
CMSC132, Fall 2022, QUIZ #4 (DURATION: 25 MINUTES) – 30 pts

FIRSTNAME, LASTNAME (PRINT IN UPPERCASE):

STUDENT ID (e.g. 123456789):

INSTRUCTIONS:

Assume the following min-heap.

1. (4 pts) Draw the heap (as a tree) that would result from inserting 29 in the heap above.

2. (4 pts) Show how the heap above (the original, not the one from #1 with 29 in it) will look as an array (as discussed in

class).

value
index 0 1 2 3 4 5 6

18

21

28 26

34

37 35

Assume the code below with all necessary import statements.

public class BinarySearchTree {
 private class Node {
 private int key;
 private Node left, right;

 private Node(int key) {
 this.key = key;
 }
 }

 private Node root;
 private int minDist;
 private int nearestKey;

 public int getMinDist(){
 return minDist;
 }

 public int getNearestKey(){
 return nearestKey;
 }

 /*Assume code for add to add nodes to the BST as seen in class; smaller add to
 left, larger add to right, no duplicate keys allowed*/

 public void findNeighbor(int value) { //assume tree with one node
 /* you will write this code and make one call to findNeighborAux*/
 }

}
__

Sample Driver
public class SampleDriver {

 public static void main(String[] args) {

 String answer = "";

 BinarySearchTree tree = new BinarySearchTree();

 tree.add(40);tree.add(20);tree.add(60);
 tree.add(10);tree.add(30);tree.add(50);
 tree.add(70);tree.add(71);

 tree.findNeighbor(55);
 answer+=tree.getMinDist() +"\n";
 answer+=tree.getNearestKey() +"\n";
 tree.findNeighbor(56);
 answer+=tree.getMinDist() +"\n";
 answer+=tree.getNearestKey() +"\n";
 tree.add(52);
 tree.findNeighbor(56);
 answer+=tree.getMinDist() +"\n";
 answer+=tree.getNearestKey() +"\n";

 System.out.println(answer);

 }

}

Driver Output
5
50
4
60
4
52

findNeighbor will perform any necessary non-recursive startup code and make one call to the private recursive
findNeighborAux. When writing the code for findNeighborAux you can have any 2 parameters of your choice, but the code
has to be recursive. The end result should be that the field nearestKey will be assigned the nearest neighbor to value (the
argument passed into findNeighbor) and the field minDist will be the distance from value to the nearest neighbor (i.e.
absolute difference).

The nearest neighbor to value is defined to be an actual key that is in the tree with smallest absolute difference between it and value.
You can use Math.abs method to take the absolute value of an integer. When writing the code, you can assume the tree has at least
one key in it, so there will always be a nearest neighbor to any value. Notice it is possible that 2 keys may tie to be the nearest
neighbor to value. For example, in the driver code, both 50 and 60 have the smallest absolute difference of 5 to the value 55. In such
a case, assign to nearestKey the smaller of the two (i.e. 50 instead of 60). When writing you code, you cannot have any loops and
you cannot use any methods from the Java library other than the Math.abs method.

Directory ID:

