
CMSC 451:Spring 2025 Dave Mount

Practice Problems for the Final Exam

The final will beThu, May 15, 10:30am - 12:30pm in IRB 0324. The exam will be closed-book
and closed-notes, but you will be allowed two sheets of notes (front and back of each sheet).

Disclaimer: These are practice problems, which have been taken from old homeworks and exams.
They do not necessarily reflect the actual length, difficulty, or coverage for the exam. For example,
we have covered some topics this year that were not covered in previous semesters. So, just because
a topic is not covered here, do not assume it will not be on the exam.

Problem 0. You should expect one problem in which you will be asked to work an example of
one of the algorithms or NP-complete reductions that we have presented in class.

Problem 1. Short answer questions.

(a) Suppose that you perform a DFS on an undirected graph G = (V,E), and for each vertex
u ∈ V , you compute the discovery time d[u] and finish time f [u]. Let u be a descendant
of v in the DFS tree. What can be said about the relative order of d[u], f [u], d[v], and
f [v]?

(b) What is the longest common subsequence of the strings X = ⟨ababa⟩ and Y = ⟨babab⟩?
(If there are multiple, list any one. I don’t need to see a trace of the algorithm, just the
final answer.)

(c) Give a definition of the k-center problem. (What is the input and what is the output?)
What does it mean to say that an algorithm yields a factor-2 approximation to this
problem?

(d) Given a flow network G, let (X,Y ) denote the minimum capacity cut in G.

(i) True or False: If we double the capacities of all the edges (x, y) that cross the cut,
then the value of the maximum flow doubles.

(ii) True or False: If we reduce by half the capacities of all the edges (x, y) that cross
the cut, then the value of the maximum flow reduces by half.

(e) True or False: Suppose that the capacities of the edges of an s-t network are integers
that are all evenly divisible by 3. (E.g., 3, 6, 9, 12, etc.) Then there exists a maximum
flow, such that the flow on each edge is also evenly divisible by 3.

(f) “P ⊆ NP”: Is this assertion True, False, or Unknown to science? (Explain briefly.)

(g) True or False: It is possible to determine in polynomial time whether a graph G has an
independent set of size 100.

(h) Suppose that A ≤P B, and there is a factor-2 approximation to problem B, then which
of the following necessarily follows:

(i) There is a factor-2 approximation for A.

(ii) There is a constant factor approximation for A, but the factor might not be 2.

(iii) We cannot infer anything about our ability to approximate A.
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Problem 2. Recall that in the longest common subsequence (LCS) problem the input consists of
two strings X = ⟨x1, . . . xm⟩ and Y = ⟨y1, . . . , yn⟩ and the objective is to compute the longest
string that is a subsequence of both X and Y .

(a) (LCS with wild cards) Each of the strings X and Y may contain a special character
“?”, which is allowed to match any single character of the other string, except another
wild-card character (see Fig 1(a)).

(b) (LCS with swaps) Any two consecutive characters of either string are allowed to be
swapped before matching in the LCS (see Fig 1(b)).

A ? B B ? AD

A ? B C D ?C

X :

Y :

LCS(X, Y ) = ABBCDA

(a)

A B C A C DC

A C C B D DA

X :

Y :

LCS(X, Y ) = A{BC}A{CD}
(b)

C

Figure 1: LCS variants.

In all cases, your revised rule should admit an O(mn) time solution.

Problem 3. You are given a collection of n points U = {u1, u2, . . . , un} in the plane, each of which
is the location of a cell-phone user. You are also given the locations of m cell-phone towers,
C = {c1, c2, . . . , cm}. A cell-phone user can connect to a tower if it is within distance ∆ of
the tower. For the sake of fault-tolerance each cell-phone user must be connected to at least
three different towers. For each tower ci you are given the maximum number of users, mi,
that can connect to this tower.

Give a polynomial time algorithm, which determines whether it is possible to assign all the
cell-phone users to towers, subject to these constraints. Prove its correctness. (You may
assume you have a function that returns the distance between any two points in O(1) time.)

Problem 4. Your local pharmacy has asked you to help set up the work schedule for the next
month. There are n pharmacists on the staff and m days in the month. Each pharmacist
gives a list of the days of the month that he/she is available to work. For the ith pharmacist,
this is given as a list Ai, where each number in the list is in the range from 1 to m. For
example, if Ai = ⟨3, 5, 9, 15, 23⟩, then the ith pharmacist is available to work on days 3, 5,
9, 15, and 23 of the month. Let di = |Ai| denote the number of days that pharmacist i is
available to work. Then he/she should be scheduled to work at least ⌈di/2⌉ of these days.
Each day there must be exactly 3 pharmacists on duty. (An example is shown in the figure
below. There are 5 pharmacists and 4 days in the month.)

Present an efficient algorithm that is given the values of n, m, and the availability lists
A1, . . . , An, and determines whether there exists a schedule that satisfies all the above re-
quirements. (Hint: Reduce to either Max-Flow or Circulation. You may give a figure for the
above example, but your description should work for any valid input.) Present a brief proof
that your algorithm is correct.
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A1 = ⟨1, 2, 4⟩
(Possible) Final Schedule:

Day

1

2

3

4

Pharmacists working

1, 2, 3

1, 4, 5

2, 3, 5

3, 4, 5

A2 = ⟨1, 2, 3⟩
A3 = ⟨1, 2, 3, 4⟩
A4 = ⟨2, 4⟩

Availability Lists

A5 = ⟨2, 3, 4⟩

Figure 2: Pharmacy problem.

Problem 5. In the High-Degree Independent Set (HDIS) problem, you are given a graph G =
(V,E) and an integer k, and you want to know whether there exists an independent set V ′

in G of size k such that each vertex of V ′ is of degree at least k. (For example, the graph in
Fig. 3 has an HDIS for k = 3, shown as the shaded vertices. Note that it does not have an
HDIS for k = 4. Although adding the topmost vertex would still yield an independent set,
this vertex does not have degree at least four.)

(a) Show that HDIS is in NP.

(b) Show that HDIS is NP-hard. (Hint: Use standard independent set (IS).)

G:
!

Figure 3: High-degree independent set for k = 3.

Problem 6. Show that the following problem is NP-complete.

Balanced 3-coloring (B3C): Given a graph G = (V,E), where |V | is a multiple of 3, can
G can be 3-colored such that the sizes of the 3 color groups are all equal to |V |/3. That is,
can we assign an integer from {1, 2, 3} to each vertex of G such that no two adjacent vertices
have the same color, and such that all the colors are used equally often.

Hint: Reduction from the standard 3-coloring problem (3COL).

Problem 7. A vertex in a graph is said to have perfect square degree if its degree is a perfect
square, {1, 4, 9, 16, . . .}. Given a graph G = (V,E), a square independent set (SqIS) is defined
to be any subset V ′ ⊆ V such that (1) the degree of every vertex of V ′ is a perfect square,
and (2) there is no edge between any two vertices of V ′.

The SqIS problem is, given a graph G and integer k, does G contain an SqIS of size at least
k. The objective of this problem is to show that SqIS is NP-complete
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(a) Show that SqIS is in NP.

(b) Prove that SqIS is NP-hard. (Hint: Reduction from the standard independent set prob-
lem, IS.)

Problem 8. You are given a sequence of points X = ⟨x1, . . . , xn⟩ on the real line, sorted in
ascending order. The distance between two points xi and xj is just their absolute difference
|xj − xi|. A TSP tour is a cycle that visits each point of X exactly once (see Fig. 4(a)). The
bottleneck cost of a tour is defined to be the maximum (not sum!) of the distances between
consecutive points. The bottleneck TSP problem is the following: Find a TSP tour having
the smallest bottleneck cost.

x1 x2 · · · xn

the alternating heuristic

bottleneck cost

x1 x2 · · · xn

bottleneck cost

a TSP tour

xn−1 xn−1
(a) (b)

Figure 4: Bottleneck TSP tour for points on a line.

Consider the following alternating heuristic for this problem: Travel from x1 to xn, skipping
every other point. Then return from xn to x1 visiting the skipped points. For example, if n
is even, then the path is ⟨x1, x3, x5, . . . , xn−1, xn, xn−2, . . . , x2, x1⟩ (see Fig. 4(b)).

(a) (Easier) Prove that this heuristic provides a factor-2 approximation to the bottleneck
TSP problem for points on the real line. (Hint: Let ℓ be the maximum distance between
any two consecutive points. Relate the costs of the optimum TSP tour and the heuristic
path to ℓ.)

(b) (Harder) Prove that the alternating heuristic is actually optimal. (Hint: This follows
the same structure as our optimality proofs for greedy algorithms.)
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