
2
(|0i+ i|1i)$ 1

2
[(1 + i)|0i+ (1� i)|1i] = ei⇡/4p

2
(|0i � i|1i). (6.11)

The conjugation action doesn’t tell us about the overall phase ei⇡/4 introduced by H, but that has no
physical significance anyway.

The other important thing about H’s action on Y is that I didn’t need to specify it. The action of H on
Y can be deduced from its action on X and Z. Conjugation is a group homomorphism — the conjugate of
the product is the product of the conjugates:

UPQU† = (UPU †)(UQU†). (6.12)

In this case,
HYH = H(iXZ)H = i(HXH)(HZH) = iZX = �Y. (6.13)

Equivalently, we could deduce the action of H on X from the action on Y and Z, or the action on Z from
the action on X and Y . The action on I, of course, will always be trivial (UIU † = I).

The Hadamard switches X and Z, but only changes the phase of Y . There are also Cli↵ord group
elements that switch other pairs of Paulis. For instance, R⇡/4 2 Cn:

R⇡/4XR†

⇡/4
= Y (6.14)

R⇡/4Y R†

⇡/4
= �X (6.15)

R⇡/4ZR†

⇡/4
= Z. (6.16)

This is not 100% analogous to H, since Z really is left alone by R⇡/4, but Y picks up a minus sign under
H. However, by multiplying with a Pauli, we can take care of that sign issue:

(Y R⇡/4)X(Y R⇡/4)
† = Y (6.17)

(Y R⇡/4)Y (Y R⇡/4)
† = X (6.18)

(Y R⇡/4)Z(Y R⇡/4)
† = �Z. (6.19)

You can deduce these equations by performing the conjugation action of R⇡/4 and then following it with the
conjugation action of Y , which switches the signs around.

You might wonder if we can completely get rid of the minus sign, rather than simply switching it to
another location, by choosing an appropriate Pauli. The answer is no: any Pauli will commute with one
Pauli and anticommute with two of them. Thus, it switches the sign of two of the three one-qubit Paulis
X, Y , and Z. We can go from one minus sign to three minus signs, but never to zero or two. What we can
do is change the signs of the generators of P1 (or Pn when dealing with n qubits) in any way we like. For
instance, to change X 7! �X, Z 7! Z, conjugate by Z. The change in the sign of Y is determined by the
change in the signs of X and Z.

Among two-qubit Cli↵ord group elements, the most famous gate is the CNOT gate, which has the
following conjugation action on the Paulis:

X ⌦ I 7! X ⌦X (6.20)

Z ⌦ I 7! Z ⌦ I (6.21)

I ⌦X 7! I ⌦X (6.22)

I ⌦ Z 7! Z ⌦ Z. (6.23)

87

We are dealing with the two-qubit Pauli group, and I have taken advantage of the homomorphism property
of conjugation to just list the action of CNOT on a generating set of four Paulis for P2. For any other Pauli,
you can deduce the conjugation action of CNOT by multiplying as described above for the Hadamard.

6.1.4 Determining Cli↵ord Group Element From Action on Generating Paulis

Describing the conjugation action of Cli↵ord group elements certainly tells us a lot about the unitary we are
dealing with, but you might worry that some information is being lost. Indeed, if U 0 = ei✓U , then

U 0PU 0† = ei✓UPU †e�i✓ = UPU †, (6.24)

so the conjugation action tells us nothing about the global phase of the unitary. Of course, the global phase
doesn’t have any physical significance, so this is not a great loss. But perhaps there are more important
properties not captured by the conjugation action? The next theorem tells us that there are not:

Theorem 6.1. Suppose U and V are unitaries which have the same action by conjugation on Pn:

UPU † = V PV † (6.25)

for all P 2 Pn. Then U = ei✓V for some ✓.

The theorem does not apply only to Cli↵ord group elements; U and V can be any unitary gates. When
applied to the Cli↵ord group, theorem 6.1 tells us that the conjugation action uniquely identifies elements
of Ĉn. Consequently, we will be able to work with elements of Ĉn using just the conjugation action.

Proof. Note that V †U acts on the Pauli group trivially by conjugation (P 7! P), so it will be su�cient to
consider the case of V = I and show that U = ei✓I.

When UPU † = P for all P 2 Pn, that means that U maps any stabilizer state to a state with the
same stabilizer. For instance, the basis state |ji is a stabilizer state with stabilizer generated by (�1)jiZi,
i = 1, . . . , n (where ji is the ith bit of j). The only states with this stabilizer are ei✓j |ji. We conclude that
U is diagonal

U =

0

BBB@

ei✓1 0 · · · 0
0 ei✓2 · · · 0
...

. . .
0 · · · ei✓2n

1

CCCA
(6.26)

We still need to show that all ✓j are the same. Now consider stabilizer states with stabilizer generators
X1 and (�1)ji�1Zi for i = 2, . . . , n. The eigenstates of those stabilizers are of the form ei�j |+i|ji. Applying
equation (6.26) to |+i|ji, we find

ei✓j = ei✓2n�1+j = ei�j . (6.27)

Similarly, looking at stabilizers with Xi in place of X1, we find that

ei✓j = ei✓2n�i+j , (6.28)

for any j such that the ith bit is 0. Applying all these equalities, we find that all ei✓j terms are equal, proving
the theorem.

Which permutations of Pn are allowed for a conjugation action by a Cli↵ord group element? We know
that conjugation is a group homomorphism. That means that there is no hope that we can freely choose
images for any elements of Pn except for a generating set. In addition, conjugation will always take �I to
�I. That means that conjugation must preserve commutation and anticommutation:

U(PQ)U† = U [(�1)c(P,Q)QP]U† = (�1)c(P,Q)(UQU†)(UPU †) (6.29)

= (UPU †)(UQU†) = (�1)c(UPU
†
,UQU

†
)(UQU†)(UPU †). (6.30)

88

Thus, c(UPU †, UQU†) = c(P,Q).
The usual set of generators for P̂n is {Xi, Zi}. To keep the right commutation relations, the images of

Xi and Zi must commute with the images of Xj and Zj for j 6= i. However, the images of Xi and Zi must
anticommute with each other.

There is one additional constraint: Conjugation by U is an isomorphism, since it can be inverted by
conjugating by U †. Therefore, the generators must map to an independent set of Paulis. However, this
property actually follows from the commutation relations, so we don’t need to impose it separately.

If these conditions are satisfied, a similar approach to the proof of theorem 6.1 gives a constructive
method for finding the unitary corresponding to a given conjugation map. The same procedure applies even
for conjugation by a non-Cli↵ord unitary.

Procedure 6.1. Suppose the map M : Pn ! U(2n) is a group homomorphism, with M(Xi) = Xi, M(Zi) =
Zi, such that

c(Xi, Xj) = c(Zi, Zj) = 0,

c(Xi, Zj) = �ij . (6.31)

(When Xi and Zj are outside the Pauli group, the definition of c(·, ·) is the same, and c(P,Q) is undefined
here if P and Q neither commute or anticommute.)

The following procedure finds the matrix representation in the standard basis of a U for which conjugation
by U performs M :

1. Find the state | 0i which is a +1 eigenstate of Zi for all i = 1, . . . , n.

2. Let b be any number from 0 to 2n � 1, and let bi be the ith bit of b. Let

X(b) =
Y

i

(Xi)
bi . (6.32)

3. Let | bi = X(b)| 0i.

4. Let
Uab = ha| bi. (6.33)

Proof of the validity of procedure 6.1. M is a group homomorphism and Zi = Z†

i
, so it follows that Zi = Z

†

i

as well. All of the Zi commute with each other, so ⇧ = 1

2n

Q
i
(I + Zi) is a projector with trace 1. Thus,

there is a unique state | 0i (up to global phase) which is a +1 eigenstate of all Zi, as needed for step 1. The
remaining steps of the procedure give a linear map U |bi = | bi.

I claim that | bi is an orthonormal basis, so U is unitary:

h b| b0i = h 0|(X(b))†X(b0)| 0i (6.34)

= h 0|
Y

i

(Xi)
b
0
i�bi | 0i (6.35)

using the fact that the Xi commute with each other. As with the Zis, Xi = X
†

i
. Then since | 0i is a +1

eigenstate of Zi,

h b| b0i = h 0|
Y

i

(Xi)
b
0
i+bi | 0i (6.36)

= h 0|Zj

Y

i

(Xi)
bi+b

0
i | 0i (6.37)

=
Y

i

(�1)(bi+b
0
i)c(Zj ,Xi)h 0|

Y

i

(Xi)
bi+b

0
iZj | 0i (6.38)

= (�1)bi+b
0
ih 0|

Y

i

(Xi)
bi+b

0
i | 0i (6.39)

= (�1)bi+b
0
ih b| b0i. (6.40)

89

It follows that if, for any j, bj 6= b0
j
, then h b| b0i = 0 as desired. The states | bi we get from procedure 6.1

are normalized, so we have an orthonormal basis.
The last step is to prove that U acts by conjugation on the Pauli group according to M . Let us compute

UZiU † and UXiU†:

UZiU
†| bi = UZi|bi (6.41)

= (�1)bi | bi. (6.42)

Now,

Zi| bi = ZiX(b)| 0i (6.43)

= (�1)biX(b)Zi| 0i (6.44)

= (�1)bi | bi. (6.45)

Since the | bi form a basis, UZiU† = Zi.
Similarly,

UXiU
†| bi = UXi|bi (6.46)

= | b0i, (6.47)

where b0 is b with the ith bit flipped (b0
i
= bi + 1, b0

j
= bj for j 6= i).

Xi| bi = XiX(b)| 0i (6.48)

= X(b0)| 0i (6.49)

= | b0i, (6.50)

so UXiU† = Xi.

If you apply procedure 6.1 to a mapping which does not preserve commutation or anticommutation, you
will still get a linear map, but it won’t be unitary. Furthermore, it may not realize the conjugation action
you wanted, so there is no real reason to apply procedure 6.1 unless the map you are working with satisfies
equation (6.31).

6.1.5 The Cli↵ord Group and the Symplectic Group

The conditions on the conjugation map performed by a Cli↵ord group operation become somewhat more
straightforward if we consider them in terms of the binary symplectic representation. A group homomorphism
of the Paulis becomes a linear map on 2n-dimensional binary vectors. The requirement that the generators
map to independent Paulis just says that the linear map has maximum rank. The constraint that conjugation
preserves the commutation relations just means that the linear map must preserve the symplectic inner
product:

v � w = (Mv)� (Mw) (6.51)

vTJw = vTMTJMw, (6.52)

with J the 2n⇥ 2n matrix

J =

✓
0 I
I 0

◆
. (6.53)

Running over all values of v and w, we find

J = MTJM. (6.54)

90

M is a member of the symplectic group Sp(2n,Z2).
As usual, by going to the binary symplectic representation, we lose all information about the phases

of Paulis in the stabilizer. An operation which only changes the phases of Paulis is always performed by
conjugation by a Pauli:

Proposition 6.2. If UPU † = ±P for all P 2 Pn, then U = ei✓Q for Q 2 Pn and some value of ✓.

Proof. I will show that any mapping P 7! (�1)cPP which could possibly be performed by a unitary can also
be performed by conjugation by some Q 2 Pn. Then the proposition follows from theorem 6.1.

For any unitary U , conjugation performs a group homomorphism, so

cPQ = cP + cQ. (6.55)

In particular, the mapping is completely determined by its action on Xi and Zi for i = 1, . . . , n. For any cP
consistent with equation (6.55), I claim there exists Q 2 Pn that implements it. By equation (6.5), we need
to find Q such that c(Q,Xi) = cXi and c(Q,Zi) = cZi . By lemma 3.15, such a Q exists, though there is only
one. Specifically,

Q =
nO

i=1

Qi (6.56)

with

Qi =

8
>>><

>>>:

I if cXi = cZi = 0

X if cXi = 0 and cZi = 1

Y if cXi = 1 and cZi = 1

Z if cXi = 1 and cZi = 0

(6.57)

It follows from proposition 6.2 that elements of Čn = Ĉn/P̂n correspond uniquely to symplectic operations.
Indeed, Čn is exactly the symplectic group.

Theorem 6.3. Čn
⇠= Sp(2n,Z2). Equivalently, for every map Xi 7! Xi, Zi 7! Zi with Xi, Zi 2 Pn and

satisfying the correct commutation relations, there exists U 2 Cn which performs that map under conjugation,
and U is unique up to overall phase.

Proof. Most of the pieces of this theorem are derived from theorem 6.1, equation (6.54), and proposition 6.2.
The only remaining piece needed to complete the characterization is to show that every symplectic operation
can be realized by a Cli↵ord group operation. This is straightforward: Given any linear map from P̂n to P̂n,
we can lift it to a group homomorphism M : Pn ! Pn by choosing arbitrary signs for the images of Xi and
Zi. When the original linear map is symplectic, M satisfies equation (6.31), so using procedure 6.1, we find
a unitary U realizing M and thus realizing the symplectic map on the binary symplectic representation. U
maps Paulis to Paulis under conjugation, so U 2 Cn.

6.2 Classical Simulation of the Cli↵ord Group

One of the most interesting and useful things about the Cli↵ord group is also one of the most disappointing.
If U 2 Cn, we can specify it by giving a global phase plus the images of 2n Paulis X1, Z1, . . . , Xn, Zn. Each
image is also an n-qubit Pauli, so requires at most 2n + 1 bits to specify. Thus, a Cli↵ord group element
can be specified using only (2n + 1)(2n) bits plus a global phase. Contrast that with a general unitary
U 2 U(2n), which needs 22n real parameters to specify. Cli↵ord group elements have a much more succinct
representation than general unitary gates.

Indeed, circuits made out of Cli↵ord group gates have a much stronger property: they can be e�ciently
simulated on a classical computer. This is a very useful fact, since it makes working with even relatively
large Cli↵ord group circuits tractable. For instance, stabilizer codes are exactly those QECCs which can be

91

H

Figure 6.1: An example 2-qubit circuit made of Cli↵ord group gates.

encoded using a circuit composed of Cli↵ord group gates. The ability to easily describe a stabilizer code via
its stabilizer is one aspect of the e�cient simulatability of the Cli↵ord group gates which form its encoder.
We’ll also see in part II that this property plays a big role in helping us find fault-tolerant implementations
of Cli↵ord group gates.

However, there is a price to be paid. Because Cli↵ord group gates can classically be simulated, it means
that a circuit composed only of Cli↵ord group gates cannot access the full power of quantum computa-
tion. (Presumably; as with most statements about computational power, this one relies on some unproven
complexity-theoretic assumptions, in this case the assumption that quantum computers are computationally
more powerful than classical computers.) When we get to fault tolerance, that means that we’ll need to
venture outside the Cli↵ord group in order to get a universal set of fault-tolerant gates.

6.2.1 Simulation of a Unitary Circuit of Cli↵ord Group Gates

If we have a unitary circuit consisting only of Cli↵ord group gates, the simulation procedure is quite straight-
forward. Note that if U, V 2 Cn, and U : P 7! Q, V : Q 7! R, then (V U) : P 7! R. That’s really all there is
to the simulation.

Procedure 6.2. You are given a circuit consisting of a product U =
Q

1

i=m
Ui, with Ui 2 Cn. (I.e., U1 is

the first gate performed, and Um is the last gate to be performed.) Each Ui can be specified by its action
on the generators of the Pauli group, Ui : Xj 7! Ui(Xj), Ui : Zj 7! Ui(Zj). Then the action of the overall
circuit U on the Pauli group can be determined as follows:

1. Initialize Xj = Xj and Zj = Zj .

2. Starting with i = 1, and stepping through i up to the last gate m, repeat the following steps:

(a) Calculate Ui(Xj). This can be done by writing Xj as a product of single-qubit Xs and Zs and
applying equation (6.12).

(b) Let the new value of Xj be Ui(Xj).

(c) Similarly, replace Zj by Ui(Zj).

3. The overall circuit U has the action Xj 7! Xj , Zj 7! Zj , using the final values of Xj and Zj .

When the circuit consists of only two-qubit gates, updating an X or Z operator only requires updating
two qubits in the decomposition, since all qubits not a↵ected by the gate retain the same Pauli values.
Therefore, each gate can be updated in a total time O(n) (since we need to update 2n X and Z operators).
The simulation of the full circuit thus takes a time O(nm).

As an example, consider the simple circuit given in figure 6.1. Following the above procedure, we find
that this circuit has the following action on Paulis:

X1 : X ⌦ I ! X ⌦X ! Z ⌦X ! I ⌦X
Z1 : Z ⌦ I ! Z ⌦ I ! X ⌦ I ! X ⌦ Z
X2 : I ⌦X ! I ⌦X ! I ⌦X ! Z ⌦X
Z2 : I ⌦ Z ! Z ⌦ Z ! X ⌦ Z ! X ⌦ I.

(6.58)

92

6.2.2 Simulation of a Unitary Circuit on a Stabilizer Subspace

Another interesting case is when we have some constraints on the input state of the circuit. For instance,
the circuit may involve some ancillas, or it may be intended to be performed on a state encoded in a QECC.
It may even be that the full input state of the circuit is specified, and we wish to determine the exact output
state of the circuit. When the input state is a stabilizer state or lies within a stabilizer code, there still exists
an e�cient simulation procedure.

If the initial state is completely specified as a stabilizer state, we can keep track of the behavior of the
generators M1, . . . ,Mn of the stabilizer. As before, we step through gates, updating the stabilizer generators
at each step just as we updated X and Z before. When Mj is a generator of the stabilizer before we
perform gate Ui, Ui(Mj) is a generator of the stabilizer after the gate, so this procedure allows us to learn
the stabilizer of the output state of the circuit. The are only two small di↵erences from the case without a
constraint. First of all, we need keep track of only n generators instead of 2n Paulis. The other di↵erence
is that the generators of the stabilizer are not unique, so after performing any gate, if it is convenient to do
so, we may choose a new set of generators of the current stabilizer. There is no requirement to do so; only
do it if it is clearly going to simplify the computation.

When the input state is only partially specified by a stabilizer code, we keep track both of the stabilizer,
which now has n � k generators, and of 2k logical X and Z operators. The case with k = n is the “no
constraint” case of the previous subsection, and the case with k = 0 is the stabilizer state case just discussed.
Again, the stabilizer generators are non-unique, so at any step, we may choose a new set of generators. The
logical X and Z operators are also now non-unique, so at any step we may multiply them by elements of the
stabilizer, which means we are choosing a di↵erent coset representative.

Procedure 6.3. You are given a circuit consisting of a product
Q

1

i=m
Ui, with Ui 2 Cn, which is to be

performed on an arbitrary input state from stabilizer code S. S encodes k qubits (0 k n), has generators
M1, . . . ,Mn�k, and has logical Pauli operators Xj , Zj , j = 1, . . . , k. Each Ui can be specified by its action
on the generators of the Pauli group, Ui : Xj 7! Ui(Xj), Ui : Zj 7! Ui(Zj). Then the action of the overall
circuit on the stabilizer code can be determined as follows:

1. Initialize variables Nj = Mj (j = 1, . . . , n� k), X
0

j
= Xj and Z

0

j
= Zj (j = 1, . . . , k) to be the values

given by the stabilizer code input.

2. Starting with i = 1, and stepping through i up to the last gate m, repeat the following steps:

(a) Calculate Ui(X
0

j
) for j = 1, . . . , k. This can be done by writing X

0

j
as a product of single-qubit

Xs and Zs and applying equation (6.12).

(b) Let the new value of X
0

j
be Ui(X

0

j
) for j = 1, . . . , k.

(c) Similarly, replace Z
0

j
by Ui(Z

0

j
) for j = 1, . . . , k.

(d) Replace Nj by Ui(Nj) for j = 1, . . . , n� k.

(e) The current stabilizer T is generated by hN1, . . . , Nn�ki
(f) If desired, choose a new set of generators for T.

(g) If desired, rewrite X
0

j
= NX

0

j
or Z

0

j
= NZ

0

j
with N 2 T.

3. The output state lies in a stabilizer code with generators equal to the final values of Nj , j = 1, . . . , n�k.
The encoded state has undergone the Cli↵ord group operation given by the transformation Xj 7! X

0

j
,

Zj 7! Z
0

j
.

An important special case is when some qubits are completely specified (e.g., to be |0i), and the remaining
qubits are completely unconstrained. In that case, the stabilizer is the stabilizer of the ancilla qubits, and
the initial logical operators X and Z are the Paulis on the unconstrained input qubits.

93

As a example of the expanded procedure, let us consider the circuit in figure 6.1 again, but this time with
the second qubit initially in the state |0i. We now begin with M1 = I ⌦ Z, X1 = X ⌦ I, and Z1 = Z ⌦ I.
Using the same analysis as before, we find that the final value of the stabilizer and logical operators are:

N1 = X ⌦ I (6.59)

X
0

1
= I ⌦X (6.60)

Z
0

1
= X ⌦ Z. (6.61)

We can choose a new coset representative for Z
0

1
: I⌦Z = (X⌦ I)(X⌦Z). Then we can see that the overall

transformation performed is to move the input qubit from the first qubit to the second qubit. In the output
state, the first qubit is fixed to be |0i+ |1i.

6.2.3 Measurement of Paulis

The final step is to add measurements to our simulation. I will phrase this in the most general way, where
we measure the eigenvalue of an arbitrary Pauli operator on n qubits, but it would be equivalent to just
consider measurement of single qubits in the standard basis. This is because measurement of any Pauli can
be implemented via single-qubit measurements plus Cli↵ord group operations. For simplicity, we restrict
attention to Paulis with overall phase ±1, so the eigenvalues are ±1.

The analysis of measurements is somewhat more complicated than the analysis of unitary gates. For one
thing, there are three separate cases to consider. The first case is when the Pauli P we wish to measure is
in the current stabilizer T up to a phase: ±P 2 T. In that case, the measurement outcome is just ±1 (+1 if
P 2 T and �1 if �P 2 T), and the state does not change, since the state being measured is an eigenstate of
P .

The second case is when P 2 N(T). Now, measurement of P constitutes a measurement of some of
the encoded data. We must rewrite P as a product of the logical Paulis X and Z, which determines
that P corresponds to some logical Pauli Q. The measurement output distribution of P is the same as
the measurement output distribution of Q on the original input qubit. We must also update the encoded
state for the e↵ects of the measurement. Finally, the measurement has outcome ±1, so we know that the
post-measurement state is a +1 eigenstate of ±P . In other words, ±P has joined the stabilizer.

The third case, when P 62 N(T), is the most complicated. Since P 62 N(T), 9M 2 T s.t. {P,M} = 0.
Suppose | i 2 T (T), so M | i = | i. The expectation value of a measurement of P on | i is

h |P | i = h |PM | i (6.62)

= h |M(�P)| i (6.63)

= �h |P | i (6.64)

= 0. (6.65)

(since M2 = I, meaning M = M†). Thus, the probability of a +1 outcome and a �1 outcome for the
measurement are both 1/2.

We can also calculate the residual state. If the measurement has outcome (�1)b, the state afterwards is
| 0i = (1/

p
2)(I + (�1)bP)| i (taking into account normalization). If N 2 T commutes with P , then | 0i is

still a +1 eigenstate of N :

N | 0i = 1p
2
N(I + (�1)bP)| i (6.66)

=
1p
2
(I + (�1)bP)N | i (6.67)

=
1p
2
(I + (�1)bP)| i = | 0i. (6.68)

94

| 0i is also a +1 eigenstate of (�1)bP . That means that it is not an eigenstate of any M with {M,P} = 0,
even if M 2 T. Define a stabilizer T0 generated by (�1)bP plus all N 2 T s.t. [N,P] = 0. The stabilizer of
the remaining state after the measurement certainly contains T0. As we will see in a moment, that is all it
contains.

How big is T0? To answer this, we need to know how many elements of T commute with P .

Proposition 6.4. Let S be a stabilizer, and let P 62 N(S) be a Pauli that does not commute with every element
of S. Then exactly half of the elements of S commute with P . Furthermore, for any coset Q 2 N(S)/S, exactly
half the elements of Q commute with P .

Proof. If P 62 N(S), let M 2 S be an element of the stabilizer that anticommutes with P , {M,P} = 0. Then
we can pair all elements of S:

N $MN. (6.69)

Note that MN2 = M , so each element of S is a member of only one pair. The reason for doing this pairing
is that N commutes with P i↵ MN anticommutes with P :

c(MN,P) = c(M,P) + c(N,P) = 1 + c(N,P). (6.70)

Thus, the number of elements of S that commute with P is equal to the number of elements that anticommute
with P .

Similarly, we can pair elements of the cosets representing logical Paulis, N $ MN , using the same
M 2 S. Both N and MN are in the same coset Q, and again, exactly one of them commutes with P and
one anticommutes with P . Thus, half of the coset Q commutes with P .

Corollary 6.5. |T0| = |T|.

The subspace of post-measurement states for a given measurement outcome can be no larger than the
space of possible pre-measurement states, but it could potentially be smaller if multiple states collapse in
the measurement to the same final state. However, as another corollary of proposition 6.4, we find that this
cannot happen. If the code space of T contains k logical qubits, one possible basis for the code space is the
set of 2k codewords which are eigenstates of Z1, . . . , Zk. Each of these codewords is a stabilizer state with
stabilizer generated by T,±Z1, . . . ,±Zk. By proposition 6.4 and the analysis preceding it, the stabilizer of
the post-measurement state is generated by T0 and by ±Z1, . . . ,±Zk, with the same eigenvalues. However,
we must make certain that each coset is represented by an element that commutes with P ; such an element
always exists by proposition 6.4. Since each of the 2k basis states gets mapped to a distinct stabilizer state,
the code space after the measurement also has dimension 2k. This implies that T0 is the actual stabilizer
post-measurement, as claimed.

Furthermore, this logic also tells us that the T-coset of the logical Zi operator gets replaced by the
T0-coset which contains an element of the original Zi that commutes with P . The same reasoning tells us
how to find the new versions of the other logical Paulis. In short, we now know how to update both the
stabilizer and the logical Paulis after measurement of a Pauli operator.

Theorem 6.6. Suppose our system is a codeword of the stabilizer code T, with generators N1, . . . , Nn�k and
logical Paulis Xi and Zi (i = 1, . . . , k), and we measure the eigenvalue of Pauli P 62 N(T). Then, conditioned
on outcome (�1)b, the stabilizer and logical Paulis of the system after the measurement can be determined
as follows:

1. Find generator M 2 T such that {M,P} = 0. If necessary, reorder the generators so that M = N1.

2. For each generator Ni, i > 1, if [Ni, P] = 0, let N 0

i
= Ni. If {Ni, P} = 0, let N 0

i
= NiM .

3. Let N 0
1
= (�1)bP .

4. The new stabilizer T0 is generated by N 0
1
, . . . , N 0

n�k
.

95

5. Pick a representative Zi for each of the logical Z operators for T. If [Zi, P] = 0, let Z
0

i
= Zi; otherwise

let Z
0

i
= ZiM . Z

0

i
is a representative for the new logical Zi operator.

6. Similarly, pick a representative Xi for each of the logical X operators for T. If [Xi, P] = 0, let

X
0

i
= Xi; otherwise let X

0

i
= XiM . X

0

i
is a representative for the new logical Xi operator.

One interesting twist on this system is that we can essentially control the measurement outcome. In
particular, suppose we measure P 62 N(T) and get outcome �1. In theorem 6.6, we identify an element M
from the old stabilizer T which anticommutes with P . However, M commutes with generators 2 through
n� k of T0, since they are also elements of T. M also commutes with the standard coset representatives for
X

0

i
and Z

0

i
. Thus, if we perform M on the post-measurement state, we transform the stabilizer (according

to procedure 6.3) only by changing N 0
1
= �P to +P . The logical operators are unchanged. This is exactly

the same state as we would have gotten (according to theorem 6.6) if the original measurement outcome had
been +1.

Putting everything together, we get the following procedure for simulating Cli↵ord group gates and Pauli
measurements on either a fixed initial stabilizer state or a partially specified state with some free (logical)
qubits:

Procedure 6.4. You are given a circuit consisting of a m-element sequence of unitary Cli↵ord group gates
and Pauli measurements. At step number i, the circuit calls for either Cli↵ord group gate Ui 2 Cn (specified
by its action on Paulis Ui : Q 7! Ui(Q)) or measurement of the eigenvalue of Pi 2 Pn (assuming Pi has
eigenvalues ±1, not ±i). The initial state of the circuit is given by stabilizer S, which encodes k qubits
(0 k n), has generators M1, . . . ,Mn�k, and has logical Pauli operators Xj , Zj , j = 1, . . . , k.

1. Initialize variables k0 = k, Nj = Mj (j = 1, . . . , n� k), X
0

j
= Xj and Z

0

j
= Zj (j = 1, . . . , k) to be the

values given by the stabilizer code input. Let the variable state | i be the initial encoded state of the
system, corresponding to the logical state | i.

2. Perform the following procedure for each step i in order, for i = 1, . . . ,m:

(a) If at step i, the circuit calls for Cli↵ord gate Ui:

i. Calculate Ui(X
0

j
) for j = 1, . . . , k0. This can be done by writing X

0

j
as a product of single-

qubit Xs and Zs and applying equation (6.12).

ii. Let the new value of X
0

j
be Ui(X

0

j
) for j = 1, . . . , k0.

iii. Similarly, replace Z
0

j
by Ui(Z

0

j
) for j = 1, . . . , k0.

iv. Replace Nj by Ui(Nj) for j = 1, . . . , n� k0.

v. The current stabilizer T is generated by hN1, . . . , Nn�k0i
vi. If desired, choose a new set of generators for T.

vii. If desired, rewrite X
0

j
= NX

0

j
or Z

0

j
= NZ

0

j
with N 2 T.

(b) If at step i, the circuit calls for measurement of Pi, determine whether ±Pi is in T, if Pi 2 N(T)\T,
or if Pi is not in N(T), as follows:

i. Determine if Pi commutes with all generators Nj of the current stabilizer T. If not, then
Pi 62 N(T).

ii. If Pi does commute with all generators, determine if ±Pi 2 T. This can be done by writing
Pi and the generators Nj in their binary symplectic representations and seeing if vPi is in the
linear span of the vNj .

iii. If Pi commutes with all generators but is not in T, then Pi 2 N(T) \ T.
(c) If at step i, the circuit calls for measurement of Pi with ±Pi 2 T:

i. Evaluate whether +Pi 2 T or �Pi 2 T. This can be done using linear algebra and the binary

symplectic representations of Pi and Nj to write Pi = ±
Q

n�k
0

j=1
N

sj

j
.

96

ii. If +Pi 2 T, return measurement result +1. If �Pi 2 T, return measurement result �1.
(d) If at step i, the circuit calls for measurement of Pi with Pi 2 N(T) \ T:

i. Write Pi =
Q

n�k
0

j=1
N

sj

j

Q
k

j0=1
X

0tj

j
Z

0uj

j
, with sj , tj , uj 2 {0, 1}. This can be done using linear

algebra and the binary symplectic representations of the Paulis.
ii. Let Q =

Q
k

j0=1
X

tj

j
Z

uj

j
.

iii. Perform a measurement of Q on the current logical state | i. Return the measurement result
(�1)b, and update | i accordingly. Note that this step may not be e�cient, depending on
the current state | i.

iv. Reduce k0 by 1, and add (�1)bPi to the stabilizer as a new generator Nn�k0+1. Update T
accordingly, and if desired, choose a new set of generators for T.

v. Update the logical operators X
0

j
and Z

0

j
to relate to the new | i. Again, this step may not

be e�cient.

(e) If at step i, the circuit calls for measurement of Pi with Pi 62 N(T):

i. Choose a uniformly random bit b and return measurement result (�1)b.
ii. Find generator M 2 T such that {M,Pi} = 0. If necessary, reorder the generators so that

M = N1.
iii. For each generator Nj , j > 1, if [Nj , Pi] = 0, leave Nj unchanged. If {Nj , P0} = 0, replace

Nj by NjM .
iv. Replace N1 by (�1)bPi.
v. Update the stabilizer T with the revised generators. If desired, choose new generators for the

revised T.
vi. Pick a representative Z

0

j
for each of the logical Z operators for T. If [Z

0

j
, Pi] = 0, leave Z

0

j

unchanged; otherwise replace Z
0

j
by Z

0

j
M . The updated Z

0

j
is a representative for the new

logical Zj operator; choose a new representative using the updated T if desired.

vii. Similarly, pick a representative X
0

j
for each of the logical X operators for T. If [X

0

j
, P] = 0,

leave X
0

i
unchanged; otherwise replace X

0

j
by X

0

j
M . The updated X

0

j
is a representative for

the new logical Xj operator; choose a new representative using the updated T if desired.

3. The output state lies in a stabilizer code with generators equal to the final values ofNj , j = 1, . . . , n�k0.
The encoded state has had k � k0 logical qubits measured, and has undergone the transformation
Xj 7! X

0

j
, Zj 7! Z

0

j
on the remaining qubits.

Generally, for this sort of simulation, we only consider circuits where measurement of Pi 2 N(T) \T does
not occur, so that the simulation is an e�cient one. For instance, if the circuit contains no measurements, this
is not an issue, or equally if it contains no logical qubits (so N(T) = T). In part II, we will see circuits that
have measurements and some logical qubits, but they have been specially designed to avoid the troublesome
case.

Theorem 6.7 (Gottesman-Knill). Given a circuit starting from an initial stabilizer state, followed by a
sequence of Cli↵ord group operations and Pauli measurements, which may depend on classical computations
performed on previous measurement results, there is an e�cient classical simulation of the circuit.

If you follow procedure 6.4, you will find a time of O(n3m) is needed to do the simulation, taking into
account all the linear algebra manipulations needed to process measurement. However, by keeping track of
slightly more information, this can be reduced to O(n2m).

To illustrate the measurement procedure, let us consider a variation of the example circuit from figure 6.1
which has some measurements in it. The revised circuit is given in figure 6.2. The first few steps are as
before. After the Hadamard, we have the following stabilizer and logical Paulis:

N1 : I ⌦ Z ! X ⌦ Z
X : X ⌦ I ! Z ⌦X
Z : Z ⌦ I ! X ⌦ I.

(6.71)

97

H

Figure 6.2: One-qubit teleportation: an example of a 2-qubit circuit made of Cli↵ord group gates and
measurement.

Then we measure P = Z ⌦ I. In this case, there is only one element of the stabilizer, and it anticommutes
with P . Suppose we get measurement outcome +1. By theorem 6.6, replace N1 with P . X commutes
with P , so its representative need not change. However, we can choose a new coset representative to take
advantage of the new stabilizer: (Z ⌦ X)(Z ⌦ I) = I ⌦ X. Z anticommutes with P , so we must choose a
new coset representative

ZN1 = (X ⌦ I)(X ⌦ Z) = I ⌦ Z. (6.72)

After the measurement, the stabilizer and logical Paulis are thus

N1 : Z ⌦ I (6.73)

X : I ⌦X (6.74)

Z : I ⌦ Z (6.75)

The input qubit has been moved to the second qubit for the output, and the output value of the first qubit
is |0i.

In the case where the measurement result is �1, the stabilizer is �P instead of P . The new representative
for X also acquires this minus sign, so the final state is as follows:

N1 : � Z ⌦ I (6.76)

X : � I ⌦X (6.77)

Z : I ⌦ Z (6.78)

The output state of the first qubit is |1i, and the output state of the second qubit is the input data qubit,
but with a phase flip (Z) performed on it.

6.3 Generators of the Cli↵ord Group

In section 6.1.3, we saw three common gates which are also elements of the Cli↵ord group: H, R⇡/4 and
CNOT. In a sense, they are the only elements of the Cli↵ord group, because they generate the Cli↵ord
group. That is:

Theorem 6.8. Any gate in the n-qubit Cli↵ord group Cn can be written as a product of ei✓I, Hi, R⇡/4,i,
and CNOTi,j, with i, j = 1, . . . , n and ✓ 2 [0, 2⇡).

CNOTi,j means CNOT with qubit i as the control and qubit j as the target.

Proof. First, note that the Pauli group is inside the group generated by H and R⇡/4: Z = (R⇡/4)
2, and

X = HZH. Second, global phases are covered by the gates ei✓I. To finish the proof, we thus need only to
prove that the symplectic representations of H, R⇡/4 and CNOT generate Čn.

It will be helpful to also use two additional gates: SWAP and C� Z. Both are in the Cli↵ord group, and
can easily be performed as a product of H, R⇡/4, and CNOT, so we can use them freely without explicitly
adding them to the generating set. In particular, SWAP is the product of 3 CNOT gates with alternating
directions, and C� Z = (I ⌦H)CNOT(I ⌦H).

98

a)

=

b)

=
H H

Figure 6.3: a) Cli↵ord group circuit for the SWAP gate. b) Cli↵ord group circuit for the C� Z gate.

We can take advantage of theorem 6.3. The symplectic representation of H is

✓
0 1
1 0

◆
, (6.79)

the symplectic representation of R⇡/4 is ✓
1 0
1 1

◆
, (6.80)

and the symplectic representation of CNOT is

0

BB@

1 0 0 0
1 1 0 0
0 0 1 1
0 0 0 1

1

CCA . (6.81)

Additional qubits will modify these matrices by adding a direct sum with the identity matrix. For instance,
when we have 3 qubits, CNOT2,3 is 0

BBBBBB@

1 0 0 0 0 0
0 1 0 0 0 0
0 1 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 1
0 0 0 0 0 1

1

CCCCCCA
. (6.82)

In general, if we have a symplectic matrix

U =

✓
A B
C D

◆
, (6.83)

representing the Cli↵ord group gate U , then left multiplication by another symplectic matrix representing
the gate V gives us the matrix for V U whereas right multiplication gives us UV . The e↵ects of left and right
multiplication by H, R⇡/4, CNOT, C� Z, and SWAP are summarized in table 6.1. As you can see, left
multiplication gives us a set of row operations and right multiplication gives us a set of column operations.
We can’t exactly do standard Gaussian elimination, but we can do something very similar. In particular,
given an arbitrary symplectic matrix U , we will find a sequence of H, R⇡/4, and CNOT to multiply by on
the left and right to transform U into the identity:

gLY

k=1

VL,k

!
U

gRY

k=1

VR,k

!
= I, (6.84)

with VL,k and VR,k drawn from {Hi, R⇡/4,i,CNOTi,j}. Then

U =

0

@
1Y

k=gL

V †

L,k

1

A

0

@
1Y

k=gR

V †

R,k

1

A , (6.85)

99

Gate Left multiplication Right multiplication

Hi Switches the ith rows of (A|B) and
(C|D)

Switches the ith columns of

✓
A
C

◆
and

✓
B
D

◆

R⇡/4,i Adds the ith row of (A|B) to the ith
row of (C|D)

Adds the ith column of

✓
B
D

◆
to the

ith column of

✓
A
C

◆

CNOTi,j Adds the ith row of (A|B) to the jth
row of (A|B), and adds the jth row of
(C|D) to the ith row of (C|D)

Adds the jth column of

✓
A
C

◆
to the

ith column of

✓
A
C

◆
, and adds the ith

column of

✓
B
D

◆
to the jth column of

✓
B
D

◆

C� Zi,j Adds the ith row of (A|B) to the jth
row of (C|D), and adds the jth row of
(A|B) to the ith row of (C|D)

Adds the jth column of

✓
B
D

◆
to the

ith column of

✓
A
C

◆
, and adds the ith

column of

✓
B
D

◆
to the jth column of

✓
A
C

◆

SWAPi,j Swaps the ith rows of A, B, C, and D
with the jth rows of A, B, C, and D

Swaps the ith columns of A, B, C, and
D with the jth columns of A, B, C,
and D

Table 6.1: The e↵ects of left and right multiplication by H, R⇡/4, CNOT, C� Z, and SWAP on a symplectic
matrix.

100

proving the theorem.
In equation (6.83), let ai, bi, ci, and di be the ith columns of A, B, C, and D, respectively, and aij , bij ,

cij , and dij be the i, jth entries of A, B, C, and D. Because U is symplectic, we can apply equation (6.54)
to get the following properties:

1. U has full rank.

2. CTA+ATC = 0; i.e., (ai|ci)� (aj |cj) = 0.

3. CTB +ATD = I; i.e., (ai|ci)� (bj |dj) = �ij .

4. DTA+BTC = I, which is the same as the previous property.

5. DTB +BTD = 0; i.e., (bi|di)� (bj |dj) = 0.

These properties all remain true if we multiply U on the left or right by other symplectic matrices.
To find a sequence of the form equation (6.84), we can use the following steps:

Procedure 6.5.

1. Since U has maximum rank, somewhere in the first column of A or C is a 1. Using left multiplication
by H and SWAP, we can put this 1 in the upper left corner.

2. Do column reduction on the first column of A: Use left multiplication by CNOT to add the 1 in the
upper left corner of A to any other row of A with a 1 in the first column.

3. Do row reduction on the first row of A: Use right multiplication by CNOT to add the 1 in the upper
left corner of A to any other column of A with a 1 in the first row.

4. Using left multiplication by R⇡/4 and/or C� Z, we can similarly make the first column of C to be all
0s.

5. At this point, we find that the first row of C has also become all 0s. This must be the case since

0 = (a1|c1)� (aj |cj) = a1 · cj + c1 · aj = c1j + 0. (6.86)

6. Repeat steps 1 to 5 on the second row and column of A and C to make them all 0 except for a22, which
is 1. Continue with all other rows and columns in sequence, until we have A = I and C = 0.

7. At this point it follows that D = I:

�ij = (ai|ci)� (bj |dj) = ai · dj + ci · bj = dij . (6.87)

Also, B is symmetric:
0 = DTB +BTD = B +BT . (6.88)

8. Right multiply by H for every qubit, switching A and B, and switching C and D, so now B = C = I,
D = 0, and A is symmetric.

9. Right multiply by R⇡/4 as needed to eliminate the diagonal of A. Right multiply by C� Z to eliminate
all other elements of A, leaving A = 0. Since D = 0, these operations do not change C.

10. Right multiply by H for every qubit, switching the left and right halves back again. We are left with
A = D = I, B = C = 0.

It is worth counting just how many gates from the generating set are needed in this procedure. To
eliminate all the 1s in a single row and column of A and C takes O(n) gates. Doing this for all n rows and
columns thus requires O(n2) gates. Steps 8 and 10 only require O(n) gates, but step 8 could require one
gate for each element of A, which is again O(n2). Thus, the overall number of gates used in the procedure is
O(n2). It turns out that this can be slightly improved, allowing an arbitrary element of the Cli↵ord group
to be written as a product of O(n2/ log n) generators.

101

6.4 Encoding Circuits for Stabilizer Codes

Any stabilizer code can be encoded with a Cli↵ord group gate. Therefore, techniques useful for decomposing
a Cli↵ord group unitary into a detailed quantum circuit are also useful for deriving encoding circuits for
stabilizer codes. The main di↵erence between encoding a stabilizer code and finding a circuit for a Cli↵ord
group operation is that there is more freedom in choosing the encoder for a stabilizer code. When you are
given a full Cli↵ord group operation, it tells you exactly what unitary you must perform (up to global phase,
perhaps), whereas for a stabilizer code, you have an additional freedom to perform unitaries which leave the
code space unchanged.

The procedures discussed in this section are boring but necessary. However, it is sometimes possible to
come up with clever codes with more exciting encoding circuits. The most general stabilizer code uses O(n2)
gates in its encoding circuit, which is not too bad, but for a big code, we’d really like an encoding circuit
with only O(n) gates. Some such codes exist. It’s not possible to do better than that for any sensible code,
since with o(n) gates, you can’t even touch every qubit in the code with a gate. Some qubits will end up
either unprotected or unused, maybe even unloved.

The true bottleneck, however, is the decoding circuit, and in particular, the syndrome decoding problem.
Recall that the error syndromes correspond to cosets of N(S) in Pn, and that we assign a coset representative
Qs to each error syndrome s to serve as the “correct” way to correct a state with syndrome s. However, in
general, it is quite di�cult (NP-hard) to compute Qs as a function of s. E�cient codes for which syndrome
decoding can be performed e�ciently are precious things, and one of the main points of coding theory is to
find them. Even better is an e�cient code for which encoding and syndrome decoding can both be done in
time O(n). In general, syndrome decoding, e�cient or not, will use gates outside of the Cli↵ord group, but
is most often done on a classical computer since it is basically a classical problem.

6.4.1 Encoding a Stabilizer Code with Unspecified Logical Paulis

The most straightforward case is when the stabilizer is given, but not the logical Paulis. In this case, there
is an additional freedom to perform unitaries within the code space, provided we do not mix codewords with
non-codewords. In other words, we can use any set of logical Paulis that is convenient for us.

If the original state, pre-encoding, is |0i⌦(n�k) ⌦ | i (where | i is a k-qubit state), its initial stabi-
lizer is generated by Z1, Z2, . . . , Zn�k. The final stabilizer S, post-encoding, also has n � k generators
M1,M2, . . . ,Mn�k. The choice of generators is not unique, of course, so we may pick any set of genera-
tors for S that we like. Then we must simply find some Cli↵ord group circuit that maps Zi 7! Mi for
i = 1, . . . , n� k.

We can do this using a simplified version of procedure 6.5. There are two ways we can simplify: First, we
don’t really care what happens to Zi for i > n� k or to Xi. Thus, we need only concern ourselves with the
first n� k columns of A and C. Second, the choice of generators of the stabilizer is not unique. Therefore,
we may permute columns and add columns to each other within A and C without using any actual gates.
We are left with the following procedure:

Procedure 6.6. Generate a list of gates using the steps given below.

1. Write the generators M1, . . . ,Mn�k of S as binary symplectic vectors. Produce the first n�k columns
of a symplectic matrix as follows: The ith column of A is ai = xMi . The ith column of C is ci = zMi .

2. (a1|c1) is a non-zero vector, so there is a 1 somewhere in the first column. Using left multiplication by
H and SWAP, we can put this 1 in the upper left corner.

3. Do column reduction on the first column of A: Use left multiplication by CNOT to add the 1 in the
upper left corner of A to any other row of A with a 1 in the first column.

4. Using left multiplication by R⇡/4 and/or C� Z, we can similarly make the first column of C to be all
0s.

102

5. Do row reduction on the first row of A: Replace generators of the stabilizer to add the 1 in the upper
left corner of A to any other column of A with a 1 in the first row. (It does not matter much if this
step is performed before or after the previous step.)

6. At this point, we find that the first row of C has also become all 0s. This must be the case since

0 = (a1|c1)� (aj |cj) = a1 · cj + c1 · aj = c1j + 0. (6.89)

7. Repeat the previous steps on the second row and column of A and C to make them all 0 except for
a22, which is 1. Continue with all other rows and columns in sequence up to column number n� k.

8. Perform H on qubits 1 through n� k to switch A and C.

Take the inverse of this product of gates. The resulting Cli↵ord group circuit will encode in some coset of S;
that is, the stabilizer will be almost correct, except that we may have some error syndrome di↵erent from
the correct trivial syndrome. (Also note that the choice of stabilizer generators may be di↵erent from that
which was originally given to us.) Calculate the action of the encoding circuit on Zi for i = 1, . . . , n� k. If
for any i, the resulting generator Mi has the wrong sign, add Xi to the beginning of the encoding circuit.

As an example, let us find an encoding circuit for the five-qubit code as given in table 3.2. We begin
(step 1) with the matrix

1 0 1 0
0 1 0 1
0 0 1 0
1 0 0 1
0 1 0 0
0 0 0 1
1 0 0 0
1 1 0 0
0 1 1 0
0 0 1 1

. (6.90)

Step 2 is unnecessary, as there is already a 1 for a11. We can perform steps 3 and 4 using CNOT1,4 ·
C� Z1,2 · C� Z1,3. Be careful: you must perform the correct transformations on the full rows, not just
the first column. Then, in step 5, we can clear out the first row of A by adding the first column to the
third column; this corresponds to replacing the third generator M3 with M1M3. We now have the following
matrix:

1 0 0 0
0 1 0 1
0 0 1 0
0 0 1 1
0 1 0 0
0 0 0 0
0 0 1 0
0 1 1 0
0 1 1 0
0 0 1 1

. (6.91)

We can clear out the second column using CNOT2,5 · C� Z2,3 · C� Z2,4, then reduce the second row of A
by replacing M4 with M2M4. The third column requires slightly more care. First column reduce the third
column of A using CNOT3,4. Then use C� Z3,4 · C� Z3,5 to eliminate the third column of C. The caution
is necessary because CNOT3,4 and C� Z3,4 do not commute; in this case, however, the di↵erence is only
Z, which will not a↵ect the binary symplectic representation. Then we finish with the fourth column, using

103

| i
|0i
|0i
|0i
|0i

X

X

H

H

H

H

Figure 6.4: Encoding circuit for the five-qubit code derived in the text.

CNOT4,5 followed by C� Z4,5. We then conclude by performing H on qubits 1 through 4. These gates give
us the following sequence of matrices:

1 0 0 0
0 1 0 0
0 0 1 0
0 0 1 1
0 0 0 1
0 0 0 0
0 0 0 0
0 0 1 1
0 0 1 1
0 0 1 1

!

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1
0 0 0 1

!

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

!

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

(6.92)

Taking the inverses of these gates in reverse order, we get the following sequence of gates for the encoding
circuit:

CNOT1,4 · C� Z1,2 · C� Z1,3 · CNOT2,5 · C� Z2,3 · C� Z2,4 · CNOT3,4

· C� Z3,4 · C� Z3,5 · CNOT4,5 · C� Z4,5 ·H1 ·H2 ·H3 ·H4 (6.93)

Now calculate the e↵ect of these gates on Z1, . . . , Z4:

Z1 ! X ⌦ Z ⌦ Z ⌦X ⌦ I (6.94)

Z2 ! I ⌦X ⌦ Z ⌦ Z ⌦X (6.95)

Z3 ! �I ⌦ Z ⌦ Y ⌦ Y ⌦ Z (6.96)

Z4 ! �Z ⌦ I ⌦ Z ⌦ Y ⌦ Y. (6.97)

Since

I ⌦ Z ⌦ Y ⌦ Y ⌦ Z = +(X ⌦ Z ⌦ Z ⌦X ⌦ I)(X ⌦ I ⌦X ⌦ Z ⌦ Z) (6.98)

Z ⌦ I ⌦ Z ⌦ Y ⌦ Y = +(I ⌦X ⌦ Z ⌦ Z ⌦X)(Z ⌦X ⌦ I ⌦X ⌦ Z), (6.99)

the signs of Z3 and Z4 need to be corrected, so we start the encoding circuit with X3X4. The final encoding
circuit is given in figure 6.4.

6.4.2 Encoding a Stabilizer Code with Specified Logical Paulis

If we are given a specific choice of logical Paulis, encoding becomes slightly more complicated. However, the
same sort of techniques will work. There are two straightforward options.

Option 1 is to just use procedure 6.5, with fewer simplifications. The desired Cli↵ord group operation
maps Zi !Mi for i = 1, . . . , n�k, Zn�k+j ! Zj for j = 1, . . . , k, and Xn�k+j ! Xj for j = 1, . . . , k. Again,
it is more convenient to perform the Hadamard on every qubit so that A and C of the desired symplectic

104

matrix are full n⇥n matrices. Column operations which add the first n�k columns of A and C to something
can be done just by changing generators of the stabilizer or representatives of the logical Pauli cosets, but
column operations involving the last k columns in either the right or left must be done with real gates.

Option 2 is to take advantage of the simplified procedure procedure 6.6 to find an encoding circuit for a
stabilizer without specified logical Paulis and see what actual logical Paulis P

0

it produces. Determine the
logical Cli↵ord group operation that maps P

0

to the desired logical Pauli P . Use procedure 6.5 on k qubits
to find a circuit performing that Cli↵ord group operation. Perform this circuit on qubits n � k + 1, . . . , n,
followed by the encoding circuit given by procedure 6.6. The resulting circuit will then encode the code with
the correct logical Paulis.

For instance, in the previous subsection, we found an encoding circuit for the five-qubit code. Let us
determine what logical Paulis it gives:

X5 ! Z ⌦ I ⌦ I ⌦ Z ⌦X (6.100)

Z5 ! Z ⌦ Z ⌦ Z ⌦ Z ⌦ Z. (6.101)

In this encoding, Z is correct. However,

X = Z ⌦ I ⌦ I ⌦ Z ⌦X = �(X ⌦ I ⌦X ⌦ Z ⌦ Z)(Z ⌦X ⌦ I ⌦X ⌦ Z)(X ⌦X ⌦X ⌦X ⌦X). (6.102)

Therefore, we need the Cli↵ord X ! �X, Z ! Z. This is just the gate Z, so we can correct the circuit of
figure 6.4 by beginning with a Z5 gate.

6.5 Extending the Cli↵ord Group to a Universal Gate Set

Since the Cli↵ord group can be simulated classically, to do any really interesting quantum algorithms, we
will need some gates outside the Cli↵ord group. How many gates and which ones su�ce? It turns out any
single gate will do it.

Theorem 6.9. Let G ✓ SU(2n) be a group of quantum gates such that Ĉn ⇢ G but G 6= Ĉn. Then G is
dense in SU(2n).

That is, for any U 2 SU(2n) and any ✏ > 0, 9V 2 G such that kU � V k < ✏. Thus, we can approximate
all quantum gates to any desired degree of accuracy using G, even if G is generated by just the Cli↵ord
group, plus any additional gate.

People frequently pick a somewhat nice gate to use as the extra gate. Two popular choices are the
To↵oli gate Tof (also known as the controlled-controlled-NOT gate) |ai|bi|ci 7! |ai|bi|c� abi and the ⇡/8
phase rotation R⇡/8. These gates are useful extra gates because they have comparatively straightforward
fault-tolerant implementations using common QECCs, as you’ll see in chapter 13.

The proof of theorem 6.9 is complicated and involves some more advanced concepts. I hope to include
an accessible version of it in a later draft of this book.

105

106

Chapter 7

Tighter, Please: Upper And Lower
Bounds On Quantum Codes

As I’ve told you, the three most important properties of a quantum code are the number n of logical qubits (or
qudits), the dimension K of the encoded subspace, and the distance d of the code. Together, the parameters
((n,K, d)) tell us about the trade-o↵ between the rate at which we can send quantum information and the
tolerance we gain against errors. Ideally, we’d like to know for any given set ((n,K, d)) whether a QECC
exists with those parameters.

Unfortunately, we can’t answer that question. It seems to be extremely hard. However, we can set some
bounds, which set limits on where we can hope to find interesting QECCs. On the one hand, there are lower
bounds, saying that codes definitely exist with certain parameters. They can be constructive (specifying a
particular code) or non-constructive (proving that codes with the parameters exist without giving an e�cient
method of specifying one). Then we have the upper bounds. There are many di↵erent methods used for
proving upper bounds, but they are uniformly destructive: they tell us there are no codes with certain
parameters.

The most attractive bounds are the tightest, with the upper bounds hugging as closely as possible to the
lower bounds. Occasionally we can actually make the upper and lower bounds touch, but more often there is
some space between. Unfortunately, in many instances, our bounds are rather baggy and shapeless, leaving
a lot of room, which may or may not contain actual QECCs, between the upper and lower bounds.

7.1 The Quantum Gilbert-Varshamov Bound

We’ll start with a lower bound, the quantum Gilbert-Varshamov bound. As you might guess from the name,
it is a quantum analogue of the classical Gilbert-Varshamov lower bound discussed in section 4.5. The main
di↵erence from the classical Gilbert-Varshamov bound is that there are more quantum errors that occur on
a qubit than there are classical errors that can occur on a bit.

Theorem 7.1 (Quantum Gilbert-Varshamov bound). Suppose

2k

0

@
d�1X

j=0

3j
✓
n

j

◆1

A 2n. (7.1)

Then there exists a ((n, 2k, d)) QECC. For large n, a code exists if

k/n 1� (d/n) log 3� h(d/n), (7.2)

with h(x) = h2(x) given by equation (4.22).

107

Actually, the theorem will show that a stabilizer code with these parameters [[n, k, d]] exists. It even can
be made a little bit tighter than the statement of the theorem indicates, but it is usually phrased this way
to be the closest analogue of the classical Gilbert-Varshamov bound. The proof is non-constructive. In this
case, as with the classical Gilbert-Varshamov bound, that means that, while the proof specifies a procedure
to find a code with these parameters, the procedure is exponentially long as a function of n, so it’s not useful
in practice. Since we get a stabilizer code, the code we produce can be described e�ciently, but that is small
consolation if we can’t get all the way through the procedure to find it.

One can also prove a version of the quantum Gilbert-Varshamov bound for qudits, at least for prime
power dimensions. The proof is analogous, using the idea of a qudit stabilizer code, which I’ll discuss in
chapter 8.

Proof. Imagine making a long list of all [[n, k]] stabilizer codes. We are going to run through all possible
errors of weight up to d � 1. For each error E, we can check which codes can detect that error and which
cannot, and cross o↵ the list any code that can’t detect E. Once we finish running through all the errors,
we know that any code that remains must have distance at least d. We’ll prove that there must be at least
one code to survive, giving us the desired [[n, k, d]] code.

For any given error E, we need to count how many codes cannot detect it. For any two errors E,F 2
Pn \ {I}, there exists some Cli↵ord group element U with U(E) = F . Furthermore, if stabilizer code S is a
code that doesn’t detect E, then U(S) is a stabilizer code that doesn’t detect F . That is, U will permute the
list of stabilizer codes and their sets of undetectable errors. Thus, the number of codes that cannot detect
E must be the same as the number of codes that cannot detect F . That is, all non-identity errors in the
Pauli group are undetectable for the same number C of [[n, k]] stabilizer codes.

Suppose there are N stabilizer codes with parameters [[n, k]]. (We can evaluate N exactly if we like,
but it is not necessary for this argument.) The code S detects the errors outside N̂(S) \ Ŝ, which contains
2n+k � 2n�k elements. If we consider a bigger list of pairs (S, E) for any pair for which E 2 N̂(S) \ Ŝ, we
can count the number of elements on the list two ways: as the number of errors times the number of codes
that cannot detect each error, or as the number of codes times the number of errors that each code cannot
detect. There are 4n � 1 non-identity errors, and I never appears in N̂(S) \ Ŝ, so we have that

(4n � 1)C = N(2n+k � 2n�k). (7.3)

Now let us go back to crossing codes o↵ our list of stabilizer codes. We work our way through the set of
errors of weight up to d� 1. For any non-identity error E with weight less than d, there are C codes which
do not detect it, so we can cross those codes o↵ the list. Some of them may have already been eliminated
because they fail to detect a previous error, but certainly we cannot eliminate more than C new codes from
the list of [[n, k]] QECCs. There are a total of B � 1 non-identity errors of weight less than d, with

B =
d�1X

j=0

3j
✓
n

j

◆
(7.4)

(not including the identity since all codes detect it). By the time we finish going through all errors of weight
less than d, we have therefore crossed o↵ at most (B � 1)C codes. If (B � 1)C < N , then at least one code
remains.

Plugging in equation (7.3) to eliminate C, the condition we get is

2n+k � 2n�k

4n � 1
(B � 1)N < N, (7.5)

or

2n�k(B � 1) <
4n � 1

4k � 1
. (7.6)

This is the tightest version of the quantum Gilbert-Varshamov bound, but notice that

4n � 1

4k � 1
>

4n

4k
= 4n�k, (7.7)

108

so if
2n�kB 4n�k, (7.8)

then equation (7.6) is satisfied too. Equation (7.8) is just what we wanted to prove.

7.2 The Quantum Hamming Bound

We’ll now move on to an upper bound of sorts. It is an analogue of the classical Hamming bound, so is
called the quantum Hamming bound.

Theorem 7.2 (Quantum Hamming bound). If a non-degenerate ((n,K, 2t+ 1))q code exists, then

K

0

@
tX

j=0

(q2 � 1)j
✓
n

j

◆1

A qn. (7.9)

The big catch in the statement of the quantum Hamming bound is that while it provides an upper bound,
the upper bound only holds for non-degenerate codes. Here is where we start to see very concretely how the
existence of degenerate codes makes the quantum case more complicated than the classical case. Insisting
that a code be degenerate is potentially a big limitation, yet it is easier to prove bounds on the existence
of non-degenerate codes. Indeed, while we don’t know how to prove that the quantum Hamming bound
applies to degenerate codes as well as non-degenerate codes, we also don’t know any ((n,K, 2t + 1)) codes
that violate it.

Proof. The proof is a straightforward exercise in counting dimensions, and is very analogous to the proof of
the classical Hamming bound. Because the code is non-degenerate, we know that in the QECC conditions,
the matrix

Cab = h |E†

a
Eb| i (7.10)

(for any codeword | i) has maximum rank when E†
a
and Eb run over any basis for the space of t-qubit

errors. In particular, this means that the states Ea| i are all linearly independent. Furthermore, if | i and
|�i are two orthogonal codewords, then the QECC conditions tell us that

h |E†

a
Eb|�i = 0, (7.11)

so Ea| i and Eb|�i are orthogonal for any a, b.
Thus, if we let {| ii} be a basis for the code space, the set of states {Ea| ii} (over all a, i) are linearly

independent. The codespace has dimension K and there are q2 � 1 one-qudit non-identity errors, so there
are a total of

B =
tX

j=0

(q2 � 1)j
✓
n

j

◆
(7.12)

linearly independent errors of weight up to t. Thus, we have a set of KB linearly independent vectors, which
we must fit into a Hilbert space of n qudits. Therefore,

KB qn (7.13)

Looking at this proof, you’ll see that the quantum Hamming bound does not make essential use of the
qudit structure of the space, or the fact that we are dealing with t-qudit errors. In general, if we have a
non-degenerate QECC with a K-dimensional code space living in an N -dimensional physical Hilbert space,
and the code can correct E , a set of linearly independent errors, then K|E| N .

109

a)

A B

b)

A B C

Q

R

Figure 7.1: a) Dividing n registers into one set A of size d� 1 and one set B of size n� (d� 1) for the proof
of lemma 7.4. If n� (d�1) d�1, we can decode each set separately to clone the encoded qubit. b) System
Q is maximally entangled with system R. Q is then encoded into n registers, which are split into three sets
for the proof of the quantum Singleton bound: sets A and B of size d� 1 and set C of size n� 2(d� 1).

7.3 The Quantum Singleton Bound

The quantum Singleton bound has a similar form to the classical Singleton bound, but is significantly harder
to prove. The quantum Singleton bound is also known as the Knill-Laflamme bound, after the first people
to state it. The quantum Singleton bound is a real upper bound, applying to non-degenerate codes as well
as degenerate ones, and to both stabilizer and non-stabilizer codes over qubits or qudits.

Theorem 7.3 (Quantum Singleton bound). If an ((n, qk, d))q QECC exists, then

n� k � 2(d� 1). (7.14)

As you can see by comparing with theorem 4.19, the quantum bound is more restrictive on the distance
by a factor of 2. The reason for this factor of 2 turns out to be the No-Cloning Theorem! You may recall that
our very first objection in section 2.1 to the possibility of a quantum error-correcting code was that classical
codes seemed to use repetition of information as a key component. We circumvented that di�culty by using
entanglement to spread out quantum information without repeating it. The quantum Singleton bound can be
viewed as a way of codifying just how well information can be spread around without accidentally repeating
anything. For instance, the bound immediately tells us that there can be no complete quantum analogue of
the classical (3, 2, 3) repetition code, since a ((3, 2, 3)) QECC would violate the quantum Singleton bound.

Proof. We’ll start by studying the k = 1 case, which is an immediate consequence of the No-Cloning Theorem:

Lemma 7.4. If an ((n, q, d))q QECC exists, then

n� 1 � 2(d� 1). (7.15)

Proof of lemma. If a code has distance d, then it can correct d� 1 erasure errors. We can imagine dividing
the n registers of the code into two sets, a set A with d� 1 registers and a set B with n� (d� 1) registers,
as pictured in figure 7.1a. Set B has experienced d � 1 erasures, so using just those registers, it is possible
to reconstruct the original encoded state | i.

Now suppose that n�1 < 2(d�1). Then n� (d�1) d�1, and therefore set A has also experienced at
most d� 1 erasure errors. We would then be able to reconstruct a second copy of | i using just the registers
in set A. We could then use this code to clone the state | i via the following procedure: Encode | i using
the QECC, split up the registers into the sets A and B, and then reconstruct | i independently for each set.
We know this isn’t possible, leading to a contradiction and proving the lemma.

Now we can move on to the general case. When k > 1, we split the n registers into three sets, as pictured
in figure 7.1b. Sets A and B will each have d� 1 registers, and set C will have n� 2(d� 1) registers. If an

110

((n, qk, d))q code exists for k � 1, then a ((n, q, d))q code also exists, as we can just ignore the extra logical
codewords. We therefore know from the lemma that n > 2(d� 1), and set C is non-empty.

Now imagine taking a 2k-qudit maximally entangled state between two registers R and Q, each with
dimension qk, and encode Q in the QECC. Then divide up the registers of the QECC into the sets A, B,
and C, giving us a total of 4 sets (R, A, B, C). Globally, we now have a pure state, so S(RABC) = 0. If we
split our sets into two groups, the entropy of the two groups is equal, e.g.

S(RA) = S(BC) (7.16)

S(RB) = S(AC). (7.17)

We also know that the code has distance d, so we can detect any erasure error restricted to just set A
or to just set B (but not necessarily errors involving both sets). Applying the alternate QECC conditions of
section 2.5.6, we see that this means that any operator we measure on set A will give us the same result for
all possible logical codewords. Thus, the density matrix ⇢A of set A is the same for all logical codewords,
and we find that the density matrix for R and A combined is of the form

q
k
�1X

i=0

|ii hi|R ⌦ ⇢A. (7.18)

R and A are in a tensor product state, so S(RA) = S(R) + S(A). Similarly, S(RB) = S(R) + S(B). We
also note that S(R) = k log q.

Now, S(RA) = S(BC), and by subadditivity of the entropy, S(BC) S(B) + S(C). Therefore,

k log q + S(A) = S(RA) = S(BC) S(B) + S(C), (7.19)

or

k log q S(C) + [S(B)� S(A)]. (7.20)

Applying subadditivity to S(AC), we also find that

k log q S(C) + [S(A)� S(B)]. (7.21)

Adding together these last two equations, we find that

k log q S(C). (7.22)

However, S(C) log dim(C) = [n� 2(d� 1)] log q. Therefore, we find

k n� 2(d� 1). (7.23)

As an immediate application of the quantum Singleton bound, we find that the five-qubit code is optimal.
Not only can there be no ((3, 2, 3)) code, but there can also be no ((4, 2, 3)) QECC. The five-qubit code
exactly saturates the quantum Singleton bound; it is a quantum MDS code. We can also saturate the
quantum Singleton bound with d = 2. There are [[n, n � 2, 2]] stabilizer codes for any even n (but not for
odd n). As we go to more encoded qubits or to greater distances, it is no longer possible to exactly saturate
the quantum Singleton bound with qubit codes. A similar phenomenon occurs classically, and as in the
classical case, we get more MDS codes as we let the dimension of the registers increase. In section 8.3, we’ll
see a large family of such codes.

111

d/n

k/n
1

1/21/4

Figure 7.2: Quantum Hamming bound (solid), quantum Gilbert-Varshamov bound (dashed), and quantum
Singleton bound (dotted) for large n, q = 2

7.4 Linear Programming Bounds

The quantum Singleton bound does provide us with some definite limits on the existence of QECCs since,
unlike the quantum Hamming bound, it applies to degenerate codes too. Still, it doesn’t tell us much.
Figure 7.2 shows the lower bound provided by the quantum Gilbert-Varshamov bound along with the upper
bound given by the quantum Singleton bound, both plotted for codes using qubits. I’ve also shown the
quantum Hamming bound so you can see that even if we were able to prove it applied to degenerate codes,
there would still be a lot of room where we don’t know about the existence of codes. The quantum Singleton
bound is much worse. There’s no way we can be satisfied with that.

In order to do better, we’ll need more powerful techniques. The main ones are known as linear program-
ming bounds. A linear programming bound provides a set of linear inequalities that a QECC with a given
set of parameters ((n,K, d))q must satisfy. If we can prove that the set of inequalities has no solutions for a
given n, K, and d, then we know that a QECC with those parameters cannot exist. If there is a solution,
then a QECC may or may not exist, but the linear programming solution gives us a number of constraints
about the structure of any possible code with those parameters, so provides a good hint as to what to look
at to find a code.

In this section, I’ll discuss the main linear programming bounds, but only for codes over qubits. These
bounds can be generalized to apply to qudits, and it’s possible to come up with more linear programming
bounds, which could narrow down the set of possible codes even further.

7.4.1 Weight Enumerator and Dual Weight Enumerator

The primary tools used in coming up with linear programming bounds are known as weight enumerators.
There are many di↵erent kinds of weight enumerators, but we’ll start with the simplest, which gets no
additional adjectives in its name. Weight enumerators are polynomials that encode information about the
properties of a QECC.

To motivate the definition of weight enumerator, let’s first consider the case of a stabilizer code. The
stabilizer S consists of Pauli operators. Some of those Pauli operators are large, with high weight, and some
are small, with low weight. Indeed, S always contains I, which has weight 0. We’ll count up the number of
elements of each weight; let Aj be the number of Paulis M 2 S with weight j. The Ajs are integers which
tell us about the structure of the stabilizer, although they don’t tell us everything. How can we get similar
information about more general QECCs?

112

Definition 7.1. Let ⇧ be the projector onto the code subspace of some ((n,K)) QECC Q. Let

Aj =
1

K2

X

P2P̂n|wt(P)=j

|tr(P⇧)|2 . (7.24)

The weight enumerator of Q is the degree n polynomial

A(x) =
nX

j=0

Ajx
j . (7.25)

The motivation for defining the weight enumerator as a polynomial instead of just working with the
individual coe�cients will become clearer in the next subsection, where I’ll discuss the quantum MacWilliams
identity, which deals with the polynomial as a whole.

Proposition 7.5. When Q is a stabilizer code with stabilizer S,

Aj = |{M 2 S|wtM = j}| . (7.26)

Proof. For a stabilizer code, K = 2k, and we have an explicit description of the projector onto the code:

⇧ =
1

2n�k

X

M2S

M. (7.27)

Now, trQ = 0 if Q 2 P̂n \ {I} and tr I = 2n. Thus,

| tr(PM)| =
(
2n if P = M

0 if P 6= M.
(7.28)

We will consider Paulis in P̂n, so depending on what representatives we pick, it could actually be that
tr(PM) = �2n or ±i2n. However, since we immediately take the absolute value, all of these give the same
result.

Applying the general definition of Aj , we find

Aj =
1

22k

X

P2P̂n|wt(P)=j

�����
1

2n�k

X

M2S

tr(PM)

�����

2

(7.29)

=
1

22k

X

P2P̂n|wt(P)=j

�����
1

2n�k

X

M2S

2n�P,M

�����

2

(7.30)

=
1

22k

X

P2P̂n|wt(P)=j

22k�S(P) (7.31)

= |{M 2 S|wtM = j}| . (7.32)

In the third line, �S(P) is the indicator function, which is 1 when P 2 S and 0 when P 62 S.

Similarly, we can define a dual weight enumerator. For a stabilizer code, it is built out of Bjs which give
the weight distribution of the normalizer of S. In general, we have the definition

Definition 7.2. Let ⇧ be the projector onto the code subspace of some ((n,K)) QECC Q. Let

Bj =
1

K

X

P2P̂n|wt(P)=j

tr(P⇧P †⇧). (7.33)

113

The dual weight enumerator of Q is the degree n polynomial

B(x) =
nX

j=0

Bjx
j . (7.34)

Again, the general definition reduces to the description given for stabilizer codes:

Proposition 7.6. When Q is a stabilizer code with stabilizer S,

Bj = |{N 2 N(S)|wtN = j}| . (7.35)

Proof. Again, we have

⇧ =
1

2n�k

X

M2S

M, (7.36)

and we see that

P⇧P † =
1

2n�k

X

M2S

(�1)c(P,M)M. (7.37)

Note that when P 2 N(S), then P⇧P † = ⇧. However, when P 62 N(S), then P⇧P † will be the projector on
the subspace given by a di↵erent error syndrome of S. That subspace is orthogonal to the code space, so we
have that P⇧P †⇧ = 0 when P 62 N(S). This is also straightforward to prove through direct computation:

P⇧P †⇧ =
1

22(n�k)

X

M,N2S

(�1)c(P,M)MN (7.38)

=
1

22(n�k)

X

N 02S

X

M2S

(�1)c(P,M)

!
N 0 (7.39)

=
1

22(n�k)

X

N 02S

2n�k�N(S)(P)N 0 (7.40)

= �N(S)(P)⇧, (7.41)

where �N(S)(P) is the indicator function for N(S) and line three follows because if P 62 N(S), then P
anticommutes with exactly half of S.

Thus, applying the general definition of Bj , we find

Bj =
1

2k

X

P2P̂n|wt(P)=j

tr(⇧)�N(S)(P) (7.42)

= |{N 2 N(S)|wtN = j}| . (7.43)

The coe�cients Aj and Bj of the weight enumerator and dual weight enumerator are always integers for
a stabilizer code, but can be non-integer for general QECCs.

For a stabilizer code, the dual weight enumerator tells us about the structure of the normalizer, which in
turn tells us something about which errors we can detect. If Bj is non-zero, it means there are some Paulis of
weight j in the normalizer, which worries us if j is small. Actually, though, we are interested in the number
of elements of N̂(S) \ Ŝ, which is given by Bj � Aj . If that is non-zero, then we actually have some errors
of weight j that are undetectable, giving us a bound on the distance of the code. While this argument does
not hold for general QECCs, the intuition and result about Aj and Bj does carry over:

Theorem 7.7. Let Q be a QECC with weight enumerator A(x) =
P

Ajxj and dual weight enumerator
B(x) =

P
Bjxj. Then

114

a) A0 = B0 = 1

b) Bj � Aj � 0

c) Q has distance d i↵ Aj = Bj for j < d.

Proof.

a) There is only one Pauli of weight 0: the identity. Thus,

A0 =
1

K2
|tr(⇧)|2 = 1 (7.44)

B0 =
1

K
tr(⇧2) =

1

K
tr(⇧) = 1. (7.45)

b) From the definition of Aj , we can immediately see that Aj � 0.

Let {|ai} be a basis for the code space of Q. Then

⇧ =
X

a

|ai ha|, (7.46)

so

Aj =
1

K2

X

P |wt(P)=j

�����
X

a

ha|P |ai

�����

2

, (7.47)

Bj =
1

K

X

P |wt(P)=j

X

a,b

|ha|P |bi|2 . (7.48)

Our next step is to apply the Cauchy-Schwarz inequality, which says that for two complex vectors ~x and ~y,

|~x · ~y|2 |~x|2|~y|2. (7.49)

Let ~x be the K2-dimensional complex vector with entries ha|P |bi (running over pairs (a, b)), and let ~y be the
K2-dimensional vector with entries equal to (1/K)�ab (again running over pairs (a, b)). Then we have

|~x · ~y|2 =

������
1

K

X

a,b

ha|P |bi�ab

������

2

(7.50)

=
1

K2

�����
X

a

ha|P |ai

�����

2

(7.51)

 |~x|2|~y|2 (7.52)

=

0

@
X

a,b

|ha|P |bi|2
1

A

X

ab

1

K2
�ab

!
(7.53)

=
1

K

X

a,b

|ha|P |bi|2. (7.54)

Plugging into equations (7.47) and (7.48), we find that Aj Bj .

c) From the definition of distance, equation (2.66), if the code has distance d, then for wt(E) < d,

h |E|�i = c(E)h |�i (7.55)

115

for any codewords | i and |�i. Applying equations (7.47) and (7.48) for j < d, we get

Aj =
1

K2

X

E|wtE=j

K2|c(E)|2 (7.56)

Bj =
1

K

X

E|wtE=j

K|c(E)|2, (7.57)

and Aj = Bj .

For the converse, looking at the proof of part b, the equality condition for the Cauchy-Schwarz inequality is
that ~x is proportional to ~y. Thus, Aj = Bj implies that

ha|E|bi = C(E)�ab (7.58)

whenever wtE = j. This is one of the alternate forms of the QECC conditions.

The classical theory of weight enumerators is similar, except that for classical codes, Aj = Bj = 0 for
j < d. The di↵erence is essentially a manifestation of the phenomenon of degeneracy. Let’s think about the
special case of stabilizer codes. In a non-degenerate stabilizer code S, there are no elements of N(S) with
weight less than d. Therefore Bj = 0 for j < d. In a degenerate stabilizer code, N(S) can have elements with
weight less than d, but those elements must also be in S. Thus, Bj = Aj > 0 for some j < d.

This intuition almost carries over to general QECCs, but it turns out to be a slightly di↵erent concept.

Definition 7.3. An ((n,K, d)) QECC with weight enumerators A(x) and B(x) is pure if Aj = Bj = 0 for
j < d. A code that is not pure is impure.

The argument above shows that for stabilizer codes, pure is the same as non-degenerate. However, for
more general codes, the property of being pure is more stringent than the property of being non-degenerate.
In other words, a code can be impure without being degenerate, but if it’s degenerate, it is definitely impure.

The possibility of impure codes complicates the application of the linear programming bounds to quantum
codes. Some results which are known for classical codes have not yet been adapted for quantum codes because
of the additional di�culty created by dealing with impure codes.

7.4.2 Quantum MacWilliams Identity

Theorem 7.7 gives us one set of inequalities constraining the coe�cients Aj and Bj . However, these inequal-
ities by themselves are not yet enough to rule out any codes, since for any set of parameters ((n,K, d)), we
can easily come up with a set of Aj and Bj that satisfy theorem 7.7. In order to get actual upper bounds
on codes this way, we’ll need a stronger relation between A(x) and B(x).

In the case of a stabilizer code, the weight enumerator A(x) encapsulates properties of the stabilizer S
and the dual weight enumerator B(x) captures properties of N(S). Since N(S) is completely determined by
S, it’s perhaps not too surprising that there is some relationship between A(x) and B(x) as well. What is
remarkable is that even though the full description of S contains a lot more information than is contained in
A(x), the weight enumerator by itself is enough to completely determine B(x). Moreover, this relationship
also holds for non-stabilizer codes.

Theorem 7.8 (Quantum MacWilliams identity). Suppose we have an ((n,K)) QECC with weight enumer-
ator A(x) and dual weight enumerator B(x). Then

B(x) =
K

2n
(1 + 3x)nA

✓
1� x

1 + 3x

◆
(7.59)

The quantum MacWilliams identity above is phrased in terms of codes over qubits, but like the other
bounds we’ve discussed, it can also be generalized to codes over qudits.

116

Proof. Let’s eliminate the projector ⇧ that appears in the definitions of Aj and Bj in favor of Paulis. We

can do this by using the fact that P̂n gives a basis for the space of 2n ⇥ 2n matrices, so

⇧ =
X

Q2P̂n

cQQ. (7.60)

The coe�cients cQ = tr(Q†⇧)/2n.
Then

Aj =
1

K2

X

P2P̂n|wt(P)=j

������

X

Q2P̂n

cQ tr(PQ)

������

2

(7.61)

=
4n

K2

X

P2P̂n|wt(P)=j

|cP |2 , (7.62)

and

Bj =
1

K

X

P2P̂n|wt(P)=j

X

Q,R2P̂n

cQc
⇤

R
tr(PQP †R†) (7.63)

=
1

K

X

P2P̂n|wt(P)=j

X

Q,R2P̂n

cQc
⇤

R
(�1)c(P,Q)�Q,R2

n (7.64)

=
2n

K

X

Q2P̂n

2

4
X

P2P̂n|wt(P)=j

(�1)c(P,Q)

3

5 |cQ|2. (7.65)

In the first line for Bj , I’ve used ⇧† in one place instead of ⇧ (they are the same, after all) to finesse issues
about using Paulis with the overall sign modded out. We can see that Aj and Bj both involve a sum over
|cQ|2, but with two di↵erences: In Aj , we only sum over Paulis of weight j whereas for Bj we sum over
all Paulis, and in Bj we have an additional sum with alternating signs which depend on the commutation
relations.

Let’s take some Q with weight i and try to count how many Paulis of weight j commute with it, which
we’ll call Cij , and how many anticommute, Aij . Then we will have

Bj =
2n

K

X

Q2P̂n

(Cwt(Q),j �Awt(Q),j)|cQ|2. (7.66)

First of all, we know that there are a total of

3j
✓
n

j

◆
(7.67)

Paulis of weight j. Also note that the answer won’t depend on exactly what Q we take, only its weight i,
because single-qubit Cli↵ord group operations and permutations of the qubits can relate any two Paulis of
weight i, and those operations won’t change the commutation relations or weights of Paulis.

Let’s break up the counting problem into counting Paulis P that overlap with Q on exactly m qubits
(i.e., the intersection of their supports is m qubits), and determining how many commute (Cm

ij
) and how

many anticommute (Am

ij
). P has total weight j, so it acts on exactly j �m qubits outside the support of Q.

There are thus

3j�m

✓
n� i

j �m

◆
(7.68)

ways of choosing the action of P outside the support of Q. Within the support of Q, there are
�
i

m

�
ways of

choosing which qubits P acts on non-trivially.

117

We now wish to find how many weight m Paulis commute and anticommute with a fixed Pauli of weight
m, which can assume without loss of generality to be Z⌦m. That is, it su�ces to find Cm

mm
and Am

mm
, and

then we know that

Cm

ij
= 3j�m

✓
n� i

j �m

◆✓
i

m

◆
Cm

mm
(7.69)

Am

ij
= 3j�m

✓
n� i

j �m

◆✓
i

m

◆
Am

mm
. (7.70)

Now, C1
11

= 1 and A1
11

= 2. We can use induction to determine Cm

mm
and Am

mm
for all m:

Cm

mm
= Cm�1

(m�1)(m�1)
+ 2Am�1

(m�1)(m�1)
(7.71)

Am

mm
= 2Cm�1

(m�1)(m�1)
+Am�1

(m�1)(m�1)
. (7.72)

Actually, what we’re really interested in is Cm

ij
�Am

ij
, and we see that

Cm

mm
�Am

mm
= �Cm�1

(m�1)(m�1)
+Am�1

(m�1)(m�1)
= (�1)m�1

�
C1

11
�A1

11

�
= (�1)m. (7.73)

Putting all of this together, we find that

Bj =
2n

K

X

Q2P̂n

(Cwt(Q),j �Awt(Q),j)|cQ|2 (7.74)

=
2n

K

nX

i=0

X

Q2P̂n|wtQ=i

2

4
min(i,j)X

m=0

�
Cm

ij
�Am

ij

�
3

5 |cQ|2 (7.75)

=
2n

K

nX

i=0

X

Q2P̂n|wtQ=i

2

4
min(i,j)X

m=0

(�1)m3j�m

✓
n� i

j �m

◆✓
i

m

◆3

5 |cQ|2 (7.76)

=
K

2n

nX

i=0

2

4
min(i,j)X

m=0

(�1)m3j�m

✓
n� i

j �m

◆✓
i

m

◆3

5Ai. (7.77)

(7.78)

The function

Pj(z;n) =

min(z,j)X

m=0

(�1)m3j�m

✓
n� z

j �m

◆✓
z

m

◆
(7.79)

is known as a Krawtchouk polynomial, and

(1 + 3x)n�z(1� x)z =
X

j

Pj(z;n)x
j , (7.80)

118

as can be verified by expanding the left-hand side. That tells us

B(x) =
nX

j=0

Bjx
j (7.81)

=
K

2n

nX

i=0

nX

j=0

Pj(i;n)Aix
j (7.82)

=
K

2n

nX

i=0

(1 + 3x)n�i(1� x)iAi (7.83)

=
K

2n
(1 + 3x)n

nX

i=0

✓
1� x

1 + 3x

◆i

Ai (7.84)

=
K

2n
(1 + 3x)nA

✓
1� x

1 + 3x

◆
(7.85)

The quantum MacWilliams identity combined with theorem 7.7 puts a number of restrictions on the
possible values of ((n,K, d)) for a code, enough to rule out many more possibilities than the quantum
Singleton bound. However, we can set even tighter bounds by adding another weight enumerator known as
the quantum shadow enumerator.

7.4.3 Quantum Shadow Enumerator

The quantum shadow enumerator has a somewhat stranger definition than the weight enumerator and dual
weight enumerator. The weight enumerator and dual weight enumerator treat all Paulis of a given weight
on an equal footing. The quantum shadow enumerator does not:

Definition 7.4. Suppose ⇧ is the projector onto the code subspace of some ((n,K)) QECC Q. Let

Shj =
1

K

X

P2P̂n|wtP=j

tr(P⇧P †Y ⌦n⇧⇤Y ⌦n). (7.86)

The shadow enumerator of Q is

Sh(x) =
nX

j=0

Shjx
j . (7.87)

⇧⇤ is the complex conjugate of the projector ⇧. The definition of the shadow enumerator is heavily
basis-dependent, both for defining the Paulis and for defining the complex conjugate of an operator.

Theorem 7.9. Suppose we have an ((n,K)) QECC with weight enumerator A(x) and shadow enumerator
Sh(x) =

P
Shjxj. Then

a) Shj � 0 8j

b) Sh(x) can be determined from A(x):

Sh(x) =
K

2n
(1 + 3x)nA

✓
x� 1

1 + 3x

◆
. (7.88)

Notice that the relation between A(x) and Sh(x) di↵ers from the quantum MacWilliams identity only in
that there is an x� 1 in the numerator of the argument of A instead of 1� x.

Proof.

119

a) We can write ⇧ =
P

a
|ai ha|, for |ai a basis of the code space. Note that this basis might be di↵erent from

the basis in which the shadow enumerator is defined, so we let |a⇤i be the complex conjugate of |ai in the
defining basis. Then

Shj =
1

K

X

P2P̂n|wtP=j

X

a,b

tr(P |ai ha|P †Y ⌦n|b⇤i hb⇤|Y ⌦n) (7.89)

=
1

K

X

P2P̂n|wtP=j

X

a,b

hb⇤|Y ⌦nP |ai ha|P †Y ⌦n|b⇤i (7.90)

� 0 (7.91)

since Y = Y †.

b) The proof proceeds similarly to that for the quantum MacWilliams identity. We again write

⇧ =
X

Q2P̂n

cQQ, (7.92)

and find

Shj =
1

K

X

P2P̂n|wt(P)=j

X

Q,R2P̂n

cQc
⇤

R
tr(PQP †Y ⌦nR⇤Y ⌦n) (7.93)

=
1

K

X

P2P̂n|wt(P)=j

X

Q,R2P̂n

cQc
⇤

R
(�1)c(P,Q) tr(QY ⌦nR⇤Y ⌦n). (7.94)

Now, X⇤ = X and Z⇤ = Z, but Y ⇤ = �Y , so R⇤ = ±R, with the sign determined by whether there are an
even or an odd number of Y s in the tensor decomposition of R. Furthermore,

Y ⌦nR⇤Y ⌦n = (�1)c(R,Y
⌦n

)R⇤. (7.95)

c(R, Y ⌦n) is 1 if the number of Xs plus Zs in the tensor decomposition of R is odd, and 0 if it is even. Thus,

tr(QY ⌦nR⇤Y ⌦n) = (�1)wt(R)�Q,R2
n. (7.96)

The sign follows because if the number of Y s and the number of Xs plus Zs in R are both even or both odd,
we get an overall factor of +1 , whereas if one of them is odd and one is even, we get a factor of �1.
We therefore have

Shj =
1

K

X

P2P̂n|wt(P)=j

X

Q,R2P̂n

cQc
⇤

R
(�1)c(P,Q)+wt(R)�Q,R2

n (7.97)

=
2n

K

X

Q2P̂n

2

4
X

P2P̂n|wt(P)=j

(�1)c(P,Q)

3

5 (�1)wt(Q)|cQ|2. (7.98)

The evaluation of the sum over P is just the same as before. We again get a Krawtchouk polynomial, to find

Sh(x) =
K

2n

nX

j=0

nX

i=0

(�1)iPj(i;n)Aix
j (7.99)

=
K

2n

nX

i=0

(1 + 3x)n�i(1� x)i(�1)iAi (7.100)

=
K

2n
(1 + 3x)n

nX

i=0

✓
x� 1

1 + 3x

◆i

Ai (7.101)

=
K

2n
(1 + 3x)nA

✓
x� 1

1 + 3x

◆
. (7.102)

120

7.4.4 Example: There Is No ((3, 2, 2)) Code

OK. We have these three weight enumerators, but what do we do with them? How can we put together
the constraints we have to find out if certain parameters of codes are possible or not? One approach is to
make approximations and use properties of the Krawtchouk polynomials to prove non-existence of certain
solutions. This approach gives another method of proving the quantum Singleton bound, and can also give
tighter bounds on the existence of QECCs.

Another approach is to apply the linear programming method. The procedure is to treat the parameters
Aj , Bj , and Shj as unknown variables, and write down all the equations we have above:

A0 = 1 (7.103)

B0 = 1 (7.104)

Bj = Aj (for j < d) (7.105)

Bj � Aj (for j � d) (7.106)

Aj � 0 (7.107)

Shj � 0 (7.108)

B(x) =
K

2n
(1 + 3x)nA

✓
1� x

1 + 3x

◆
(7.109)

Sh(x) =
K

2n
(1 + 3x)nA

✓
x� 1

1 + 3x

◆
(7.110)

Of course, many of the lines actually represent groups of equations, running over values of j. Notice that
all the equations, even the last two groups, are linear in Aj , Bj , and Shj . Some are equalities and some
are inequalities. The question of whether a solution exists or not is a linear programming problem, which
is a common task. There are standard computer packages for solving linear programming problems, and so
the usual method is to put the equations corresponding to the desired parameters ((n,K, d)) of a code into
such a package, and see whether it says a solution is possible. If not, we know no code can exist with those
parameters. If so, we learn the solution(s) of the linear programming problem, which doesn’t tell us whether
a code exists or not, but does at least tell us possible values for the code’s weight enumerator if it does exist,
and therefore something about the structure of the code.

For large parameters, this is certainly best done by a computer, but to show you how the procedure
works, I’ll do a small example here explicitly, showing that there is no ((3, 2, 2)) QECC. It is easy to show
that there is no [[3, 1, 2]] stabilizer code, but for more general codes, we need a more powerful method, and
the linear programming bounds will su�ce. The code is allowed by the quantum Singleton bound, and
indeed, you’ll see a ((3, 3, 2))3 code over qutrits in chapter 8.

Let us start by writing down the equations produced by the quantum MacWilliams identity:

B(x) =
2

23
(1 + 3x)3A

✓
1� x

1 + 3x

◆
(7.111)

=
1

4

⇥
(1 + 3x)3A0 + (1 + 3x)2(1� x)A1 + (1 + 3x)(1� x)2A2 + (1� x)3A3

⇤
(7.112)

Collecting the coe�cients of xj for j = 0, . . . , 3, we find

4B0 = A0 +A1 +A2 +A3 (7.113)

4B1 = 9A0 + 5A1 +A2 � 3A3 (7.114)

4B2 = 27A0 + 3A1 � 5A2 + 3A3 (7.115)

4B3 = 27A0 � 9A1 + 3A2 �A3. (7.116)

121

We also know that A0 = A1 = 1, B1 = A1 � 0, B2 � A2 � 0, and B3 � A3 � 0. Combining these equations,
we find

A1 +A2 +A3 = 3 (7.117)

A1 +A2 � 3A3 = �9 (7.118)

3A1 � 9A2 + 3A3 � �27 (7.119)

�9A1 + 3A2 � 5A3 � �27 (7.120)

From equations (7.117) and (7.118), we find A3 = 3, so A1 + A2 = 0. Since A1, A2 � 0, this means
that A1 = A2 = 0. This solution also satisfies equations (7.119) and (7.120). Using only the quantum
MacWilliams identity, we cannot rule out a ((3, 2, 2)) code, but we know that if one exists, it must have
weight enumerator A(x) = 1 + 3x3 and dual weight enumerator B(x) = 1 + 9x2 + 6x3.

We now invoke the shadow enumerator. Let us write down the relation between A(x) and Sh(x), and
plug in the above value for A(x):

Sh(x) =
1

4

⇥
(1 + 3x)3A0 + (1 + 3x)2(x� 1)A1 + (1 + 3x)(x� 1)2A2 + (x� 1)3A3

⇤
(7.121)

=
1

4

⇥
(1 + 3x)3 + 3(x� 1)3

⇤
(7.122)

=
1

4

�
�2 + 18x+ 18x2 + 30x3

�
. (7.123)

However, we see that Sh0 < 0, which is not allowed. Thus, a ((3, 2, 2)) code is not possible.

122

Chapter 8

Bigger Can Be Better: Qudit Codes

Computers seem to like base 2, even when they are quantum computers. Consequently, it may seem natural
to stick to bits and qubits when dealing with error correcting codes, classical or quantum. Indeed, I’ve
gone to a lot of e↵ort in the previous chapters to build the mathematical structure of stabilizer codes and
the Cli↵ord group, all of which depends on the basic registers of our quantum computer being qubits. The
problem is that there are lots of interesting codes that don’t quite fit into this structure. Instead, they fit
into similar structures associated to higher-dimensional registers — qudits.

The phenomenon also occurs in the theory of classical error correction, where it’s helpful to work with
linear codes over arbitrary finite fields rather than just binary linear codes. That’s why I introduced non-
binary codes in chapter 4. Now we’ll see how to do the same for quantum codes. Quantum codes with bigger
registers can generally correct more errors and send quantum data with a higher rate than qubit codes.

Based on the last sentence, this may appear a clear-cut case of bigger being better, but it’s not quite that
straightforward. You can’t compare an error on a single qubit with an error on a 32-dimensional qudit on an
even basis. I wouldn’t say you are comparing apples to oranges; rather, you are comparing apples to boxes of
apples. A 32-dimensional qudit could be written using 5 qubits, so a single error on a 32-dimensional error
could be 5 single-qubit errors, and a single-qudit gate in 32 dimensions might need many one- and two-qubit
gates to achieve the same transformation. Nevertheless, some qudit codes are su�ciently interesting, in
terms of e�ciency or other properties, to be worthwhile even once you take the size di↵erence of the registers
into account.

8.1 Qudit Pauli Group

A qudit is a generic term for a q-dimensional Hilbert space, considered as a fundamental unit of the overall
Hilbert space of dimension qn in much the same way that a qubit is a fundamental unit of a 2n-dimensional
Hilbert space. A 2n-dimensional Hilbert space has many possible factorizations into two-dimensional tensor
factors, but one factorization is considered physically favored, and that factorization gives us the physical
qubits making up the full Hilbert space. (The logical qubits encoded in a quantum error-correcting code
make up part of a di↵erent factorization.) Similarly, a qn-dimensional Hilbert space is generally assumed to
have some physically favored tensor product decomposition, producing the physical qudits comprising the
code.

The word “qudit” for a q-dimensional Hilbert space seems to have mostly won out in the literature, but
in some of the older literature you can find a variety of other terms, such as “qupit” (which usually assumes
the dimension is a prime p). You can also find, in papers young and old, occasional terms referring to a
qudit for a dimension of a specific size. “Qutrit” is the most common, for D = 3. Beyond that, you may
have to delve into the word’s Latin or Greek roots to figure out the dimension. For instance, a 4-dimensional
qudit might be a “ququart”, a 5-dimensional one might be a “ququint” or a “qupent” or some such, and for
D = 6, you might even get lucky with a “qusext.”

123

The first step in building quantum error-correcting codes for qudits, by whatever name, is to come up
with the correct generalization of the Pauli group. As for qubits, the qudit Pauli group will play a role both
in describing the types of errors we face and as a structural element for the qudit generalization of stabilizer
codes. We’re going to make heavy use of the machinery of finite fields in this chapter, so if you’re not already
familiar with it, you may want to go through appendix C first.

8.1.1 Qudit Pauli Group for Prime Dimension

The case where the qudit dimension p is prime is the simplest, so we’ll start there.

Definition 8.1. The single-qudit Pauli group P1(p) for prime p > 2 consists of elements {!aXbZc}, where

! = e2⇡i/p (8.1)

X|ji = |(j + 1) mod pi (8.2)

Z|ji = !j |ji, (8.3)

and a, b, c can be anywhere from 0 to p� 1. The n-qudit Pauli group Pn(p) = P1(p)⌦n; it consists of tensor
products of n terms, each of the form XbZc, with an overall phase factor of !a. P̂n(p) = Pn(p)/{!aI} is the
qudit Pauli group without phases.

That is, ! is a pth root of unity, X is “add one mod p”, and Z is a phase shift by a pth root of unity.
We can write X and Z as matrices, of course:

X =

0

BBBBB@

0 0 . . . 0 1
1 0 . . . 0 0
0 1 . . . 0 0
...

. . .
...

0 0 . . . 1 0

1

CCCCCA
Z =

0

BBBBB@

1 0 . . . 0 0
0 ! . . . 0 0
...

. . .
...

0 0 . . . !p�2 0
0 0 . . . 0 !p�1

1

CCCCCA
(8.4)

You can see that X and Z are still unitary but are no longer Hermitian. I’d still like to talk about measuring
X or Z; for any traditionalists reading this who prefer to measure only Hermitian operators, just imagine
measuring a Hermitian operator that has the same eigenbasis as X or Z. For instance,

P
j
j|ji hj| works

instead of Z, and outcome j corresponds to the !j eigenvalue of Z.
We can calculate the commutation relations between elements of the Pauli group. We find

ZX = !XZ. (8.5)

It follows that

(XaZb)(XcZd) = !bc�ad(XcZd)(XaZb). (8.6)

Since ! is a pth root of unity, we might as well calculate bc� ad using arithmetic modulo p. We can define
a new function c(P,Q) : Pn(p)⇥ Pn(p)! Zp by

PQ = !c(P,Q)QP. (8.7)

We no longer are choosing between commuting and anti-commuting Paulis; now commutation is measured
by an integer modulo p, which describes the phase factor that appears when we move P past Q as a power
of !.

A very important di↵erence when p is an odd prime rather than 2 is that we only need the phases to be
powers of !; we don’t get the annoying factor of i that shows up for qubits. This is because all elements of

124

Pn(p) have order p, regardless of overall phase:

(!aXbZc)p = !ap(XbZc)(XbZc)p�1 (8.8)

= !bcX2bZ2c(XbZc)p�2 (8.9)

= !bc+2bcX3bZ3c(XbZc)p�3 (8.10)

. . . = !bc+2bc+···(p�1)bcXpZp (8.11)

= !bcp(p�1)/2 (8.12)

= 1, (8.13)

since p is odd. This also means that the eigenvalues of all elements of the qudit Pauli group are of the form
!j for integer j. While the qudit Pauli group is more complicated than the qubit Pauli group in a variety
ways, in this one way, at least, it is simpler.

There are alternate representations of the qudit Pauli group, just as for the qubit Pauli group. For
instance, we can define a Zp symplectic representation of the qudit Pauli group by

P =
nO

j=1

XajZbj 7! vP = (xP |zP), (8.14)

with xP and zP being n-component vectors over Zp. xP has entries aj , and zP has entries bj . As with
qubits, the overall phase of P is lost when moving to the symplectic representation.

Suppose we have vP as defined in equation (8.14) and vQ, with

Q =
nO

j=1

XcjZdj . (8.15)

We can define a symplectic inner product between vP and vQ as

vP � vQ =
X

j

(bjcj � ajdj), (8.16)

with arithmetic taken mod p. With this definition, we have the following result:

Proposition 8.1. Let P,Q 2 Pn(p). Then c(P,Q) = vP � vQ.

In other words, commutation in the qudit Pauli group corresponds to the symplectic inner product.
We can also map the qudit Pauli group to GF(p2). However, the procedure is a bit more complicated

than for qubits. We should think of GF(p2) as a 2-dimensional vector space over GF(p) with basis {1,↵}. ↵
can be any element of GF(p2) that is not in the GF(p) subfield. We can write arbitrary � 2 GF(p2) as

� = a+ b↵, (8.17)

with a, b 2 GF(p). We then map
XaZb 7! a+ b↵. (8.18)

So far, so good. All is the same as for qubits. We lose the overall phase just as before. If we start with
an element of P̂n(p), we end up with an n-component vector over GF(p2) (with each element written as a
2-component vector over GF(p)).

The complication comes in when we look at the generalization of the symplectic inner product. We wish
to define it using multiplication within GF(p2), and we want it to output an element of GF(p). The latter
condition could be achieved by using the trace function (see appendix C for a discussion), but it turns out we
don’t want to do that in this case. For the former condition, the answer is not at all obvious, and historically
took some time to find. It turns out that the inner product we want is given by the following definition:

125

Definition 8.2. Suppose a, b are n-dimensional vectors over GF(p2). Let

a ⇤ b = a · bp � b · ap
↵� ↵p

, (8.19)

where ap and bp are the n-dimensional vectors whose entries are the pth power of the entries of a and b, and
· represents the usual dot product between vectors.

Notice that the symplectic product we define (also called a trace-alternating inner product) depends
explicitly on the specific element ↵ 2 GF(p2) that we used to give the mapping from P̂1(p) to GF(p2). That
wasn’t the case for qubits because there were only two elements of GF(4) which are outside GF(2), namely
! and !2, but in GF(p2) there are more choices for the pair (↵,↵p).

I don’t know of a better way to motivate this formula than by just calculating, but it turns out that it
does work:

Theorem 8.2. Suppose P,Q 2 P̂n(p) correspond to vectors a, b over GF(p2) according to equation (8.18).
Then

a ⇤ b = c(P,Q). (8.20)

Proof. Let us calculate. We have

P 7! a = x+ ↵z (8.21)

Q 7! b = x0 + ↵z0. (8.22)

Now,
(x+ ↵z)p = xp + ↵pzp = x+ ↵pz, (8.23)

since the field has characteristic p and x, z are vectors over GF(p). Then

a · bp = (x+ ↵z) · (x0 + ↵z0)p (8.24)

= x · x0 + ↵z · x0 + ↵px · z0 + ↵p+1z · z0 (8.25)

b · ap = x · x0 + ↵z0 · x+ ↵px0 · z + ↵p+1z · z0. (8.26)

Thus,

a · bp � b · ap = ↵(z · x0 � x · z0) + ↵p(x · z0 � z · x0) (8.27)

= (↵� ↵p)(x|z)� (x0|z0) (8.28)

= (↵� ↵p)c(P,Q). (8.29)

8.1.2 Qudit Pauli Group for Prime Power Dimensions

The next most complicated case is when each qudit has dimension q = pm, with p a prime. For these
dimensions, the most straightforward thing to do is to let Pn(q) = Pm(p)⌦n. In other words, we consider
each q-dimensional qudit as broken up into m p-dimensional qudits.

That’s fine, as far as it goes, but we’d like to put more structure on the Hilbert space. In particular, we’d
like to consider each q-dimensional qudit as an element of GF(q). To fully take advantage of that structure,
we’d like to also involve GF(q) in our understanding of Pn(q). We can do so as follows:

Definition 8.3. Suppose � 2 GF(q). Let X� and Z� be defined as

X� |�i = |� + �i (8.30)

Z� |�i = !tr(��)|�i, (8.31)

126

where � 2 GF(q), ! = exp(2⇡i/p) is a pth root of unity and tr is the GF(q) trace function which maps
elements of GF(q) to elements of GF(p). Then Pn(q) consists of elements of the form

⌘!a

nO

j=1

X�jZ�j , (8.32)

where a 2 GF(p), �j , �j 2 GF(q). For odd q, ⌘ is always 1. For even q, ⌘ can be 1 or i. As usual,

P̂n(q) = Pn(q)/{!aI} (for odd p) or P̂n(q) = Pn(q)/{iaI} (for p = 2).

Note that
Z�X� = !tr(��)X�Z� . (8.33)

Now let us examine how this definition plays out given a particular way of breaking up each q-dimensional
register intom p-dimensional ones. Suppose we consider GF(q) as anm-dimensional vector space over GF(p),
so

� =
m�1X

i=0

ai↵i, (8.34)

with � 2 GF(q), ai 2 GF(p), and the ↵i’s elements of GF(q) which are linearly independent vectors when
considered over GF(p). It is most common to take ↵i = ↵i, with ↵ some primitive element of GF(q). Note
that with this choice, ↵0 = 1.

We can immediately see how equation (8.34) corresponds to breaking the qudit up into pieces: |�i $
|a0i ⌦ |a1i ⌦ · · ·⌦ |am�1i. X↵i then has a natural interpretation as the p-dimensional X applied to the ith
tensor factor:

X↵i |�i = |� + ↵ii = |
X

j

(aj + �ij)↵ii. (8.35)

If we apply X
P

bi↵i instead, that corresponds to performing Xbi in the ith tensor factor. That is, to
understand the action of X� , we expand � in the same basis used for the standard basis decomposition, and
apply the appropriate power of X on each factor.

The interpretation of Z� is a little trickier. It hinges on the notion of a dual basis (sometimes called a
complementary basis): The set {↵i} forms a basis for GF(q) considered as an m-dimensional vector space
over GF(p), and for any basis, there exists a dual basis {�j} with the property:

tr(↵i�j) = �ij . (8.36)

Then

Z�j |�i = !tr(�j
P

i ai↵i)

m�1O

i=0

|aii = !aj

m�1O

i=0

|aii, (8.37)

since trace is linear over GF(p). That is, Z�j corresponds to performing the p-dimensional Z on the jth
tensor factor. To understand the action of Z� in general, we simply then expand � in the dual basis to the
one used for the standard basis. The choice of the dual bases {↵i} and {�j} thus specifies an isomorphism
Pn(q) ⇠= Pmn(p).

For some fields (and in particular for q = 2m, which is the most interesting case), it is possible to simplify
the decomposition by choosing the basis {↵i} to be self-dual, i.e., �i = ↵i. In that case, X↵i and Z↵i simply
represent the Pauli matrices acting on the ith tensor factor of the q-dimensional register. Not all finite fields
have self-dual bases, unfortunately, so for some values of q, we have to pick di↵erent decompositions for the
exponents of X and Z. Alternatively, we could abandon definition 8.3, but the advantages of that notation
greatly outweigh the inconvenience of having a slightly more complicated decomposition into p-dimensional
qudits.

For either odd or even characteristic, when we drop phases from the Pauli group, we get vectors on a
symplectic space:

P =
nO

j=1

X⌘jZ�j 7! vP = (xP |zP), (8.38)

127

with xP an n-dimensional vector over GF(q) with entries ⌘j and zP an n-dimensional vector with entries �j .

The symplectic inner product between vP and vQ (with Q =
N

X⌘
0
jZ�

0
j) is

vP � vQ =
X

j

tr(�j⌘
0

j
� ⌘j�0j). (8.39)

Multiplication now is the GF(q) multiplication rule, and we take the trace to end up with an element of
GF(p). Once more proposition 8.1 applies.

You probably can guess the next step: We wish to map the q-dimensional Pauli group into GF(q2). The
procedure is similar to that for GF(p); we pick an element ↵ 2 GF(q2) \GF(q), and map

(x|z) 7! x+ ↵z. (8.40)

The correct symplectic inner product in this case is

a ⇤ b = trq/p

✓
a · bq � b · aq
↵� ↵q

◆
. (8.41)

There are two di↵erences from equation (8.19): We use the exponent q instead of p, and we use the trace
function to give us an element of GF(p) for the answer. Note that we are using the trace of GF(q) over
GF(p), not the trace of GF(q2). This is because the term in parentheses already gives an element of GF(q).

Theorem 8.3. Suppose P,Q 2 P̂n(q) correspond to vectors a, b over GF(q2) according to equation (8.40).
Then

a ⇤ b = c(P,Q). (8.42)

The proof is essentially the same as theorem 8.2. We just need to add one final step where we take the
trace to get the GF(q) symplectic product.

8.1.3 Qudit Pauli Group for Other Dimensions

If the dimension q of the register is not a prime power, there are two sensible ways to generalize the above
approaches to define a Pauli group. One idea is to break q up into its prime factorization q =

Q
pmi
i

, and
treat each prime power factor as a separate sub-register of size pmi

i
with its own Pauli group.

The second approach is to directly generalize the Pauli group used for prime dimensions, by letting

! = e2⇡i/q (8.43)

X|ji = |(j + 1) mod qi (8.44)

Z|ji = !j |ji. (8.45)

As usual, the n-qubit Pauli group consists of products of the form !a
N

XbZc for odd q. For even q, we
must include a possible overall factor of i as well. This version of the Pauli group is also known as the
Heisenberg-Weyl group.

It is also possible to use the Heisenberg-Weyl group in place of the usual Pauli group for prime power
dimensions. These groups are di↵erent: For instance, in the q = 9 Heisenberg-Weyl group, X has order 9,
whereas all elements of the usual q = 9 Pauli group have order 3. There are some applications where this is
a sensible thing to do, but the cost of using the Heisenberg-Weyl group is that we lose the field structure we
normally have in prime power dimensions.

Because the mathematical structure of the Heisenberg-Weyl group is more complicated than the Pauli
groups for prime dimension or prime-power dimension, the standard techniques of coding theory don’t work
as well. The basic structure of a stabilizer code still exists, but codes based on the Heisbenberg-Weyl group
lack some of the usual properties of stabilizer codes.

128

8.1.4 Nice Error Bases

Indeed, we can generalize even further and still have a stabilizer code structure. The most important features
are that the elements of our generalized Pauli group form a group, are independent, and span the set of
possible errors. This is codified by the definition of a nice error basis:

Definition 8.4. In a q-dimensional Hilbert space, let E = {E1, . . . , Eq2} be a set of unitary operators

satisfying E1 = I and trE†

i
Ej = q�ij . The set E is a nice error basis if EiEj = !ijEf(i,j) for all i, j and

some phases !ij .

For instance, for a single qubit, the usual Pauli operators {E1 = I, E2 = X,E3 = Y,E4 = Z} form a nice
error basis, with !ij 2 {±1,±i}. To get a generalized Pauli group from a nice error basis, we take elements
of the form !Ei, ! is a product of !ijs.

Because there are exactly q2 independent elements in a nice error basis, they form a basis for the space
of q ⇥ q matrices. In this sense, they can act like the Pauli matrices — we can take any error on the q-
dimensional register and expand it as a sum of elements from the nice error basis. It is thus su�cient for a
QECC to correct all errors in a nice error basis to correct arbitrary errors on the register. This justifies the
“error basis” part of the name.

Proposition 8.4. The indices i of the errors in a nice error basis form a group under multiplication given
by the binary operation f(i, j).

Proof. By the definition of a nice error basis, the set of indices is closed under the group operation. Asso-
ciativity follows from the associativity of operator multiplication:

EiEjEk = !ijEf(i,j)Ek = !ij!f(i,j)kEf(f(i,j),k) (8.46)

= !jkEiEf(j,k) = !jk!if(j,k)Ef(i,f(j,k)). (8.47)

Since the Eis are orthogonal, it follows that f(f(i, j), k) = f(i, f(j, k)), the statement of associativity.
The group identity is i = 1 since E1 = I:

!1iEf(1,i) = IEi = Ei. (8.48)

To establish the existence of inverses, first note that if f(i, j) = f(i, j0), then

EiEj0 = !ij0!
�1

ij
EiEj , (8.49)

implying Ej0 = !Ej for some phase !. Since the Eis are orthogonal, it follows that j = j0. Therefore, the
function j 7! f(i, j) is one-to-one, and since the domain and range both have size q2, it must be onto as
well. In particular, for all i, there must exist i�1 such that f(i, i�1) = 1, and i�1 is the inverse of i.

Definition 8.5. The group of indices {i} under group operation f(i, j) is called the index group of the nice
error basis.

The index group can also be obtained by taking the Pauli group generated by the nice error group and
modding out overall phase. For the usual qubit Pauli group, the index group is therefore isomorphic to
Z2⇥Z2. For the Heisenberg-Weyl group in dimension q, the index group is Zq⇥Zq, and for the prime power
Pauli group, the index group is GF(q)⇥GF(q) under addition. All of these are fairly straightforward Abelian
groups, but for large q, there exist error groups with more exotic index groups, including non-Abelian ones.

8.2 Qudit Stabilizer Codes

Now we are ready to talk about actual QECCs using qudits as registers. After going to all that e↵ort to find
qudit analogs of the Pauli group, you might guess that I’m now going to define a qudit analog of stabilizer
codes. If you guessed that, you’d be correct.

129

8.2.1 Definition and Properties of Qudit Stabilizer Codes

The basic definition of a stabilizer and a stabilizer code is the same as for qubits. When q is a non-prime-
power or when we are using a nice error group more exotic than the standard Pn(q), it is still possible to
define a stabilizer code, but there are some complications to the theory. I’ll just stick to the simpler cases.

The definition of a stabilizer is the same as for qubits:

Definition 8.6. Let q = pm be a prime power, P = Pn(q), and let Q be a subspace of the Hilbert space
H⌦n

q
(i.e., consisting of n qudits). The GF(q) stabilizer of Q is the set

S(Q) = {M 2 P|| i is an eigenvector of M with eigenvalue +1 8| i 2 Q}. (8.50)

Let S be a subgroup of P. We say S is a GF(q) stabilizer, or just stabilizer when the GF(q) is clear from
context, if it is Abelian and if ei�I 62 S for any phase � 6= 0. The code space of a GF(q) stabilizer S is the
subspace

T (S) = {| i s.t. M | i = | i 8M 2 S}. (8.51)

The code Q is a GF(q) stabilizer code i↵ Q = T (S(Q)). The normalizer N(S) of the stabilizer S is

N(S) = {N 2 P|NM = MN 8M 2 S}. (8.52)

The only real di↵erences from the qubit definition are the use of Pn(q) instead of Pn and forbidding ei�

for all non-zero phases �, which is needed because there are more phases in Pn(q) than just ±i,±1.
Note that a GF(q) stabilizer automatically gives a GF(p) stabilizer when q = pm when we reinterpret

Pn(q) as Pmn(p) as discussed insection 8.1.2. Indeed, using the same isomorphism, we can interpret a GF(p)
stabilizer on mn qudits as a GF(pm) stabilizer on n qudits. The di↵erence between them is the definition
of weight (and thus distance of a code), which counts the number of non-trivial p-dimensional qudits in an
operator for a GF(p) stabilizer but the number of non-trivial q-dimensional qudits for a GF(q) stabilizer.
Thus, a Pauli which has weight t for GF(q) might have weight up to mt for GF(p), but there are also Paulis
which have the same weight for GF(p) and GF(q).

Usually, although this is not required by definition 8.6, we deal with GF(q) stabilizer codes that have an
additional property:

Definition 8.7. Let P 2 Pn(q) have GF(q) symplectic representation (xP |zP). Let S be a GF(q) stabilizer,
with symplectic representation Ŝ. Then we say S is a true GF(q) stabilizer if (xP |zP) 2 Ŝ implies (�xP |�zP) 2
Ŝ as well for all � 2 GF(q).

That is, for a true GF(q) stabilizer code, the symplectic representation of the stabilizer is a GF(q)-linear
space. Note that if q is prime, any GF(q) stabilizer code is a true GF(q) stabilizer code since P 2 S implies
P i 2 S as well, and

(xP i |zP i) = i(xP |zP). (8.53)

However, when q = pm with m > 1, then there are some elements of GF(q) which are not numbers, so it is
possible to have stabilizer codes which are not true GF(q) stabilizer codes.

GF(q) stabilizer codes have the same properties we are familiar with from qubit stabilizer codes.

Proposition 8.5. If Q is a non-trivial subspace of the Hilbert space, then S(Q) is a GF(q) stabilizer (not
necessarily a true GF(q) stabilizer). If S is a GF(q) stabilizer, then S(T (S)) = S.

The proof is almost identical to the qubit case. For prime qudit dimension p, we also get analogues of
proposition 3.3 and theorem 3.4.

Theorem 8.6. Let p be prime and let S be a GF(p) stabilizer for the code T (S), which has n physical qudits.
If |S| = pr (i.e., S has r generators), then dim T (S) = pn�r, so T (S) encodes k = n� r physical qudits. The
set of undetectable errors for S is N̂(S) \ Ŝ. The distance of S is min{wtE|E 2 N̂(S) \ Ŝ}.

130

The proofs are closely analogous to the qubit case, so I omit the details. The main notable di↵erence is
that 1

2
(I +M) is not the projection operator on the +1 eigenspace of M . Instead, the projector on the +1

eigenspace of M is 1

p

P
p�1

j=0
M j . The projector on the codespace can be written as

⇧S =
1

pr

X

M2S

M. (8.54)

(Note that the normalization is p�r instead of 2�r.) The other di↵erence is that in the case where the error
E /2 N(S), there is a phase !a instead of �1, but that does not really alter the proof.

For prime power dimensions, there is a complication due to the fact that all Paulis have order p rather
than q. It is most helpful to think of a GF(q) staibilizer of n qudits as a GF(p) stabilizer on mn qudits, in
which case we can apply theorem 8.6. Considered as a GF(p) stabilizer, a stabilizer with r generators has
pr elements and encodes a pmn�r-dimensional Hilbert space, the straightforward analog of the qubit result.
If you insist on thinking of it as a GF(q) stabilizer, the same stabilizer still has r generators and pr elements
and encodes a Hilbert space of dimension pmn�r = qn�r/m (it is, after all, the same code). In particular, a
GF(q) stabilizer does not need to encode an integer number of q-dimensional qudits. However, a true GF(q)
stabilizer code always has a number of generators which is a multiple of m, so does encode an integer number
of q-dimensional qudits.

The other subtlety in prime power dimensions is the definition of distance, and indeed, this is the only
property for which it really makes a di↵erence whether we think of the code as a GF(p) code or a GF(q)
code. It is still the case, of course, that the set of undetectable errors is N̂(S) \ Ŝ. The distance is again
the minimum weight of a Pauli in N̂(S) \ Ŝ. However, when we think of it is a GF(q) code, we should use
weight as defined by the decomposition into q-dimensional qudits (i.e., the number of q-dimensional registers
with non-trivial Paulis). If we instead want to think of the code as a GF(p) code, the weight would be the
number of non-trivial Paulis in the decomposition into p-dimensional qudits. The GF(p) weight of a Pauli
could be equal to the GF(q) weight, but it could also be as high as m times the GF(q) weight. Also note
that the lowest-weight operator in N̂(S) \ Ŝ using the GF(q) weight might even be a di↵erent operator than
the lowest-weight operator using the GF(p) weight.

Notation 8.8. A stabilizer code with n physical qudits of dimension q, k logical qudits (also of dimension
q), and distance d is denoted as an [[n, k, d]]q code.

Compare the notation ((n,K, d))q for a qudit code that is not necessarily a stabilizer code and [[n, k, d]]
for a qubit stabilizer code. This way of listing the properties of a qudit stabilizer code is an obvious hybrid.

8.2.2 Examples: Distance 2 Code, 5-Qudit Code

Let us start to explore the world of qudit stabilizer codes by looking at qudit versions of some specific qubit
codes. First, we can derive distance 2 codes. Again, we will choose one generator to detect Z errors on
any qudit and one generator to detect X errors on any qudit. For prime qudit dimension p, this leads to a
stabilizer of the form

M1 =
nO

i=1

Xai (8.55)

M2 =
nO

i=1

Zbi . (8.56)

We need the generators to commute, so we must pick the exponents so that
P

aibi = 0 using GF(p)
arithmetic. For instance, when n is even, it su�ces if ai = 1 (for all i) and bi = 1 for half of the values of i
and bi = �1 for the other half. Note that it does not work to take all powers equal to 1 unless n = 0 mod p.
It has distance 2 if all ai and bi are non-zero because

c(Xc

i
Zd

i
,M1) = dai (8.57)

c(Xc

i
Zd

i
,M2) = �cbi. (8.58)

131

M1 = X Z Z�1 X�1 I
M2 = I X Z Z�1 X�1

M3 = X�1 I X Z Z�1

M4 = Z�1 X�1 I X Z

Table 8.1: The generators for the five-qudit code.

On the other hand, Xb2
1
⌦X�b1

2
commutes with both generators, so we can see that the code is only distance

2. Notice also that, whereas for qubits, the smallest distance 2 code has 4 physical qubits, for larger qudits, it
is possible to do it with just 3 qudits. For instance, for p = 3 (qutrits), there is the straightforward [[3, 1, 2]]3
code with generators X ⌦X ⌦X and Z ⌦ Z ⌦ Z.

For prime power qudits, the above construction does not give a distance 2 code. For instance,

c(Z�
i
,M1) = tr �ai, (8.59)

and for any ai, there exists a � for which tr �ai 6= 0. The problem here is that X on a single dimension-q
qudit does not detect Z� for all �, basically because a single qudit is really m separate p-dimensional qudits.
No matter what power X↵ we choose, we will have the same problem, since there will be some decomposition
(not necessarily the standard one) which will lead X↵ to act only on a single p-dimensional tensor factor of
the full q-dimensional qudit.

Luckily, we can easily fix this by making the minimal modification needed to get a true GF(q) stabilizer
code, repeating the same operators on all the tensor factors of a qudit. Let S be the smallest stabilizer
containing

M1(�) =
nO

i=1

X�↵i (8.60)

M2(�) =
nO

i=1

Z��i , (8.61)

for all � and any particular choice of (↵i,�i) such that
P
↵i�i = 0 in GF(q). Note that M1(1) and M2(1)

commute if
P

tr(↵i�i) = 0, but that is not su�cient to make sure that all M1(�) commute with all M2(�).
With these extra elements added to the stabilizer, the code is now distance 2. For instance, consider again
the example Z�

i
:

c(Z�
i
,M1(�)) = tr(��↵i). (8.62)

While this will certainly be 0 for some specific �, tr(��↵i) can only be 0 for all � if �↵i = 0 in GF(q).
The operatorsM1(�) are not independent for all �. Since the number of generators for S is best determined

by thinking of it as a GF(p) code, we should represent each � as an m-dimensional vector over GF(p). (It is
m-dimensional since q = pm.) It’s not hard to see that M1(�)M1(⌘) = M1(�+⌘) and [M1(�)]a = M1(a�) for
a 2 GF(p). A set {M1(�)} is thus independent for a subset of possible �’s if the corresponding GF(p) vectors
are linearly independent, which means that S has a total of m generators of the form M1(�). Similarly, it has
m generators of the form M2(�). When we go back to thinking of it as a GF(q) code, we get an [[n, n�2, 2]]q
code. As a GF(p) code, this would be a [[mn,m(n � 2), 2]]p code; this is a case where the distance is the
same over GF(p) and GF(q).

For the next example, I will look at a 5-qudit code which is the qudit generalization of the 5-qubit code.
Again beginning with prime dimension, consider the stabilizer given in table 8.1. You can check directly
that it is Abelian. It is a bit harder (though still not that hard) to see that it has distance 3, but trust me,
it does. Thus, this is a [[5, 1, 3]]p code. We could also have used the same stabilizer as for the qubit version
of the code (table 3.2), but this version has the minor advantage that it is cyclic, just like the 5-qubit code,
whereas table 3.2 would give us a non-cyclic [[5, 1, 3]]p code. While the 5-qubit code is unique up to a tensor
product of single-qubit unitary rotations, there are multiple inequivalent 5-qudit codes for qudit dimension

132

p � 3. Another di↵erence is that the 5-qubit code is perfect (number of errors equals number of syndromes),
whereas the 5-qudit codes are not (more syndromes than single-qudit errors).

Moving to prime power qudits, this 5-qudit code has the same problem as the distance 2 codes — it does
not detect or correct errors on the additional tensor factors of a qudit. We can solve it in the same way. Add
to the stabilizer all operators of the form Mi(�), with each Pauli raised to the power ±� instead of ±1. For
instance, M1(�) = X� ⌦ Z� ⌦ Z�� ⌦X�� ⌦ I. The result is a true GF(q) stabilizer code with parameters
[[5, 1, 3]]q.

8.3 Qudit CSS Codes

We can use some of the same methods to make qudit codes that we used for qubit codes. As discussed in
section 8.1, we can map the q-dimensional qudit Pauli group (for either prime or prime power dimension)
to vectors over GF(q2). This lets us interpret qudit stabilizer codes as GF(q2) additive codes using the
symplectic inner product (8.19) or (8.41) to determine commutation. Note that GF(q2) linear codes which
are weakly self-dual under the sympletic inner product are equivalent to true GF(q) stabilizer codes with
an additional symmetry, just as linear GF(4) codes give qubit stabilizer codes with an extra symmetry (see
exercise ??).

Alternatively, by writing Paulis in the GF(q) symplectic form (an n-qudit Pauli written as a 2n-component
vector over GF(q)), we can use the CSS construction. You’ll notice that the example distance 2 codes in
the last section had some generators that were all Z’s and some generators that were all X’s, whereas the
5-qudit code had a mix of X and Z in each generator. This is because those distance 2 codes are qudit CSS
codes, whereas the 5-qudit code is not.

8.3.1 The CSS Construction for Qudits

For prime dimension, the CSS construction is basically the same as for qubits. Generate a stabilizer code of
the form ✓

0
H2

����
H1

0

◆
, (8.63)

from the parity check matrices of two classical linear codes C1 and C2. In order to define a stabilizer code,
the stabilizer must commute, so use the symplectic inner product (8.16) to test that. Again we find the
condition that, if x 2 C?

2
and z 2 C?

1
, x · z = 0, so in order to get a valid stabilizer code, it must be the case

that C1
? ✓ C2. The distance and number of encoded qudits are given by the same formulas as for qubits.

The only di↵erence from the qubit case is that the arithmetic to determine commutation is mod p instead
of mod 2.

For prime power qudits, we’d like to do the same construction, but we must be a bit more careful. Given
two classical linear GF(q) codes C1 and C2, let’s define the stabilizer S to be the smallest group containing
all
N

j
Z�j and

N
j
X⌘j , where � runs over elements of C?

1
and ⌘ runs over elements of C?

2
. Note that it is

not su�cient to look at the group generated in this way for basis vectors � and ⌘ of C?
1

and C?
2
. This is

because if � 2 C?
1
, then GF(q) linearity implies that ⇠� 2 C?

1
as well for any ⇠ 2 GF(q), but

N
j
Z�j 2 S is

not su�cient to imply that
N

j
Z⇠�j 2 S. This contrasts with the GF(p) case, where

O

j

Zabj =
⇣O

j

Zbj

⌘a
, (8.64)

and since S must be closed under multiplication, it must also be closed under integer exponentiation. Ex-
ponentiation by ⇠ 2 GF(q) doesn’t make any sense, and this is responsible for the di↵erence between GF(p)
and GF(q) stabilizer codes (including CSS codes).

Theorem 8.7. Let C1 and C2 be two classical linear codes over GF(q) with parameters [n, k1, d1]q and
[n, k2, d2]q and satisfying C?

1
✓ C2. Then there exists a true GF(q) stabilizer code with stabilizer given as

above with parameters [[n, k1 + k2 � n, d]]q, d � min(d1, d2).

133

Proof. The first consideration is whether the stabilizer given above is well-defined. We need to check that
M =

N
j
Z�j and N =

N
j
X⌘j commute when � 2 C?

1
and ⌘ 2 C?

2
. By equation (8.39),

c(M,N) =
X

j

tr �j⌘j = tr � · ⌘ (8.65)

(using the GF(q) dot product). Since C?
1
✓ C2, � 2 C2, so � · ⌘ = 0, and c(M,N) = 0 as desired.

Therefore, we have a well-defined GF(q) stabilizer code. The elements of the stabilizer have symplectic
representations of the form (⌘|�) for ⌘ 2 C?

2
and � 2 C?

1
. Since C1 and C2 are GF(q) linear, so are C?

1
and

C?
2
. Thus, the code is a true GF(q) stabilizer code.
The next question is to determine how many logical qudits there are in this code. Each basis vector of C?

1

or C?
2

gives us m independent elements of S (q = pm as usual) for the reasons noted above (exponentiation
by ⇠ 2 GF(q) does not make sense). Thus, there are m(n � k1) generators of S derived from C1 and
m(n � k2) generators derived from C2. Thought of as a GF(p) code, the number of logical qudits is thus
mn �m(n � k1) �m(n � k2) = m(k1 + k2 � n). Thought of as a GF(q) code again, we have k1 + k2 � n
logical qudits.

Finally, the distance can be determined just as for a usual binary CSS code.

It might appear at first sight that it is possible to have GF(q) CSS codes that don’t satisfy the condition
C?

1
✓ C2 since we actually only need tr � · ⌘ = 0 for all � and ⌘. However, because C1 and C2 are linear

GF(q) codes, tr � · ⌘ = 0 for all � and ⌘ i↵ � · ⌘ = 0 is.
As with binary CSS codes, the basis codewords have a straightforward form when written out in the

standard basis:
|� + C2

?i =
X

⌘2C2
?

|� + ⌘i, (8.66)

for � 2 C1. This works for both prime dimension and prime power dimension. Indeed, we could just take it
as the definition of a CSS code in any dimension.

8.3.2 Polynomial Codes

One particularly interesting family of qudit CSS codes is the family of polynomial codes, which are CSS codes
derived from classical Reed-Solomon codes or their variants. Let us pick the code C1 as a Reed-Solomon
code by choosing n distinct points (↵1, . . . ,↵n) from GF(q) \ {0} (n < q) and a number k1 n. We’ll use
polynomials with degree up to k1 � 1. We also pick a second number 0 k2 k1 which will determine the
size of C2.

Definition 8.9. The basis codewords of the polynomial code over GF(q) with (n, k1, k2) are

|�0, . . . ,�k2�1i =
X

(�k2 ,...,�k1�1)2GF(q)

nO

i=1

|�0 + �1↵i + �2↵
2

i
+ · · ·+ �k1�1↵

k1�1

i
i. (8.67)

The polynomial code is the span of these basis codewords.

That is, the basis codewords are indexed by k2 values, the lowest-order coe�cients of the polynomials
being used. We then take the superposition over polynomials for all possible coe�cients of xk2 and higher,
up to the maximum degree xk1�1. A particularly interesting special case is when k2 = 1 so there is just one
encoded qudit. Note that if k2 = 0, the polynomial code can still be defined, but it is only a single state.

Clearly a polynomial code is a qudit CSS code, since the basis codewords have the correct form. However,
instead of choosing both C1 and C2 to be Reed-Solomon codes (which wouldn’t work, since they are not
precisely dual to each other), we have chosen C2

? to be a modified Reed-Solomon code. In particular, C2
?

is the code made up of vectors (f(↵1), . . . , f(↵n)), where f(x) runs over degree k1 � 1 or lower polynomials
for which the lowest nonzero term is the xk2 power or higher. With this choice, it is manifestly true that
C2

? ✓ C1 and that the code encodes k2 qudits. What is not clear is the distance of the resulting polynomial
code.

134

Theorem 8.8. The GF(q) polynomial code with parameters (n, k1, k2) is a non-degenerate true [[n, k2, d]]q
stabilizer code with d = min(n� k1 + 1, k1 � k2 + 1).

Proof. The code C1 is used to correct bit flip errors. By theorem 4.15, the distance of C1 is n� k1 + 1. To
prove the formula for distance, we thus need to show that C2 has distance k1 � k2 + 1 and that the code is
non-degenerate. The fact that it is a true GF(q) code follows from theorem 8.7.

The dual code C2
? has basis vectors (↵j

1
, . . . ,↵j

n
) for j = (k2, . . . , k1 � 1). These form the rows of the

parity check matrix H2. A vector orthogonal to all rows of H2 (i.e., a vector in C2) corresponds to a linear
dependence among the columns of H2, so the distance of C2 is the minimum number of columns of H2 that
are linearly dependent. There are k1 � k2 rows, so certainly no more than k1 � k2 columns can be linearly
independent.

Let us look at the matrix formed by any set of k = k1 � k2 columns, say the first k. The matrix entries
are Vij = ↵k2+j�1

i
. This is not a Vandermonde matrix, but is clearly closely related. The columns of the

matrix are linearly independent i↵ the rows are, and we can think of a linear combination of the rows as
a polynomial with degree k1 � 1 and all coe�cients below degree k2 being 0; that is, an element of C2

?.
The ith entry of the linear combination is the polynomial evaluated at ↵i. A linear dependence of the rows
is thus a polynomial that evaluates to 0 on all the points ↵1, . . . ,↵k. Because the lowest degree term of
the polynomial is xk2 , the polynomial also has a 0 at x = 0 with multiplicity k2. That gives a total of
k2 + k = k1 zeros for the polynomial, which is too many for a degree k1 � 1 polynomial; thus, for this to
be true, the polynomial must be uniformly 0 everywhere (not just on ↵1, . . . ,↵k). In other words, there is
no linear dependence of the rows and the matrix Vij is non-singular. Thus, any k columns are independent.
Since any k + 1 columns are linearly dependent, the code C2 has distance k + 1.

The only remaining thing to show is that the code is non-degenerate, from which it follows that it has
distance exactly min(n� k1 + 1, k1 � k2 + 1) and not a greater distance. We wish to show that there exists
some non-trivial logical Pauli that has this weight. I will show that there is a logical X with weight exactly
n� k1 + 1 and a logical Z with weight exactly k1 � k2 + 1.

For a CSS code (over either qubits or qudits), the logical X operators can be taken to be products of
physical Xs, X =

N
X⌘i . Moreover, the vectors (⌘i) must be in C1 to commute with the Z stabilizer

generators. Since the distance of C1 is exactly n� k1 + 1, there is a vector of this weight. That is, there is
a non-trivial polynomial f of degree k1 � 1 or less such that ⌘i = f(↵i) is 0 for exactly k1 � 1 values of ↵i.
Thus wtX = n � k1 + 1. But since f has degree k1 � 1, if it has more than k1 � 1 zeros, then it will be
uniformly zero. In particular, f(0) 6= 0. Now,

X|0i =
X

g2C2
?

nO

i=1

|(f + g)(↵i)i. (8.68)

But the x0 coe�cient of g is 0 (since g 2 C2
?) and the x0 coe�cient of f + g is not zero, so X|0i 6= |0i and

X 62 S.
Similarly, the logical Z operators are products of physical Zs, Z =

N
i
Z�i . The vectors (�i) must be in

C2, which means there is such a vector with weight exactly k1�k2+1. This gives us Z with wtZ = k1�k2+1.
Now,

Z|fi = Z
X

g2C2
?

k+1O

i=1

|(f + g)(↵i)i (8.69)

=
X

g2C2
?

!
P

i tr �i(f+g)(↵i)
O

i

|(f + g)(↵i)i (8.70)

=
X

g2C2
?

!tr
P

i �if(↵i)+tr
P

i �ig(↵i)
O

i

|(f + g)(↵i)i. (8.71)

Since (�i) 2 C2 and g 2 C2
?,
P

i
�ig(↵i) = 0.

135

But I claim there exists some f 2 C1 such that tr
P

i
�if(↵i) 6= 0. We can assume without loss of general-

ity that �i is non-zero only for i = 1, . . . , k1�k2+1. Consider polynomials fj(x) = xj for j = 0, . . . , k1�k2.

The matrix Vij = ↵j

i
= gj(↵i) is a Vandermonde matrix, so the vectors (fj(↵1), . . . , fj(↵k1�k2+1)) are lin-

early independent. They are vectors in a (k1 � k2 + 1)-dimensional vector space, so there is no non-zero
vector that is orthogonal to all of them. In particular, the vector (�i) must have non-trivial overlap with at
least one of the vectors (fj(↵i)):

P
i
�ifj(↵i) = ⇠ 6= 0. It is possible that tr ⇠ = 0, but if we instead use the

polynomial f 0(x) = ⌘fj(x), then
P

i
�ifj(↵i) = ⇠⌘. ⌘ is arbitrary, so we just need to pick some ⌘ such that

tr(⇠⌘) 6= 0 to prove the claim.

Consequently, Z|0i = |0i but Z|f 0i 6= |f 0i. Thus, Z, which has weight k1 � k2 + 1, is a non-trivial
logical operation. This proves the polynomial code is non-degenerate and thus the distance is exactly
min(n� k1 + 1, k1 � k2 + 1).

If we choose the distances of the bit flip code and the phase code to be equal, then n� k1 = k1 � k2, or
2k1 = n � k2. In this case, 2d = n � k1 + 1 + k1 � k2 + 1 = n � k2 + 2. Since k2 is the number of encoded
qudits, a polynomial code with these parameters saturates the quantum Singleton bound and is a quantum
MDS code. For instance, we can have a [[5, 1, 3]]q polynomial code for q > 5. (There is also a variant with
q = 5.) Note that this code is not equivalent to the [[5, 1, 3]]q stabilizer in table 8.1. This code is a CSS
code, unlike the previous one, but it does not work for q = 2, 3, or 4, whereas the code of table 8.1 works
for any prime or prime power dimension.

8.4 Qudit Cli↵ord Group

Although I’ve spent a number of pages discussing qudit stabilizer codes, ultimately they are not that di↵erent
than qubit stabilizer codes. They’re not identical, to be sure, which is why I’ve gone through them in detail,
but the di↵erences are small. When we get to the qudit Cli↵ord group, however, larger di↵erences start
to appear. The same general principles hold as for the qubit case, but there is a significant divergence
at the level of details. I will focus on the case of prime dimension; for prime powers, simply consider the
q = pm-dimensional qudit as m p-dimensional qudits.

We start the same way as for qubits:

Definition 8.10. Let p be a prime. The qudit Cli↵ord group is

Cn(p) = {U 2 U(pn)|UPU † 2 Pn(p) 8P 2 Pn(p)}. (8.72)

As with qubits, Pn(p) is a normal subgroup of Cn(p). We can also define

Ĉn(p) = Cn(p)/{ei�I} (8.73)

Čn(p) = Ĉn(p)/P̂n(p). (8.74)

It is still the case that Čn(p) ⇠= Sp(2n,Zp) and that there exists a unitary in Cn(p) that performs any
transformation of the Paulis that preserves commutation relations. It is also possible to e�ciently simulate
the behavior of the qudit Cli↵ord group, including Pauli measurements, with a classical computer using
essentially procedure 6.4. The main di↵erence in the simulation is when measuring Pi with Pi 62 N(T). The
measurement outcome is a uniform random value b from 0 to p � 1 rather than 0 or 1. We still find a
generator M of the stabilizer to replace with !bPi, but we choose M that has a factor of ! when commuting
past Pi rather than anticommuting with it. By taking the appropriate power r of M , we can ensure that
NMr commutes with P for stabilizer generators or logical operators N ; we replace the original N with the
appropriate NMr.

The biggest di↵erence with the qubit Pauli groups comes when comparing the actual elements of the
Cli↵ord group. Some of the elements are very closely analogous. For instance, the discrete Fourier transform
over Zp is the generalization of the Hadamard transform (which is the discrete Fourier transform over Z2):

F|ai = 1
p
p

X

b

!ab|bi. (8.75)

136

Working out the conjugation action on the Paulis, we find that Fourier does not precisely swap X and Z,
but does so adding an inverse:

X 7! Z (8.76)

Z 7! X�1. (8.77)

There is also a two-qubit SUM gate which is the direct analogue of the qubit CNOT gate:

SUM|ai|bi = |ai|a+ b mod pi (8.78)

X ⌦ I 7! X ⌦X (8.79)

Z ⌦ I 7! Z ⌦ I (8.80)

I ⌦X 7! I ⌦X (8.81)

I ⌦ Z 7! Z�1 ⌦ Z. (8.82)

Again there is an extra inverse in one of the images in the conjugation action. The inverse powers are needed
to ensure that the Cli↵ord group gate preserves commutation relations among the Paulis. For instance,
Z ⌦ Z does not commute with X ⌦X, but Z�1 ⌦ Z does.

From here, though, we start to see a bigger divergence. There are operators in Cn(p) which don’t have
any qubit analog, such as scalar multiplication by c 2 Zp \ {0}:

Sc|ai = |cai (8.83)

X 7! Xc (8.84)

Z 7! Zc
�1

. (8.85)

The power of Z is c�1, the multiplicative inverse of c in Zp. For instance, for p = 7, 2�1 = 4 since
2 · 4 = 8 ⌘ 1 mod 7. There is also no precise qudit analog of R⇡/4. The closest is a quadratic phase gate
which has a similar action on Paulis:

B|ai = !a(a�1)/2|ai (8.86)

X 7! XZ (8.87)

Z 7! Z. (8.88)

Theorem 8.9. The gates F , B, and SUM along with global phase ei✓I generate Cn(p).

Proof. First, we can show that F , B, SUM, Sc (for all c 6= 0), Pn(p) and ei✓I generate Cn(p) using essentially
procedure 6.5. In the algorithm, we can replace H with F , CNOT with SUM, and R⇡/4 with B. SWAP can
be realized as

SWAPi,j = S�1i
SUMi,jSUM�1

j,iSUMi,j . (8.89)

The analog of C� Z is (I ⌦ F)SUM(I ⌦ F�1). The symplectic matrices of these gates are quite similar to
the qubit versions, but there are some additional minus signs that appear (when the power is an inverse). In
the procedure, we will have to use some of them multiple times in order to cancel out terms. For instance,
in step 2, we wish to eliminate entries in the first column of A. To do so, use left multiplication by SUM
p� a1j to eliminate entry a1j . We also add in Sc, which has the e↵ect of multiplying rows or columns by c
or c�1. This is useful in step 1: we can use SWAP to move a non-zero entry into the upper left corner, but
we then need Sc to make that entry 1.

The next step is to show that we don’t need Sc. I claim that gates of this form can be generated using
only F , B, and P1(p). Let Q = FBF�1. Then

Q : X 7! X (8.90)

Z 7! ZX�1. (8.91)

137

The action of BrQsBmQn is then

X 7! !aX1�msZm+r�rms (8.92)

Z 7! !bX�n�s+mnsZ1�(m+r)n+(mn�1)rs (8.93)

The powers a and b don’t matter because we can get rid of the powers of ! using an appropriate element of
P1(p). Let r = �c�1, s = 1� c, m = 1, and n = 1� c�1, so rs = rms = n = m+ r. Then

X 7! Xc (8.94)

Z 7! Zc
�1

. (8.95)

We also don’t need the Paulis. F2 = S�1, i.e. F2|ai = |�ai. Then

F2BF2B�1|ai = F2B!�a(a�1)/2|�ai = !�a(�a�1)/2�a(a�1)/2|ai = !a|ai. (8.96)

Thus, Z = F2BF2B�1, and X = F�1ZF , which then can be used to generate the full Pauli group.

138

