CMSC 132:
OBJECT-ORIENTED PROGRAMMING I

<=8 Threads In Java

fsy

5‘ N\ o)
18 56
2, S Department of Computer Science

TRYLN University of Maryland, College Park

Multitasking

* Process — an instance of a computer program that is currently executing
* Multitasking — the ability of a computer to give the illusion that multiple
processes are running at the same time

Example: Listening to music while working on a document and
downloading a file

e How does multitasking work?
- The CPU does some work on one task
- Then quickly switches to the next task
- This switching is managed by the operating system's scheduler

e As a result:
- The computer seems to run tasks concurrently, even if there's only
one CPU

 What if the computer has multiple CPUs?

- Now it can truly run multiple tasks in parallel

- Same concept applies — but now the number of processes is not
strictly limited by the number of CPUs

Multitasking Can Aid Performance

- Single task

<€ Total Execution Time = 7 seconds

Busy Busy Busy Busy

<1 sec » <1 sec>»

Total Time Executing Code: 4 seconds
Total Time Waiting: 3 seconds
Time Executing Code: 57% Time Waiting: 43%

- Two tasks

P Busy Busy Busy Busy

P2: Busy Busy Busy Busy

Total Time Executing Code: 8 seconds
Total Time Waiting: 0 seconds
Time Executing Code: 100% Time Waiting: 0%

© 2025 Dept of Computer Science UMD 4

Perform Multiple Tasks Using Processes

* Process — an executable program loaded into memory
- Has its own address space (independent memory)
- Contains its own variables and data structures
- Each process may run a different program

- Processes communicate via the operating system, files, or
network

* A process may contain multiple threads
- Threads share the same memory space within the process
- Allow a single program to perform multiple tasks concurrently

 Example:
An audio/video application may:
- Download data
- Decompress video/audio
- Play the media
- Respond to user input (e.g., pause/seek)

© 2025 Dept of Computer Science UMD 5

More about Threads

Thread — a sequential stream of instructions within a program
- Also known as a “lightweight process”
- Shares memory with other threads in the same process

e Each thread has its own execution context:
- Program counter (tracks current instruction)
- Call stack (local variables and method calls)
- But shares the heap (global variables, objects) with other threads

 Threads communicate via shared data access
: CS Advantage: Less overhead than inter-process communication
IP
- Disadvantage: Increased risk of bugs due to shared mutable
state (e.g., race conditions, deadlocks)

e So far:
- Our programs have had one process, one thread (the main
thread)
* Now:
- We'll study multithreaded programming in Java
— One process, multiple threads working in parallel

Threads Match Real-World Structure

 Many real-world systems involve multiple, independent tasks
- Example: A web server handles requests from many users
- Each request is separate but served by the same program

e Using threads to handle this structure:

- Server creates a new thread (or uses a thread from a pool)
— One thread per incoming request

- Each thread handles:
— Reading the request
— Generating a response
— Sending back HTML or data

- Threags run in parallel, sharing memory, cache, and network

sockets

* Benefits of this approach:
- Matches how clients interact: simultaneous, independent
requests
- Imfproves responsiveness: no request has to wait for others to
Inish
- Simplifies logic: programmer can focus on one request at a time

© 2025 Dept of Computer Science UMD 7

Threads Improve Performance on Modern Hardware

» Threads enable better hardware utilization:
- When one thread is waiting (e.g., for disk or network), others
can run
- Multiple CPU cores = true parallel execution
- Threads share resources (like memory), reducing overhead

e Benefits include:
- Higher throughput: more tasks done in less time
- Shorter response time for users
- Efficient handling of mixed workloads (CPU + |/O)

e Summary:
— Threads help model the problem naturally
— And take full advantage of modern multi-core systems

Creating Threads in Java — Approach 1

(Extending Thread)

- Java provides two main ways to create threads:
* Extend the Thread class — not recommended
* Implement the Runnable interface — preferred

Approach 1: Extending the Thread Class
* Create a subclass of Thread

* Override the run() method to define what the thread will do
» Start the thread using start() (not run()!)

public class MyT extends Thread {
public void run() ({

System.out.println("Thread is running"); // Code for the thread
to execute

}

MyT t = new MyT(); // Create a thread object
t.start () ; // Start a new thread (runs run() in parallel)

© 2025 Dept of Computer Science UMD 9

Creating Threads in Java — Approach 1
(Extending Thread)

* Notes:

- run() is what the thread does — called by the JVM when
start() is used

- start() creates a new thread and runs run() in parallel

- Avoid calling run() directly — that runs on the main thread

- Why Extending the Thread Class is not the preferred
approach:
 Java only allows single inheritance, so extending Thread
limits flexibility
 Better to separate "what to do"” (Runnable) from "how to
run it" (Thread)

Thread API

See Examples: First see message package as an example of
single threaded program, then see message l'hreadExtends package
(see MyThreadExample program last)

https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/Thread.html

© 2025 Dept of Computer Science UMD 10

Approach 2: Using the Runnable Interface

- Define a class (worker) that implements the Runnable
interface:

Runnable Interface API

- This class defines the task (in run()) to be executed in a
separate thread.

- Two ways to use it:

- Alternative 1: Create a Thread object and pass the
worker to its constructor.

- Alternative 2: Submit the worker to an executor
See Examples: messageThreadRunnable
package (see Runnable Example program last)

https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/Runnable.html

© 2025 Dept of Computer Science UMD 11

Java Thread Lifecycle and States

- Java threads can be in one of the following states (as defined by Thread.State):

- New
— Thread object is created but start() has not been called yet.

- Runnable
— Thread is ready to run and waiting to be scheduled by the CPU.
(May or may not be currently executing.)

- Running (not an official state)
— When a Runnable thread is actually executing its code.
(Internally still considered "Runnable" in Java.)

- Blocked
— Thread is waiting to acquire a monitor lock (i.e., intrinsic lock for
synchronization).

- Waiting
— Thread is waiting indefinitely for another thread to perform a specific action
(e.g., join(), wait()).

- Timed Waiting
— Like Waiting, but with a time limit (e.g., sleep(ms), join(ms), wait(ms)).

- Terminated
— Thread has completed execution or terminated due to an uncaught exception.

© 2025 Dept of Computer Science UMD 12

Java Thread Lifecycle and States

State Transitions

- Triggered by:
- Method calls: start(), sleep(), wait(), notify(), join()...

- JVM and system events: scheduling, I/O completion, run method
returns...

Extra

- In Java, the states are defined by the Thread.State enum:
Thread.State API Docs

https://docs.oracle.com/en/java/javase/13/docs/api/java.base/java/lang/Thread.State.html

© 2020 Dept of Computer Science UMD 13

Threads — Thread States

- State diagram

new start
4>< new } ?Gunnable

notify, notifyAll,
IO complete,
sleep expired,

| E SN EEEEEEEEESN ll‘

scheduler * yield, join complete
time
: slice
- (runmng)-: >€3IockedNVa|t|ng>
-------- as?’ |O s|eep,
termlnate wait, join

(Caesa)

Running is a logical state — indicates runnable thread is actually running

© 2025 Dept of Computer Science UMD 14

Thread Scheduling in Java

- Java thread scheduling is platform-dependent
- Behavior is determined by the JVM and underlying OS
- Most modern systems use preemptive scheduling
- What is Preemptive Scheduling?
- The OS can interrupt a running thread to switch to another thread
- Enables responsive multitasking
- Common on Windows, Linux, macOS
- What is Non-Preemptive (Cooperative) Scheduling?

- Athread keeps running until it voluntarily yields control (e.g., via yield(),
blocking 1/O)

- Less responsive, but simpler to implement
- Java in Practice
- Most JVMs on modern systems use preemptive scheduling
- Java does not guarantee a specific scheduling policy
. De\I/eIopers should write code that works regardless of the scheduling
style

© 2025 Dept of Computer Science UMD 15

Waiting for a Thread to Finish: join()

- By default, threads run independently and concurrently.
- Sometimes, we want the main thread to wait for others to finish.
- Use join() to wait for a thread to complete

- Useful when a thread is doing work that the rest of the program
depends on.

- Can throw InterruptedException — must handle or declare it.
Important
- You will limit concurrency if you do not start/join correctly.

- Suppose you want to run many threads concurrently:
Start all the threads first, then join on each one afterward.
Do not start one thread, join on it, start another thread, join on it, etc.

- The following is WRONG: t1.start() t1.join() t2.start() t2.join()
- Correct approach: t1.start() t2.start() t1.join() t2.join()
See ThreadNoJoin followed by ThreadJoin

© 2025 Dept of Computer Science UMD 16

Stopping a Thread in Java

- Thread Lifecycle:
- Athread ends when the run() method completes.

- Prematurely Stopping a Thread:

- Sometimes you may want to stop a thread before it finishes its task.
For example:

If multiple threads are searching for a solution to a problem and one
finds it, there’s no need for the others to keep running.

- Deprecated Method: stop():

- The stop() method is deprecated and should not be used, as it can
lead to inconsistent thread states, resource leaks, and other issues.

- Recommended Approach: interrupt():

- The interrupt() method is a better, safer way to request that a thread
stops its work.

- Note that interrupt() doesn't force the thread to stop immediately—it
signals that the thread should stop when it can.

© 2025 Dept of Computer Science UMD 17

Usmg the interrupt() Method

What interrupt() Does:

- The interrupt() method signals to the thread that it should consider stopping its work.

It doesn’t stop the thread directly; instead, it sets an internal flag in the thread. The thread needs to
check this flag to decide whether to stop.

- Thread Behavior:

It's the responsibility of the thread to respond to the interruption. The thread may ignore it or stop
depending on its logic.

- Checking for Interruption:

- The thread can check whether it has been interrupted using the Thread.interrupted() method. This
returns true if the thread was interrupted.

- A common pattern for checking interruptions is:
public void run() {
while (!'Thread.interrupted()) {
// Perform work here

}

// Perform cleanup tasks, release resources

The thread keeps running while Thread.interrupted() returns false.

When the thread checks and finds the interruption flag set, it can exit the loop or perform cleanup
operations.

interrupted() clears the interrupt flag, so it's commonly called at the start of a loop or in the thread’s
primary task to handle an interruption promptly.

See: ThreadInterruptExample

