
CMSC132, Fall 2021, QUIZ #4 (DURATION: 25 MINUTES) – 30 pts

FIRSTNAME, LASTNAME (PRINT IN UPPERCASE):

STUDENT ID (e.g. 123456789):

INSTRUCTIONS:

Assume the following min-heap.

1. (4 pts) Draw the heap (as a tree) that would result from inserting 19 in the heap above.

2. (4 pts) Draw the heap (as a tree) that would result from a removeMin operation in the heap above (the original, not

the one from #1 with 19 in it).

18

21

28 26

34

37 35

Assume the code below with all necessary import statements.
public class BinarySearchTree<K extends Comparable<K>> {
 private class Node {
 private K key;
 private Node left, right;

private Node(K key) {
 this.key = key;

 }
 }

 private Node root;

 public static void main(String[] args) {
 BinarySearchTree<Integer> tree = new BinarySearchTree<Integer>();

 tree.add(40);
 tree.add(20);
 tree.add(60);
 tree.add(10);
 tree.add(30);
 tree.add(50);
 tree.add(70);
 tree.add(71);

 System.out.println(tree.makeList(20));
 System.out.println(tree.makeList(30));
 System.out.println(tree.makeList(40));
 System.out.println(tree.makeList(35));

 }

 public ArrayList<ArrayList<K>> makeList(K target)
 {
 ArrayList<ArrayList<K>> myList= new ArrayList<ArrayList<K>> ();
 myList.add(new ArrayList<K> ());
 myList.add(new ArrayList<K> ());

 makeListAux(myList, root, target);

 return myList;

 }

 private void makeListAux (ArrayList<ArrayList<K>> myList, Node rootAux, K target)
 {

 //code this one

 }

 private void //code your 2nd Recursive auxiliary to be called by makeListAux
 {

 //code this one
 }

 /*Assume code for add to add nodes to the BST as seen in class; smaller add to left,
 larger add to right, no duplicate keys allowed*/

}

Driver Output

[[71, 70, 60, 50, 40, 30, 20, 10], [10, 20, 30]]
[[71, 70, 60, 50, 40, 30, 20, 10], [30]]
[[71, 70, 60, 50, 40, 30, 20, 10], [10, 20, 30, 40, 50, 60, 70, 71]]
[[71, 70, 60, 50, 40, 30, 20, 10], []]

makeListAux will populate the first ArrayList in the parameter myList with the keys in the tree in
descending order (no sort calls allowed, your traversal should be able to achieve this). If the target value is
in the tree, the second ArrayList in the parameter myList will be populated by the keys of the subtree rooted
at target in ascending order. If the target value is not there, just leave the second ArrayList in the
parameter myList empty (see last output).

You can have a second recursive auxiliary method of your choice to be called by makeListAux. No loops in
your code and you may only use the following library method calls in all the code you write.

compareTo of your comparable

boolean add(E e) Appends the specified element to the end of this Arraylist.

E get(int index) Returns the element at the specified position in this list.

 Directory ID:

