
CMSC 132: 
OBJECT-ORIENTED PROGRAMMING II

Java Language Constructs I

Department of Computer Science
University of Maryland, College Park



Enhanced Switch in Java
• What is the Enhanced Switch?

• Introduced in Java 12 (preview) and standardized in Java 14.
• Offers a concise, expressive, and safer way to use the switch statement.
• Addresses common pitfalls of traditional switch, such as unintended fall-

through.
• Key Features
• Arrow Syntax (->):

• Simplifies syntax and eliminates the need for break.
• Default behavior prevents fall-through.

• Multiple Labels per Case:
• Group related cases together for clarity and efficiency.

• Expression Support:
• Allows switch to produce and return values directly.

• Multi-Statement Cases:
• Use curly braces {} to include multiple actions within a single case.
See: enhancedSwitch package

© 2025 Dept of Computer Science UMD 2



Varargs (Variable Arguments) in Java
• What is Varargs?

• Varargs allows a method to accept zero or more arguments of the same type.
• Introduced in Java 5 to make method calls more flexible and concise.
• Declared by using an ellipsis (...) followed by the type, at the end of the parameter list.

• Key Points:
• The parameter must be the last parameter in the method signature.
• The varargs parameter is treated as an array inside the method.
• Varargs is useful when you don’t know the exact number of arguments a method will take, such 

as in utility methods or when dealing with variable-length lists of parameters.
• Benefits:

• Simplifies method declarations when dealing with an unknown number of parameters.
• Makes method calls cleaner and more readable without needing to pass an array.
• Reduces the need for method overloading in cases of variable numbers of arguments.

• Common Use Cases:
• Methods like System.out.printf() that accept a variable number of arguments for formatting.
• Utility methods for joining or summing up values of any number of elements.

• Considerations:
• Varargs parameters are internally represented as an array, so performance may be affected 

when dealing with a large number of arguments.
• Overloading methods with varargs should be done carefully to avoid ambiguity with other 

parameter types.
• See: varargsExample package

© 2025 Dept of Computer Science UMD 3



Introduction to Java Enums
• Definition:Enums (short for Enumerations) are special data 

types in Java used to define collections of constants.
• Purpose:
• Improve code readability.
• Group related constants.
• Prevent invalid values.

• Key Characteristics: 
• Enums are implicitly final and cannot be instantiated.
• Inherit from java.lang.Enum.

https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/Enum.html

• Provide type safety compared to traditional constants.
• Common Use Cases:
• Representing states (e.g., Days of the Week, Directions).
• Defining configuration options.

© 2025 Dept of Computer Science UMD 4

https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/Enum.html


Characteristics and Behavior of Enums
• Static Constants:

Each value in an enum is implicitly public static final.
• Singleton Nature:

Enum constants are unique instances.
• Built-In Methods:

• values(): Returns an array of all enum constants.
• ordinal(): Returns the position of the constant in the enum.
• name(): Returns the name of the constant.

• Interfaces & Methods:
• Enums can implement interfaces.
• Can include fields, constructors, and methods.

• Immutability:
Enum constants are immutable and thread-safe.

© 2025 Dept of Computer Science UMD 5



Advantages of Using Enums
• Improved Type Safety:

• Prevents assigning invalid values to variables.
• Enhanced Readability:

• Easy-to-read and meaningful constants.
• Encapsulation:

• Can group logic with related constants.
• Seamless Integration:

• Works with Java Collections, switch statements, etc.
• Memory Efficiency:

• Instances are created once and reused.
• Built-in Methods & Overrides:

• Override toString(), define custom behaviors, and compare enum 
constants.

© 2025 Dept of Computer Science UMD 6



Enum Best Practices
• Clear Naming Conventions:

• Use all caps with underscores for constants (e.g., 
HIGH_PRIORITY).

• Limit Enum Scope:
• Avoid bloating enums with unrelated methods or data.

• Custom Methods:
• Add methods to extend functionality only when necessary.

• Avoid Overuse:
• Use enums only for finite, fixed sets of constants.

• Use in Switch Statements:
• Simplify control flow with enums.
• See: enumExamples package

© 2025 Dept of Computer Science UMD 7



Introduction to Java Annotations
• What Are Annotations in Java?

• Annotations are a form of metadata that provide additional 
information about the program to the compiler or runtime 
environment.

• Annotations do not alter the behavior of the program, but they can 
be used by tools and libraries to perform operations such as 
validation, documentation, or code generation.

• Introduced in Java 5.

• Why Use Annotations?
• Provide metadata to influence how code is processed.
• Help with code readability and maintainability.
• Enable frameworks to perform tasks like dependency injection, 

validation, etc.

© 2025 Dept of Computer Science UMD 8



Types of Annotations
• Built-in Annotations
• @Override: Indicates that a method is overriding a method from its 

superclass.
• @Deprecated: Marks a method or class as outdated and suggests 

that developers avoid using it.
• @SuppressWarnings: Tells the compiler to suppress specific 

warnings.
• @FunctionalInterface: Marks an interface as functional (only one 

abstract method).
• Custom Annotations
• Java allows the creation of custom annotations with specific metadata.

• Annotation Target
• Annotations can be applied to classes, methods, fields, parameters, 

constructors, etc.
• Reference

• http://docs.oracle.com/javase/tutorial/java/annotations/basics.html
See: annotation package

© 2025 Dept of Computer Science UMD 9

http://docs.oracle.com/javase/tutorial/java/annotations/basics.html

