
CMSC 132:
OBJECT-ORIENTED PROGRAMMING II

Threads in Java

Department of Computer Science
University of Maryland, College Park

Multitasking
• Process – an instance of a computer program that is currently executing
• Multitasking – the ability of a computer to give the illusion that multiple
processes are running at the same time

Example: Listening to music while working on a document and
downloading a file
• How does multitasking work?

- The CPU does some work on one task
- Then quickly switches to the next task
- This switching is managed by the operating system's scheduler

• As a result:
- The computer seems to run tasks concurrently, even if there's only

one CPU
• What if the computer has multiple CPUs?

- Now it can truly run multiple tasks in parallel
- Same concept applies — but now the number of processes is not

strictly limited by the number of CPUs

© 2025 Dept of Computer Science UMD 2

Multitasking Can Aid Performance
• Single task

• Two tasks

© 2025 Dept of Computer Science UMD 3

Perform Multiple Tasks Using Processes
• Process – an executable program loaded into memory

- Has its own address space (independent memory)
- Contains its own variables and data structures
- Each process may run a different program
- Processes communicate via the operating system, files, or

network
• A process may contain multiple threads

- Threads share the same memory space within the process
- Allow a single program to perform multiple tasks concurrently

• Example:
An audio/video application may:

- Download data
- Decompress video/audio
- Play the media
- Respond to user input (e.g., pause/seek)

© 2025 Dept of Computer Science UMD 4

More about Threads
Thread – a sequential stream of instructions within a program

- Also known as a “lightweight process”
- Shares memory with other threads in the same process

• Each thread has its own execution context:
- Program counter (tracks current instruction)
- Call stack (local variables and method calls)
- But shares the heap (global variables, objects) with other threads

• Threads communicate via shared data access
- Advantage: Less overhead than inter-process communication

(IPC)
- Disadvantage: Increased risk of bugs due to shared mutable

state (e.g., race conditions, deadlocks)
• So far:

- Our programs have had one process, one thread (the main
thread)
• Now:

- We’ll study multithreaded programming in Java
→ One process, multiple threads working in parallel

© 2025 Dept of Computer Science UMD 5

Threads Match Real-World Structure
• Many real-world systems involve multiple, independent tasks

- Example: A web server handles requests from many users
- Each request is separate but served by the same program

• Using threads to handle this structure:
- Server creates a new thread (or uses a thread from a pool)

→ One thread per incoming request
- Each thread handles:

→ Reading the request
→ Generating a response
→ Sending back HTML or data

- Threads run in parallel, sharing memory, cache, and network
sockets

• Benefits of this approach:
- Matches how clients interact: simultaneous, independent

requests
- Improves responsiveness: no request has to wait for others to

finish
- Simplifies logic: programmer can focus on one request at a time

© 2025 Dept of Computer Science UMD 6

Threads Improve Performance on Modern Hardware
• Threads enable better hardware utilization:

- When one thread is waiting (e.g., for disk or network), others
can run

- Multiple CPU cores = true parallel execution
- Threads share resources (like memory), reducing overhead

• Benefits include:
- Higher throughput: more tasks done in less time
- Shorter response time for users
- Efficient handling of mixed workloads (CPU + I/O)

• Summary:
→ Threads help model the problem naturally
→ And take full advantage of modern multi-core systems

© 2025 Dept of Computer Science UMD 7

Creating Threads in Java – Approach 1
(Extending Thread)
• Java provides two main ways to create threads:

• Extend the Thread class – not recommended
• Implement the Runnable interface – preferred

Approach 1: Extending the Thread Class
• Create a subclass of Thread
• Override the run() method to define what the thread will do
• Start the thread using start() (not run()!)
public class MyT extends Thread {
 public void run() {
 System.out.println("Thread is running"); // Code for the thread
to execute
 }
}

MyT t = new MyT(); // Create a thread object
t.start(); // Start a new thread (runs run() in parallel)

© 2025 Dept of Computer Science UMD 8

Creating Threads in Java – Approach 1
(Extending Thread)
• Notes:

- run() is what the thread does — called by the JVM when
start() is used

- start() creates a new thread and runs run() in parallel
- Avoid calling run() directly – that runs on the main thread

• Why Extending the Thread Class is not the preferred
approach:
• Java only allows single inheritance, so extending Thread
limits flexibility
• Better to separate "what to do" (Runnable) from "how to
run it" (Thread)

Thread API
See Examples: First see message package as an example of

single threaded program, then see messageThreadExtends package
(see MyThreadExample program last)

© 2025 Dept of Computer Science UMD 9

https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/Thread.html

Approach 2: Using the Runnable Interface
• Define a class (worker) that implements the Runnable

interface:
Runnable Interface API

• This class defines the task (in run()) to be executed in a
separate thread.

• Two ways to use it:
• Alternative 1: Create a Thread object and pass the

worker to its constructor.
• Alternative 2: Submit the worker to an executor

See Examples: messageThreadRunnable
package (see Runnable Example program last)

© 2025 Dept of Computer Science UMD 10

https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/Runnable.html

Java Thread Lifecycle and States
• Java threads can be in one of the following states (as defined by Thread.State):
• New

→ Thread object is created but start() has not been called yet.
• Runnable

→ Thread is ready to run and waiting to be scheduled by the CPU.
(May or may not be currently executing.)

• Running (not an official state)
→ When a Runnable thread is actually executing its code.
(Internally still considered "Runnable" in Java.)

• Blocked
→ Thread is waiting to acquire a monitor lock (i.e., intrinsic lock for
synchronization).

• Waiting
→ Thread is waiting indefinitely for another thread to perform a specific action
(e.g., join(), wait()).

• Timed Waiting
→ Like Waiting, but with a time limit (e.g., sleep(ms), join(ms), wait(ms)).

• Terminated
→ Thread has completed execution or terminated due to an uncaught exception.

© 2025 Dept of Computer Science UMD 11

Java Thread Lifecycle and States
State Transitions
• Triggered by:

• Method calls: start(), sleep(), wait(), notify(), join()...
• JVM and system events: scheduling, I/O completion, run method

returns…

Extra
• In Java, the states are defined by the Thread.State enum:

Thread.State API Docs

© 2025 Dept of Computer Science UMD 12

https://docs.oracle.com/en/java/javase/13/docs/api/java.base/java/lang/Thread.State.html

Threads – Thread States
• State diagram

runnable

scheduler

new

dead

running Blocked/Waiting

new start

terminate
IO, sleep,
wait, join

yield,
time
slice

notify, notifyAll,
IO complete,

sleep expired,
join complete

Running is a logical state → indicates runnable thread is actually running

© 2020 Dept of Computer Science UMD 13

Thread Scheduling in Java
• Java thread scheduling is platform-dependent
• Behavior is determined by the JVM and underlying OS
• Most modern systems use preemptive scheduling

• What is Preemptive Scheduling?
• The OS can interrupt a running thread to switch to another thread
• Enables responsive multitasking
• Common on Windows, Linux, macOS

• What is Non-Preemptive (Cooperative) Scheduling?
• A thread keeps running until it voluntarily yields control (e.g., via yield(),

blocking I/O)
• Less responsive, but simpler to implement

• Java in Practice
• Most JVMs on modern systems use preemptive scheduling
• Java does not guarantee a specific scheduling policy
• Developers should write code that works regardless of the scheduling

style

© 2025 Dept of Computer Science UMD 14

Waiting for a Thread to Finish: join()
• By default, threads run independently and concurrently.
• Sometimes, we want the main thread to wait for others to finish.
• Use join() to wait for a thread to complete
• Useful when a thread is doing work that the rest of the program

depends on.
• Can throw InterruptedException → must handle or declare it.

Important
• You will limit concurrency if you do not start/join correctly.
• Suppose you want to run many threads concurrently:

Start all the threads first, then join on each one afterward.
Do not start one thread, join on it, start another thread, join on it, etc.

• The following is WRONG: t1.start() t1.join() t2.start() t2.join()
• Correct approach: t1.start() t2.start() t1.join() t2.join()

See ThreadNoJoin followed by ThreadJoin

© 2025 Dept of Computer Science UMD 15

Stopping a Thread in Java
• Thread Lifecycle:

• A thread ends when the run() method completes.
• Prematurely Stopping a Thread:

• Sometimes you may want to stop a thread before it finishes its task.
For example:
• If multiple threads are searching for a solution to a problem and one

finds it, there’s no need for the others to keep running.
• Deprecated Method: stop():

• The stop() method is deprecated and should not be used, as it can
lead to inconsistent thread states, resource leaks, and other issues.

• Recommended Approach: interrupt():
• The interrupt() method is a better, safer way to request that a thread

stops its work.
• Note that interrupt() doesn't force the thread to stop immediately—it

signals that the thread should stop when it can.

© 2025 Dept of Computer Science UMD 16

Using the interrupt() Method
• What interrupt() Does:

• The interrupt() method signals to the thread that it should consider stopping its work.
• It doesn’t stop the thread directly; instead, it sets an internal flag in the thread. The thread needs to

check this flag to decide whether to stop.
• Thread Behavior:

• It’s the responsibility of the thread to respond to the interruption. The thread may ignore it or stop
depending on its logic.

• Checking for Interruption:
• The thread can check whether it has been interrupted using the Thread.interrupted() method. This

returns true if the thread was interrupted.
• A common pattern for checking interruptions is:
public void run() {
 while (!Thread.interrupted()) {
 // Perform work here
 }
 // Perform cleanup tasks, release resources
}

• The thread keeps running while Thread.interrupted() returns false.
• When the thread checks and finds the interruption flag set, it can exit the loop or perform cleanup

operations.
• interrupted() clears the interrupt flag, so it’s commonly called at the start of a loop or in the thread’s

primary task to handle an interruption promptly.
See: ThreadInterruptExample

© 2025 Dept of Computer Science UMD 17

