
CMSC 451:Spring 2025 Dave Mount

Homework 3: Dynamic Programming and More

Handed out Tue, Mar 11. Due at the start of class (11am), Tue, Apr 1. (electronic submission
through Gradescope.)

Problem 1. (5 points) Work through the chain-matrix multiplication algorithm on a sequence of
matrices A1 · A2 · A3 · A4, where matrices are of dimensions 2 × 2, 2 × 5, 5 × 3, and 3 × 1,
respectively. Following the algorithm from Lecture 10. Present both the M and H matrices
and show the final multiplication order.

You may present your matrices either in traditional form, or in the rotated form that is used
in Figure 5 (page 5) of Lecture 10. You may present the final multiplication order as a tree
or by adding parentheses to “A1 ·A2 ·A3 ·A4”.

To simplify your life, we have provided the first two diagonals of the M matrix in Fig. 1
below. (Hint: Be careful with your math. If you miscalculate an entry, it will ruin the entire
result.)

15

0000

20 30 31 2

1

2

3

4

4

3

2

1

j i

M [i, j]

2 2 5 3 1

p0 p1

A1
p2

A2
p3

A3
p4

A4

4

3

2

j 1

2

3

i

H [i, j]

Figure 1: Chain-matrix multiplication.

Problem 2. (12 points) Let’s return to the typesetting problem from Homework 3. Recall that we
are given a line of length L and a paragraph consisting of a sequence of words whose lengths
are W = ⟨w1, . . . , wn⟩. (We assume that wi ≤ L for all i.) We are to place words in order
along each line subject to the condition that the sum of word lengths on any line does not
exceed L. The penalty for each line is defined to be the difference between the sum of word
lengths on this line and L. The objective is to place the words to minimize the maximum
penalty over all the lines (see Fig. 2(a)).

In an earlier homework assignment, we showed that a greedy strategy is not optimal. In this
problem we will show that this problem can be solved optimally by dynamic programming.

(a) (6 points) Derive a (recursive) dynamic programming formulation, which given L and
the sequence of word lengths W = ⟨w1, . . . , wn⟩, determines the segmentation of words
to lines (without reordering) that minimizes the maximum penalty (see Fig. 2(a)). As
is typical with DP problems, your formulation will compute the maximum penalty, not
the actual segmentation. Briefly justify the correctness of your formulation.

1

https://www.cs.umd.edu/class/spring2025/cmsc451-0101/Lects/lect10-dp-mat-mult.pdf


(a) (b)

w1 w2 w3 w4

w5 w6 w7

w8 w9 w10 w11

w12 w13 w14

w15w16 w17 w18

L

max
penalty

w1 w2 w3 w4

w5 w6 w7

w8 w9 w10 w11

w12 w13 w14 w15

w16 w17 w18

L

max
penalty

Figure 2: Optimal typesetting of words to minimize the maximum penalty.

(b) (4 points) Present an implementation of your DP formulation. What is its running time?
It may help to imagine that you have access to a function len(i, j) that returns the sum
of word lengths from wi up to wj (assuming that 1 ≤ i ≤ j ≤ n) that runs in constant
time.

(c) (2 points) In practice, when laying out a paragraph we do not care whether the last line
is “ragged.” Modify your solution from part (a) to compute the layout that minimizes
the maximum layout excluding the last line. (For example, by this metric the layout
shown in Fig. 2(b) has a lower cost than the layout from Fig. 2(a).)

As in part (a), briefly justify the correctness of your formulation.

Problem 3. (13 points) In your new job for a major chip manufacturer, you are tasked to help
processing defects in the fabrication process. A fabricated chip is a square of some given side
length L. After fabrication, it is tested for defects. Let us assume that the defects take the
form of a set of points P = {p1, . . . , pn} (see Fig. 3(a)).

(a) (b)

p1

L

L

(c)

p2 p3
p4

p5

(d)

p6
p7

p8
p9

ℓ3 ℓ1

ℓ2

ℓ4

ℓ5

cost = ℓ1 + · · · + ℓ5

Figure 3: Cutting away defects in a fabricated chip.

Since we cannot sell chips with defects, we need to cut them out. The laser cutting tool
makes a horizontal or vertical cut through a defect point that runs the entire length of chip.
This splits the chip into two smaller chips. The cutting process is then repeated on each of
these smaller chips. This is repeated until all the defects are cut out. The resulting set of
defect-free rectangles are called subchips (see Fig. 3(b)). This is called a hierarchical cutting.

There are many different hierarchical cuttings for a given set of defects. To maximize profits,
we want the sum of lengths of laser cuts to be as small as possible. (For example, Fig. 3(c)

2



shows another valid cutting, but uses longer cuts than (b).) Define the total cost of a hierar-
chical cutting to be the sum of lengths of all cuts (see Fig. 3(d)).

The objective of this problem is to devise an efficient DP algorithm, which given an L × L
chip and set P of defect points, computes a hierarchical cutting that minimizes the total cost.

(a) (3 points) Throughout, let us assume that, among the defect points, there are no dupli-
cate x-coordinates nor duplicate y-coordinates. Prove that if the number of defects is n,
then the number of subchips in any hierarchical cutting is n+ 1.

(b) (5 points) Derive a DP formulation, which given a set P = {p1, . . . , pn} of defects,
determines the best (that is, minimum) total cost of any hierarchical cutting. Your
formulation should be expressed as a recursive function. Be sure to include the basis
case(s) for the recursive function, and indicate what initial function call provides the
global answer. Justify the correctness of your formulation.

(Hint: The subproblems are associated with rectangles of the original image, which can
arise through any valid hierarchical cutting process. It may be helpful to presort the x-
and y-coordinates of the defect points.)

(c) (3 points) Present an implementation of your formulation from part (a). You may assume
that you have been given access to functions to answer any geometric queries about the
defects. For example, the following function may be useful. Given x < x′ and y < y′,
the function defectCount(x, x′, y, y′), returns the number of defect points that lie within
the interior of the rectangle [x, x′]× [y, y′].

(Hint: Memoization is probably simpler than a bottom-up computation, but either is
acceptable. Given that each subproblem is bounded by four sides, I would expect a
running time of at least O(n4). It may be larger, however, depending on the amount of
time it takes to compute each table entry.)

(d) (2 points) Derive the running time of your algorithm from (c).

Problem 4. (10 points) In this problem, we will trace the partial execution of the Ford-Fulkerson
algorithm on a sample network.

(a) (2 points) Consider the s-t network G shown in Fig. 4(a), and consider the initial flow
f in Fig. 4(b). Show the residual network Gf for this flow.

(a) Initial network G (b): Initial flow f

s

a

d

c

3

8 1

b t32

7
2 5

3 4

3 s

a

d

c

3/3

2/8 1/1

b t2/32/2

3/7
0/2 0/5

0/3 1/4

3/3

Figure 4: Tracing the Ford-Fulkerson algorithm.

3



(b) (2 points) Find any s-t path in Gf . How much flow can you push along this path? Show
the updated flow (in the same manner as Fig. 4(b)).

(c) (2 points) Show the new residual network that results for your flow from (b).

(d) (1 points) Is this the maximum flow in this network? (If not, keep running Ford-Fulkerson
until you get the maximum flow, and show the final flow.) What is the value of the
maximum flow?

(e) (1 points) Show the residual network for your maximum flow from (d). (If the flow from
(c) was already maximum, then state this.)

(f) (2 points) Show the cut that results by partitioning the network into two subsets of
vertices, the vertices X that are reachable from s and the remaining vertices Y = V \X.
What is the capacity of this cut? (It should match your flow value, if you did everything
correctly.)

Problem 5. (10 points) In this problem we will consider network flows involving networks with
vertex capacities, rather than edge capacities. You are given a directed s-t network G =
(V,E), in which each vertex u ∈ V \ {s, t} (that is, every vertex excluding the source and
sink) is associated with a nonnegative capacity, denoted c(u) (see Fig. 5(a)). We call this a
vertex-capacitated network. A flow in G is defined the same as for a standard network except
the capacity constraint applies to the flow into of each vertex (excluding s and t), that is,

∀u ∈ V \ {s, t},
∑

(w,u)∈E

f(w, u) ≤ c(u)

As with standard flows, excluding s and t, the flow into the vertex must equal the flow out
of the vertex (see Fig. 5(b)).

(a) (b)

s t

9

7

4

8

9

7

G

s t

9

7

4

8

9

7

G

9

4

3

1

6 8

8

4
2

3

5

0

Figure 5: (a) A network with capacities on the vertices and (b) a valid flow.

We assert that having vertex capacities is essentially the same as having edge capacities. To
show this, answer the following two questions.

(a) (5 points) Explain how to modify any vertex-capacitated network G into an equivalent
edge-capacitated network G′ so that, for any flow in G there exists a flow of equivalent
value in G′, and vice versa.

(b) (5 points) Explain how to modify any edge-capacitated network G into an equivalent
vertex-capacitated network G′ so that, for any flow in G there exists a flow of equivalent
value in G′, and vice versa.

4



Your answers should first explain how to convert G into G′. (Hint: The conversions are both
very simple and are implementable in O(m+ n) time. They do not involve computing flows,
residual networks, or cuts.) Next, show for any flow f in G, there exists a flow f ′ in G′ of
equal value, and vice versa. If done carefully, these proofs can be quite long. Instead, it is fine
to give a brief explanation of your construction, and then provide a few figures illustrating
your conversion and how flows in G correspond to flows in G′.

(Note: Challenge problems count for extra credit points. These additional points are factored
in only after the final cutoffs have been set and can only increase your final grade.)

Challenge Problem 1. In Problem 2, we suggested using a function len(i, j) that return the
sum of word lengths wi through wj in constant time. Show that, given the word lengths
⟨w1, . . . , wn⟩, after O(n) preprocessing time it is possible to build a data structure from
which len(i, j) can be computed in O(1) time. (If you do not see how to do this, you might
try for a solution in which the preprocessing time is increased to O(n2) and/or the access
time is increased to O(log n).)

Challenge Problem 2. In Problem 3, we suggested using a function to count the number of
defects in a given rectangular region. The following problem is closely related. Suppose that
we have a matrix M [1..n][1..n] of integers. Given indices (i, i′, j, j′), where 1 ≤ i ≤ i′ ≤ n and
1 ≤ j ≤ j′ ≤ n, we want to compute the sum of all the entries of M lying within between
rows i and i′ and between columns j and j′. That is, define

blockSum(i, i′, j, j′) =

i′∑
i′′=i

j′∑
j′′=j

M [i′′, j′′].

Show that, given M , after O(n2) preprocessing time, it is possible to build a data structure
with O(n2) space from which this function can be computed in O(1) time. (If you do not see
how to do this, you might try for a solution in which the preprocessing time is increased to
O(n4) and/or the access time is increased to O(log n).)

5


