
CMSC 451:Spring 2025 Dave Mount

Solutions to Homework 2: Greedy Algorithms and Dynamic Programming

Solution 1:

(a) To create a counterexample, we create one very long request with the earliest start time, and
a set of n − 1 pairwise disjoint requests that overlap the first request (see Fig. 1(a)). The
ESF strategy will succeed in scheduling only the first request, while the optimum schedules
the remaining n − 1. Thus, the performance ratio (that is, the ratio between the optimum
and greedy) is n− 1/1 = n− 1. This can be made arbitrarily large by increasing n.

1

2 3 4 n

0 4 6 9

1

2

3

53

(a) (b) (c)

si fi

Opt:

SDF:

?

Figure 1: Interval scheduling.

(b) First observe that there is no loss of optimality by eliminating nesting. If [si, fi] ⊂ [sj , fj],
then any schedule that uses [sj , fj] cannot also use [si, fi], because they overlap. This means
that we can replace [sj , fj] with [si, fi] in any schedule without inducing any other overlaps.
By repeating this, we convert any schedule to a nesting-free schedule without decreasing the
number of scheduled requests. Therefore, we may assume that optimum schedule is nesting-
free.

We assert that once nested intervals have been removed, sorting by start time is equivalent to
sorting by finish time. To see why, suppose that sj ≤ si. By nesting-freeness, fj ≤ fi, since
otherwise we would have sj ≤ si < fi < fj , implying that [si, fi] ⊂ [sj , fj], a contradiction.
Since EFF (earliest finish first) is known optimal for any set of requests, it follows that ESF
is optimal on any set of nested-free intervals. Therefore ESF∗ is optimal.

(c) As a counterexample, consider three requests I = {[0, 4], [3, 6], [5, 9]} (see Fig. 1(b)). Requests
1 and 3 have duration 4 are non-overlapping, while request 2 has duration 3. Thus, SDF
schedules only request 2, while the optimum schedules both 1 and 3. Therefore, Opt(I) = 2,
but SDF(I) = 1.

(d) As with the proof that EFF is optimal, we will employ an induction proof where we repeatedly
modify any Opt schedule to match SDF. In that proof, we swapped one-for-one, implying that
both solutions had the same size. Here, we will swap at most two-for-one, implying that the
size of SDF is at least half as large as Opt.

Given any instance I, consider the optimum and SDF sizes, denoted Opt(I) and SDF(I),
respectively. If they are the same, then Opt(I) = SDF(I), and hence the both have the same
size. Otherwise, find the first interval (in start-time order) such that [si, fi] is in the SDF

1

solution but not in the Opt solution. We assert that at most two intervals from the Opt
solution can overlap this interval. To see why, suppose to the contrary that three or more
intervals of Opt were to overlap [si, fi]. Then any interval other than the first and last would
be completely contained within [si, fi], implying that this middle interval has a strictly smaller
duration than [si, fi] (see Fig. 1(c)). Thus, SDF would have chosen this interval, rather than
[si, fi], a contradiction.

Given the first difference [si, fi], we modify Opt by removing the (at most two) overlapping
intervals from Opt and add [si, fi]. The resulting schedule is clearly valid, and it has suffered
a net decrease in size by at most one interval for each greedy interval on which we differ.
By repeating this, we arrive at a schedule, denoted Opt′(I) that is identical to greedy. The
number of intervals that have been removed from the original optimum is not greater than
the number of greedy intervals. Therefore, we have

SDF(I) = Opt′(I) ≥ Opt(I)− SDF(I).

This implies that 2 · SDF(I) ≥ Opt(I), or equivalently, SDF(I) ≥ Opt(I)/2, as desired.

Here is (arguably simpler) proof, which is based on a charging argument. Assign each interval
of the optimum a token. The total number of tokens t is equal to Opt(I). Whenever an
interval of the optimum overlaps an interval of the SDF solution, transfer its token to the
SDF interval. (If there are multiple such intervals in SDF, transfer the token to any one.) By
the above observation, each interval of SDF receives at most two tokens. By adding up all
the tokens in the SDF solution, we conclude that

Opt(I) = t ≤ 2 · SDF(I),

which implies that SDF(I) ≥ Opt(I)/2, as desired.

Solution 2:

(a) We will show that, for any i ≥ 0, the smallest k such that ∆(Gk) ≤ 1/2i satisfies the following
recurrence, which we’ll call k(i).

k(i) =

1 if i = 0,
3 if i = 1,
3k(i− 1)− 3 otherwise.

Thus, for example, k(2) = 3 · 3− 3 = 6, k(3) = 3 · 6− 3 = 15, and k(4) = 3 · 15− 3 = 42.

To see this, let’s start with k(1) = 3. In general, assuming we know k(i−1), to form the next
level of the Sierpiński triangle, we make three copies at half the scale. This reduces the ∆
value by exactly 1/2. It increases the number of center points by the three copies, but three
of the points are replicated. Thus, we have k(i) = 3k(i− 1)− 3 = 3(k(i− 1)− 1), as desired.

We claim that this recurrence solves to k(i) = 1 if i = 0, and k(i) = (3i + 3)/2. It is easy to
verify that the formula gives the correct in the basis cases (i = 0 and i = 1). We’ll prove this
works in general by induction. Suppose that i ≥ 2. By applying the induction hypothesis
and straightforward manipulations, we have

k(i) = 3k(i− 1)− 3 = 3
3(i−1) + 3

2
− 3 =

3i + 9

2
− 3 =

3i + 3

2
+

6

2
− 3 =

3i + 3

2
,

as desired.

2

Figure 2: Interval scheduling.

(b) For r = 1/2i, part (a) tells us that we can cover T using k(i) = (3i+3)/2 disks of radius 1/2i.
Thus NT (1/2

i) = (3i + 3)/2. As i tends to infinity the “ + 3” term is negligible, and hence
this is roughly 3i/2. The Hausdorff dimension of T is the value of d such that NT (r) = 1/rd,
or equivalently NT (1/2

i) = (2i)d = 2id. Equating these yields,

2id =
3i

2
⇐⇒ log 2id = log

3i

2
⇐⇒ id log 2 = i log 3− log 2 ⇐⇒ d =

log 3

log 2
− 1

i
.

In the limit, as i grows to +∞, the 1/i term vanishes, and we have d = log 3/ log 2, as desired.

Solution 3:

(a) The greedy algorithm works analogously to the set-cover algorithm from class. Initially, none
of the sheets are pinned. We select the node of the layered graph that has the highest depth
and place a pin there. We then mark all of the sheets overlapping this region as “pinned.”
Next, we remove the newly pinned sheets from each of the paper sets associated with each
region, and we update the depth counts for each node accordingly. (If a region is overlapped
by k of the newly pinned sheets, we decrement its depth count by k.) We repeat this until
all the sheets have been pinned.

(b) We could prove this by modifying the set-cover proof given in class, but we can do it in
another way, by showing that the pinning problem is equivalent to the set-cover problem, and
the above algorithm is doing exactly what the greedy set cover algorithm would do.

The problem of computing a pinning set is an instance of a famous optimization problem
called the hitting set problem. We are given a set of items, V = {v1, . . . , vm} and a collection
of sets P = {p1, . . . , pn}. The problem is to compute a subset V ′ ⊂ V of minimum size such
that every set in P contains at least one element of V ′ (or is “hit” by at least one element of
V ′).

In our case, V is the set of vertices in the layer graph, and for each vertex u ∈ V , we associate
a set pu = papers(u) of the papers that overlap this region. Let P = {pu}u∈V . Finding a
pinning set is equivalent to identifying a subset of vertices V ′ such that every set pu is hit by
at least element of u ∈ V ′. Thus, this is an instance of hitting set.

It turns out that covering and hitting are equivalent problems. To see this, consider an
instance (X,S) of the set cover problem (see Fig. 3(a)). We can express the element-set
relations as a bipartite graph, where there is an edge (xi, sj) if xi ∈ sj (see Fig. 3(b)). Now,
let’s swap the rolls of X and S, so that the sj ’s are the elements, and the xi’s are the sets
(see Fig. 3(c)). This is called the dual set system. We just reinterpret each edge (xi, sj) as
meaning that item sj lies in set xi.

3

s3 s4

s1

s5

(a) (b)

x1 x5

s2
x6 x1 x4x2 x3 x5 x6 x7

s1 s4s2 s3 s5

s4

x1

x2
x3

x4

x8
x7

x6 x7x6 x7x6 x7

x5

x4

x2

x7

x3

s1 s2 s5s3

(c)

Figure 3: Equivalence between set cover and hitting (pinning) set.

We claim that a set cover in the set system (X,S) is a hitting set in the dual set system
(S,X), and vice versa. Suppose that a subset S′ ⊂ S covers all the elements of X (as s3
and s4 do in Fig. 3(a)). Then the neighborhoods of these two vertices in the bipartite graph
include all the elements of X (see Fig. 3(b)). But this is equivalent to saying that all the sets
of X contain at least one of the elements of S′. (In Fig. 3(c), every set contains either s3 or
s4.)

Having established the equivalence of set cover and hitting set, all that remains is showing
that the greedy set cover heuristic (that is, repeatedly finding the set sj that covers the
greatest number of elements of X) is equivalent to the greedy hitting-set heuristic (that is,
finding the element sj that hits the greatest number of sets in X). In each case, exactly the
same subset of elements will be chosen by both algorithms. Thus, the lnn approximation
ratio proved in class applies to both.

Solution 4: In the standard DP for weighted interval scheduling, we needed to keep track of the
latest (with respect to finish time) of the intervals under consideration. In this case, we will need
to keep two such indices, one for the lake table and one for the tennis-court table.

(a) Let’s assume that the requests have been sorted by finish times. In the standard version of the
WIS problem, for 0 ≤ j ≤ n, we defined W (j) to be the maximum possible value achievable
if we consider just requests {1, . . . , j}. The trick here will be to maintain two indices, one for
the requests that we can schedule for Table A and the other for requests we can schedule for
Table B.

For 0 ≤ i, j ≤ n, define W (i, j) to be the maximum possible value achievable if we consider
just requests {1, . . . , i} for Table A and {1, . . . , j} for Table B. (If i or j is zero, then we will
assign no more requests to the associated table.) The final answer to our problem will be
W (n, n). We will make use of the function prior(j) introduced in the lecture. Recall that this
is defined to be the largest integer such that fprior(j) < sj ,

Computing the function W (i, j) correctly requires care. The issue is that in the course of the
recursive construction, the values of i and j may become equal. Suppose that you make a
decision regarding one index (e.g., assign request i = 7 to Table A) and at some later time,
when the value of the other index is equal, you make an inconsistent assignment (e.g., assign
request j = 7 to Table B).

4

Can this be avoided by designing a data structure that keeps track of which requests have
been assigned to which tables? This will not work. The reason that DP is efficient is that
the state of the optimization problem is determined by just two numbers, i and j. Once you
start allowing for additional constraints, the number of possible constraints quickly grows to
quadratic size.

The trick is to make sure that whenever a decision is made to assign a request to a table,
we can never assign the same request to the other table. We will exploit two properties to
guarantee this: (1) whenever recursive calls are made, the indices can never increase, and (2)
we always process the request for the larger of the two indices.

Let’s derive our recursive formulation. For the basis cases, we define W (0, 0) = 0. Otherwise,
the larger of the two indices is at least 1.

� If i > j:

– (Request i is not in the optimal schedule:) Since i is not in the schedule, optimality
demands that we do the best possible with the remaining i− 1 requests. Therefore,
W (i, j) = W (i− 1, j).

– (Request i is assigned to Table A:) We gain a profit of ai, but we cannot assign
any request after prior(i) to Table A. Since j < i, and indices cannot increase,
this decision does not limit future assignments to Table B. Therefore, W (i, j) =
ai +W (prior(i), j).

� If i < j: (This is symmetrical to the previous case.)

– (Request j is not in the optimal schedule:) Since j is not in the schedule, optimality
demands that we do the best possible with the remaining j− 1 requests. Therefore,
W (i, j) = W (i, j − 1).

– (Request j is assigned to Table B:) We gain a profit of bj , but we cannot assign
any request after prior(j) to Table B. Since i < j, and indices cannot increase,
this decision does not limit future assignments to Table A. Therefore, W (i, j) =
bj +W (i,prior(j)).

� If i = j:

– (Request i is not in the optimal schedule for either table:) We should do the best
we can with the remaining i− 1 requests. Therefore, W (i, i) = W (i− 1, i− 1).

– (Request i is assigned to Table A:) We gain a profit of ai, but we cannot assign
any request to Table A after index prior(i). Also, we cannot assign this same
request to Table B. There are no other constraints imposed by this decision, and
therefore optimality demands that we do the best possible with the first prior(i)
requests for Table A and the first j − 1 requests for Table B. Therefore, W (i, i) =
ai +W (prior(i), i− 1).

– (Request i is assigned to Table B:) We gain a profit of bi, but we cannot assign any
request to Table B after index prior(i). Also, we cannot assign this same request
to Table A. There are no other constraints imposed by this decision, and therefore
optimality demands that we do the best possible with the first i − 1 requests for
Table A and the first prior(i) requests for Table B. Therefore, W (i, i) = bi +W (i−
1,prior(i)).

5

Among each of the options available in each case, we take the best. This suggests the following
recursive rule for 0 ≤ i, j ≤ n:

W (i, j) =

0 if i = j = 0

max

(
W (i− 1, j),
ai +W (prior(i), j)

)
if i > j

max

(
W (i, j − 1),
bj +W (i,prior(j))

)
if j > i

max

 W (i− 1, i− 1),
ai +W (prior(i), i− 1),
bi +W (i− 1, prior(i))

 if i = j

(b) To implement this efficiently, we will employ memoization. Let W [0..n, 0..n] denote the final
matrix. We assume that the value arrays a[1..n] and b[1..n] are global. For reconstructing
the solution, we will use an parallel array H[1..n, 1..n] where H[i, j] ∈ {A,B,R}, depending
whether we chose to accept the request for Table-A, Table-B, or we reject it. Initially, the
requests are sorted by finish times and the prior[1..n] array is computed. Also, the W array
is initialized to −1, meaning “undefined”. The recursive function is presented in the code
block below.

The final optimum value is given by W [n, n]. The algorithm’s correctness follows from the
explanations given in the DP formulation.

The algorithm fills a single entry of an (n+1)× (n+1) array with each recursive call. Due to
memoization, the same recursive call is never made twice. Since the body of each recursive
call takes O(1) time (there are no loops), it follows that the total time O(n2). (The sorting
of the requests can be done in O(n log n) time, and the computation of the prior array can
be done in O(n) time, thus, these do not affect the asymptotic running time.)

(c) We use the H array to retrace the algorithms decision and construct the optimum schedule.
We start with W [n, n] and work backwards. We know that each value of W [i, j] arose from
either two or three possibilities. If we accepted request i for Table A, we add i to Table A’s
schedule. If we accepted request j for Table B, we add j to Table B’s schedule. Finally, if we
rejected either, we do not add anything to either schedule. We then continue with the same
table entry based on the recursive formulation. The algorithm for generating the schedule is
given in the code block, below.

The correctness follows from the fact that we are just backtracing the recursive calls from
WIS-AB that led to the best values. The running time is O(n). The reason is that each time
through the loop we strictly decrease the value of i or the value of j, and we never increase
either value. Since both are initialized to n, after at most 2n iterations, both must be 0, and
the algorithm terminates.

Solution to the Challenge Problem: The answer is that the probability of your seat being
free on your arrival is exactly 1/2. The easy way to see this is to focus on just two seats. Let seat
A be your assigned seat, and let seat B be the seat that was supposed to be occupied by the first
student. The algorithm makes many random choices, but almost all of these are “red herrings,”

6

Two-Table WIS Value
WIS-AB(i, j) { // memoized WIS for two tables

if (W[i, j] == -1) { // W[i, j] undefined?

if (i == j == 0) { // basis case

W[i, j] = 0

} else if (i > j) { // process index i

rejVal = WIS-AB(i-1, j) // reject value

accVal = a[i] + WIS-AB(prior[i], j) // accept value

if (rejVal > accVal) // better to reject?

W[i, j] = rejVal; H[i, j] = ’R’

else // accept for table A

W[i, j] = accVal; H[i, j] = ’A’

} else if (j > i) { // process index j

rejVal = WIS-AB(i, j-1) // reject value

accVal = b[j] + WIS-AB(i, prior[j]) // accept value

if (rejVal > accVal) // better to reject?

W[i, j] = rejVal; H[i, j] = ’R’

else // accept for table B

W[i, j] = accVal; H[i, j] = ’B’

} else { // (i == j)

rejVal = memo-WIS(i-1, i-1) // reject value

accAVal = a[i] + WIS-AB(prior[i], i-1) // value for Table A

accBVal = b[i] + WIS-AB(i-1, prior[i]) // value for Table B

if (rejVal > max(accAVal, accBVal)) // better to reject

W[i, i] = rejVal; H[i, i] = ’R’

else if (accAVal > accBVal) // better to accept for A

W[i, i] = accAVal; H[i, i] = ’A’

else // better to accept for B

W[i, i] = accBVal; H[i, i] = ’B’

}

}

return W[j] // return value

}

and don’t affect the final answer. The key event that completely determines the final result is the
first time any student selects either seat A or seat B. The result of this choice determines the final
outcome.

To see why, let’s consider both cases. Clearly, if A (your assigned seat) is chosen by any student
before you, they will be sitting in that seat when you arrive and so your seat is gone. The other
case is a bit trickier to see. Suppose that before anyone has taken seat A, some student selects seat
B (the first student’s seat). We claim that every student that follows will sit in their assigned seat,
leaving your seat available. To see why, observe that the misplaced students who select random
seats form a chain (linking the occupied seat from which they were misplaced to the random seat
where they finally sat). Once someone fills seat B, the chain closes into a loop, and none of the
remaining seats will ever be taken, except by the student assigned to them.

Since the misplaced students select seats at random, the probability that B is taken before A
is 1/2. Therefore, the probability that your seat is still available is exactly 1/2, irrespective of the
number of students.

7

Computing Two-Table WIS Schedule
get-schedule() { // get the WIS schedule

i = j = n // start with the last request

schedA = schedB = empty

while (max(i, j) > 0) {

if (i > j) {

if (H[i, j] == ’A’) { // accept request i for table A?

prepend i to schedA

i = prior[i]

} else

i = i-1

} else if (j > i) {

if (H[i, j] == ’B’) { // accept request j for table B?

prepend j to schedB

j = prior[j]

} else

j = j-1

} else // (i == j)

if (H[i, i] == ’A’) { // accept request i for table A?

prepend i to schedA

i = prior[i]; j = i-1

} else if (H[i, i] = ’B’) { // accept request i for table B?

prepend i to schedB

i = i-1; j = prior[j]

} else

i = j = i-1

}

}

return (schedA, schedB) // return the final schedules

}

8

