CMSC 132: OBJECT-ORIENTED PROGRAMMING II

Logarithms in CS

Department of Computer Science University of Maryland, College Park

Understanding Logarithms

- The logarithm is the inverse of exponentiation.
- If $b^x = y$, then $log_b(y) = x$
- Example:
 - $2^3 = 8 \rightarrow \log_2(8) = 3$
 - $10^4 = 10,000 \rightarrow \log_{10}(10,000) = 4$
- In words: "The log tells us how many times to multiply the base by itself to get a number."
- Important Properties (In the Realm of Real Numbers):
 - The argument (input to the log) must be positive (x > 0). Logarithms are not defined for zero or negative numbers in the real number system.
 - The base of a logarithm must be positive and not equal to 1:
 - The answer (output of the log) can be any real number, but:
 - For x > 1, $log_b(x)$ is positive.
 - For x = 1, $log_b(1) = 0$ because $b^0=1$
 - For 0 < x < 1, $log_b(x)$ is negative.
- In computer science, we almost always use base-2 logarithms (log₂(X) which is CS is known as lg(x)) because of binary representation and the halving strategy used in many algorithms. We also assume the input x is an integer ≥1, as it typically represents the problem size.

Know These Powers of 2—Or Struggle Forever as a Computer Scientist!

Yes, you do have to memorize this table 🕾

X	2 ⁿ Value	log ₂ (x)
2 ⁰	1	0
21	2	1
2 ²	4	2
2 ³	8	3
24	16	4
2 ⁵	32	5
2 ⁶	64	6
2 ⁷	128	7
2 ⁸	256	8
2 ⁹	512	9
2 ¹⁰	1,024	10
2 ¹¹	2,048	11
2 ¹²	4,096	12
2 ¹³	8,192	13
214	16,384	14
2 ¹⁵	32,768	15
2 ¹⁶	65,536	16

Logarithm Identities (Useful for CS)

- **Product Rule**: $log_b(xy) = log_b x + log_b y$
- Example: $\log_2(16\times4) = \log_2(16) + \log_2(4) = 4 + 2 = 6$
- Quotient Rule: $\log_b(x/y) = \log_b x \log_b y$
- Example: $\log_2(32/4) = \log_2(32) \log_2(4) = 5 2 = 3$
- Power Rule: $\log_b(x^k) = k \log_b x$
- Example: $\log_2(8^3) = 3\log_2(8) = 3*3 = 9$

Logarithmic Reduction – "Halving Until 1"

- Why does binary search take O(log n) time?
 Binary search works by dividing a sorted list in half at each step.
- If the list has n elements:
 - After 1 step: at most n/2 elements remain
 - After 2 steps: at most n/4 elements remain.
 - After k steps: at most n / 2^k elements remain.
- The process stops when only one element remains:

$$\frac{n}{2^k} = 1$$

Solving for k:

$$n = 2^k$$
$$k = \lg(n)$$

- Reminder: The **ceiling** of a number is the smallest integer greater than or equal to that number. Take the ceiling of lg(n) if n is not a power of 2 to get whole number of steps.
- Thus, the number of steps required is at most O(log n), making binary search highly efficient compared to linear search, which takes O(n) time.

Logarithms in Big-O Notation

- Logarithms appear when we repeatedly divide a problem into smaller parts.
- Common logarithmic complexities:
- Binary search: O(log(n))
- Balanced search trees (BST, AVL, Red-Black trees): : O(log(n))
- Heap operations (insert, delete-min): : O(log(n))
- Why ignore the base in Big-O?
- Change-of-base formula: $log_a(n) = \frac{log_b(n)}{log_b(a)}$
- Example: $\log_{10}(n) = \frac{\log_2(n)}{\log_2(10)}$
- Since 1/log₂(10) is a constant, switching bases only changes the constant factor.
- Since log bases differ by a constant, Big-O treats them the same:
 - O(log₂(n)), O(log₁₀(n)), O(ln(n)) are all equivalent.

Logarithmic algorithms grow very slowly

- If an algorithm runs in O(log₂(n)) how much slower is it if the input doubles?
- If the input size is n, the running time is O(log₂(n))
- If the input doubles (2n), the new running time is: O(log₂(2n))
- Reminder:

Product Rule:
$$log_b(xy) = log_b x + log_b y$$

$$\log_2(2n) = \log_2 2 + \log_2 n = 1 + \log_2 n$$

- This means the running time increases by only 1 extra step!
- Key takeaway: Logarithmic algorithms grow very slowly compared to linear or exponential ones.