
CMSC 132:
OBJECT-ORIENTED PROGRAMMING II

Lambda Expressions in Java

Department of Computer Science
University of Maryland, College Park

Functional Interfaces in Java
• Definition: A functional interface has exactly one abstract

method.
• Key Point: Can have multiple default or static methods.
• Purpose: They are the foundation for lambda expressions.
• Common Examples:
• Runnable
• Comparator<T>
• Callable<T>

• Predefined interfaces in java.util.function:
• Predicate<T>
• Function<T, R>
• Consumer<T>

• Optional Declaration:
• You can declare a functional interface using the @FunctionalInterface

annotation (this is not mandatory, but ensures the interface meets the
requirement).

© 2025 Dept of Computer Science UMD 2

Motivation - Why Use Lambda Expressions?
• Problems with Anonymous Inner Classes Before Java

8:
• Creating instances of functional interfaces (e.g., Runnable,

Comparator<T>) required verbose anonymous classes.
• Too much boilerplate code for simple operations.

• How Lambda Expressions Help:
 Reduces verbosity – Eliminates the need for
anonymous classes.
 Improves readability – Code becomes more
concise and easier to understand.
 Enables functional programming – Works well
with Streams API, higher-order functions, and method
references.

• See: BeforeJava8 and AfterJava8

© 2025 Dept of Computer Science UMD 3

What is a Lambda Expression?
• Definition:
• A lambda expression is an anonymous function that can be

used to implement a functional interface.
• It provides a clear and concise way to represent a single method

implementation.
• Syntax: (parameters) -> { body }
• Lambda Components:
1.Parameters – Input values (can be zero, one, or

multiple).
2.Arrow (->) – Separates parameters from the body.
3.Body – Defines the implementation logic (can be a single

expression or a block {} for multiple statements).

© 2025 Dept of Computer Science UMD 4

Functional Interfaces & Lambda Expressions
• Reminder: What is a Functional Interface?
• A functional interface is an interface that contains exactly one

abstract method.
• Lambda expressions can be used to implement them without

needing a class or an object.
• Examples of Functional Interfaces in Java:
• Predefined Interfaces in java.util.function package
• Consumer<T> – Accepts an argument but returns nothing.
• Supplier<T> – Returns a value but takes no argument.
• Function<T, R> – Takes an argument of type T and returns R.
• Predicate<T> – Evaluates a condition and returns true or false.

• See FunctionalInterfacesExample

© 2025 Dept of Computer Science UMD 5

Lambda Expression Syntax Breakdown
• Basic Syntax Variations
• Zero parameters:
 () -> System.out.println("Hello, World!");

• One parameter (parentheses optional): x -> x * x
• // If only one parameter, parentheses can be omitted
• Multiple parameters: (x, y) -> x + y
• Block body (for multiple statements):
(x, y) -> { int sum = x + y;
 return sum; }

Using a return statement:
• Single-line expressions automatically return a value (no need for

return).
• If using {} (block body), you must explicitly use return.

See LambdaVariations

© 2025 Dept of Computer Science UMD 6

