
CMSC 451:Spring 2025 Dave Mount

Practice Problems for the Midterm

(Updated: Tue, Apr 1.) The midterm will be on Thu, Apr 3, 7-9pm in IRB 0324. The
exam will be closed-book and closed-notes, but you will be allowed one sheet of notes (front and
back).

Disclaimer: These are practice problems, which have been taken from old homeworks and exams.
They do not reflect the actual length, difficulty, or coverage for the exam.

Problem 0. You should expect one problem in which you will be asked to work an example of
one of the algorithms we have presented in class on a short example. (Likely candidates:
DFS (including applications such as computing strong components), Dijkstra’s algorithm,
any greedy algorithm from the lecture notes, or any of the DP algorithms from class.)

Problem 1. Short answer questions:

(a) As a function of n, what is the asymptotic running time of the following function?
(Express your running time using Θ notation.)

void f(int n) {

i = n;

while (i >= 1) {

for (j = 1 to i) print("hello!\n");

i = i/2;

}

}

(b) What is the maximum number of edges in an undirected graph with n vertices, in which
each vertex has degree at most k? You may assume n is even. (For full credit, express
your answer as an exact function of n and k. For partial credit give it in big-O notation.)

(c) Suppose that you perform a DFS on an undirected graph G = (V,E), and for each vertex
u ∈ V , you compute the discovery time d[u] and finish time f [u]. Let u be a descendant
of v in the DFS tree. What (if anything) can be inferred about the relative orders of
d[u], f [u], d[v], and f [v]?

(d) We know that Dijkstra’s algorithm may fail on graphs with negative edge weights. Prof.
DM devises a trick to fix this. He adds a sufficiently large positive constant to every
edge in the graph so that the edge weights are now all positive. He then runs Dijkstra
on the result.

Will this algorithm correctly generate shortest paths for the original graph? Explain
why or why not.

(e) Recall the variant of the Bellman-Ford algorithm given in class, which performs relax
operations on all the edges until the d[v] values converge. Suppose that you run the
algorithm on some graph, and it goes into an infinite loop. What can you infer about
this graph?

1

(f) Gonzalez’s algorithm (the greedy k-center heuristic) is run on a set P of n = 100 points
in the plane. For i ≥ 1, let Ci denote the set of centers after i iterations. Let ∆i denote
the maximum distance of any point of P to its closest center in Ci. Let Γi denote the
minimum distance between any two centers of Ci. Which of the following statements
necessarily holds? (Select all that apply.)

(i) ∆4 ≤ ∆3

(ii) Γ4 ≤ Γ3

(iii) Γ4 ≤ ∆3

(iv) Γ4 ≥ ∆3

(g) Suppose that the capacities of the edges of an s-t network are all integers that are evenly
divisible by 3. (E.g., 3, 6, 9, 12,) What can be inferred about the maximum flow
value in this network?

Problem 2. Let G = (V,E) be an directed acyclic graph (DAG) (see Fig. 1(a)). Define the length
of a path in G to be the number of edges on the path.

Present an efficient algorithm that labels each vertex u with the length L[u] of the longest
path ending at u (see Fig. 1(b)). Your algorithm should run in time O(n+m), where n = |V |
and m = |E|. Briefly justify your algorithm’s correctness and derive its running time. (Hint:
It may be helpful to some preprocessing in O(n+m) time.)

(a) (b)

3210

2 4

3 5

0

Figure 1: Longest path ending at a vertex in a DAG.

Problem 3. Given a DAG G = (V,E), a path of G is said to be maximal if it ends at a vertex
with outdegree zero. (If u is a vertex of outdegree zero then the path consisting of just u
itself is a maximal path.) For each vertex u, let P (u) denote the number of maximal paths
that start at u. (If u has outdegree zero, then P (u) = 1, which counts the trivial path ⟨u⟩.)
Present an O(n+m) algorithm which, given a DAG, G = (V,E) as an adjacency list, computes
P (u) for each u ∈ V . (Hint: Use DFS.)

Problem 4. Prof. DM drives from College Park to Miami Florida along I-95 to seek the lovely
and elusive Prothonotary Warbler. He starts with a full tank and can go for 100 miles on
a full tank. Let x1 < . . . < xn denote the locations of the various gas stations along the
way, measured in miles from College Park. Present an algorithm that determines the fewest
number of gas stations he needs to stop at to make it to Miami without running out of gas
along the way. Justify the correctness of your algorithm. (You may assume that the gap
between consecutive stations never exceeds 100 miles.)

2

Problem 5. You are given a collection of files {f1, . . . , fn} files that are to be stored on a tape.
File fi is si bytes long. The tape is long enough to store all the files. The probability of
accessing file fi is pi, where 0 ≤ pi ≤ 1, and

∑n
i=1 pi = 1. The tape is rewound before each

access, and so the time to access any file is proportional to the distance from the front of the
tape to the end of the file.

A layout of files on the tape is given by a permutation π = ⟨π1, . . . , πn⟩ of the numbers
{1, . . . , n}. (For example, Fig. 2 shows the layout (4, 2, 1, 3).) Given a layout π, the expected
cost of accessing the ith file on the tape is the product of its access probability and the
distance from the start of the tape to the end of the file. The total cost of a layout π is the
sum of the expected costs for all the files, denoted T (π).

(a) (b)

f1 :

f2 :

f3 :

f4 :

p1 = 0.4s1 = 300

s2 = 200

s3 = 500

s4 = 100

p2 = 0.35

p3 = 0.1

p4 = 0.15

f4 f2 f1 f3

100
300

600
1100

T (π) = 100 · 0.15 + 300 · 0.35 +

600 · 0.4 + 1100 · 0.1 = 470

Figure 2: Placing files on a tape to minimize access time.

(a) Present a (short) counterexample so show that laying out the files on the tape in in-
creasing order of size (si) is not optimal.

(b) Present a (short) counterexample so show that laying out the files on the tape in de-
creasing order of access probability (pi) is not optimal.

(c) Present an algorithm, which given si’s and pi’s, determines a layout π of minimum total
cost. Prove your algorithm’s correctness and derive its running time. (Hint: Use a
greedy approach.)

Problem 6. Consider a variant of the LCS problem where symbols are not required to match
exactly. You are given two sequences of digits X = ⟨x1, . . . , xm⟩ and Y = ⟨y1, . . . , yn⟩ where
xi, yj ∈ {0, . . . , 9} (see Fig. 3(a)). You wish to match some subsequence of X with a subse-
quence of Y where slight mismatches are allowed.

When matching two symbols x and y, if x = y, this match counts as +2. If |x − y| = 1,
then the match counts as +1, and if |x− y| ≥ 2, then the symbols cannot be matched. (For
example, in Fig. 3(b) we show a correspondence with total weight 4.5.).

Define the LCS with Mismatches (LCSM) to be the maximum weight achievable by matching
corresponding symbols of two equal-sized subsequences of X and Y using the above weighted
criterion.

Present a recursive DP formulation for this problem. (Don’t forget the basis case and be sure
to indicate which table entry yields the final answer.) Provide a brief justification (not a
formal proof).

3

Y =

X =

(a) (b)

5 0 3 9 6 3 1 8

9 5 2 7 3 7 6 2 8 Y =

X = 5 0 3 9 6 3 1 8

9 5 2 7 3 7 6 2

2 1 1 2 1 Total weight = 9

8

2

Figure 3: LCS with mismatches.

Problem 7. A pharmacist has W pills and n empty bottles. Let bi denote the number of pills
that can fit in bottle i. Let vi denote the cost of purchasing bottle i. Given W , bi’s and vi’s,
we wish to compute the cheapest subset of bottles into which to place all W pills. (You may
assume that

∑
i bi ≥ W .)

(a) Suppose that you only pay for the fraction of the bottle that is used. For example, if
the ith bottle is half filled with pills, you pay only vi/2. Present an algorithm for this
version of the problem. (Hint: Use greedy.) Justify your algorithm’s correctness.

(b) Suppose that this assumption does not hold. That is, you must buy the entire bottle,
even if only a portion of it is used. Present an algorithm for this version of the problem.
(Hint: Use DP. It suffices to give the recursive formulation.) Justify your algorithm’s
correctness.

Problem 8. In the long forgotten past (before Venmo) there were curious, round things called
coins, which could be used for buying stuff. In these quaint times, when someone paid too
much for an item, an overworked, underpaid person, called a cashier, would make change by
counting out the smallest number of coins to make up the difference.

(a) Consider an infinite coin system based on powers of 3, that is, the coin values are
{1, 3, 9, 27, . . .}. Describe a greedy algorithm for making change in such a system. That
is, given any amount R, determine the minimum number of coins from this set whose
sum is R.

(b) The greedy algorithm is not optimum for all choices of coin denominations. Give a set of
coin denominations (which must include a 1-cent coin) for which the greedy algorithm
may fail to yield the smallest number of coins. Explain briefly.

Problem 9. Prof. DM runs a side business selling photos of the lovely and elusive Prothonotary
Warbler. His business has two offices, one in Washington DC and one in LA. Each week, he
needs to decide whether to work in the DC office or the LA office. Depending on the week,
his business makes more profit by having him at one office than the other. He is given a table
of weekly profits, based on his location. Here is an example:

Week 1 2 3 4 5

DC $40 $10 $20 $5 $110
LA $21 $90 $10 $150 $2

4

Clearly, he would prefer to work at the location where he receives the greater profit, but
here is the catch. It costs $100 to fly (on Spirit Airlines) from one office to the other. (For
example, if he does the first job in DC, the next three in LA, and the last in DC, his total
profit will be $40− $100 + ($90 + $10 + $150)− $100 + $110 = $200.

You are given two lists of length n, DC[1..n] and LA[1..n], where DC[i] is the profit for
spending week i in DC, and LA[i] is the profit for spending week i in LA. Present an efficient
algorithm, which given these two arrays, determines his maximum overall profit. You must
start and end in DC, but he may travel back and forth any number of times. Briefly justify
your algorithm’s correctness and derive its running time.

Hint: O(n) time is possible using dynamic programming. It suffices to give just the recursive
formulation. You will need to find a way to keep track of where he was the previous week.

Problem 10. You are given a directed network G = (V,E) with a root node r and a set of
terminal nodes T = {t1, . . . , tk}. Present a polynomial time algorithm to determine the
minimum number of edges to remove so that there is no path from r to any of the terminals
(see Fig 4). Prove that your algorithm is correct.

r

G:

t4

t3

t2

t1

r

G:

t4

t3

t2

t1

Figure 4: Eliminating edges to separated r from terminals.

Problem 11. An edge of a flow network is said to be critical if decreasing the capacity of this
edge results in a decrease in the maximum flow value. Present an efficient algorithm that,
given an s-t network G finds any critical edge in a network (assuming one exists)

5

